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Abstract 12 

Objectives To examine age related differences in self-reported sleep quality and their 13 

associations with health outcomes across four domains: Physical Health, Cognitive Health, Mental 14 

Health and Neural Health.  15 

Setting Cam-CAN is a cohort study in East Anglia/England, which collected self-reported 16 

health and lifestyle questions as well as a range of objective measures from healthy adults. 17 

Participants 2406 healthy adults (age 18-98) answered questions about their sleep quality 18 

(Pittsburgh Sleep Quality Index) and measures of Physical, Cognitive, Mental, and Neural Health. A 19 

subset of 641 individuals provided measures of brain structure. 20 

Main outcome measures Pittsburgh Sleep Quality Index scores (PSQI) of sleep, and scores 21 

across tests within the four domains of health. Latent Class Analysis (LCA) is used to identify sleep 22 

types across the lifespan. Bayesian regressions quantify the presence, and absence, of relationships 23 

between sleep quality and health measures. 24 

Results Better sleep is generally associated with better health outcomes, strongly so for 25 

mental health, moderately for cognitive and physical health, but not for sleep quality and neural 26 

health. Latent Class Analysis identified four sleep types: ‘Good sleepers’ (68.6%, most frequent in 27 

middle age), ‘inefficient sleepers’ (13.05%, most frequent in old age), ‘Delayed sleepers’ (9.76%, 28 

most frequent in young adults) and ‘poor sleepers’ (8.6%, most frequent in old age). There is little 29 

evidence for interactions between sleep quality and age on health outcomes. Finally, we observe u-30 

shaped associations between sleep duration and mental health (depression and anxiety) as well as 31 

self-reported general health, such that both short and long sleep were associated with poorer 32 

outcomes. 33 

Conclusions Lifespan changes in sleep quality are multifaceted and not captured well by 34 

summary measures, but instead as partially independent symptoms that vary in prevalence across 35 

the lifespan. Better self-reported sleep is associated with better health outcomes, and the strength 36 
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of these associations differs across health domains. Notably, we do observed associations between 37 

self-reported sleep quality and white matter. 38 

Funding Biotechnology and Biological Sciences Research Council (grant number 39 

BB/H008217/1). RAK is supported by the Wellcome Trust (grant number 107392/Z/15/Z and the UK 40 

Medical Research Council (MC-A060-5PR61). 41 
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 46 

Strengths and limitations of this study 47 

• Broad phenotypic assessment of healthy ageing across multiple health domains  48 

• Advanced analytic techniques (i.e. Latent Class Analysis regression) allows new insights 49 

• A uniquely large neuroimaging sample combined with Bayesian inference allows for 50 

quantification of evidence for the null hypothesis  51 

• Subjective sleep measures may have drawbacks in older samples 52 

• Cross-sectional data precludes modelling of within subject changes 53 

  54 
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BACKGROUND 55 

Sleep is a fundamental human behaviour, with humans spending almost a third of their lives asleep. 56 

Regular and sufficient sleep has been shown to benefit human physiology through a number of 57 

different routes, ranging from consolidation of memories (1) to removal of free radicals (2) and 58 

neurotoxic waste (3). Sleep patterns are known to change across the lifespan in various ways.  59 

including decreases in quantity and quality of sleep (4), with up to 50% of older adults report 60 

difficulties initiating and/or maintaining sleep (5). A meta-analysis of over 65 studies reflecting 3577 61 

subjects across the lifespan reported a complex pattern of changes, including an increase of stage 1 62 

but a decrease of stage 2 sleep in old age, as well as a decrease in REM sleep (6). An epidemiological 63 

investigation of self-reported sleep in older adults observed marker sex differences in age-related 64 

sleep changes, with females more likely to report disturbed sleep onset but men reporting night-65 

time awakenings (7). Other findings age-related physiological changes in the alignment of 66 

homeostatic and circadian rhythms (8), decreases in sleep efficiency (9) the amount of slow-wave 67 

sleep, and an increase in daytime napping (10). Importantly, interruption and loss of sleep has been 68 

shown to have wide ranging adverse effects on health (11), leaving open the possibility that age-69 

related changes in sleep patterns and quality may contribute to well-documented age-related 70 

declines in various health domains.  71 

In the current study, we examine self-reported sleep habits in a large, population-based 72 

cohort Cambridge Centre for Ageing and Neuroscience (Cam-CAN (12)). We relate sleep measures to 73 

measures of health across four health domains: cognitive, brain health, physical and mental health. 74 

Our goal is to quantify and compare the associations between typical age-related changes in sleep 75 

quality and a range of measures of health measures that commonly decline in later life. We assess 76 

sleep using a self-reported measure of sleep quality, the Pittsburgh Sleep Quality Index (PSQI) (13). 77 

The PSQI has good psychometric properties (14) and has been shown to correlate reliably with 78 

diseases of aging and mortality (15–17). Although polysomnography (18) is commonly considered 79 

the gold standard of sleep quality measurement, it is often prohibitively challenging to employ in 80 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 8, 2017. ; https://doi.org/10.1101/060145doi: bioRxiv preprint 

https://doi.org/10.1101/060145
http://creativecommons.org/licenses/by/4.0/


5 
 

large samples. A recent direct comparison of sleep measures (19) suggests that although subjective 81 

sleep measures (such as PSQI) may have certain drawbacks in older samples, they also capture 82 

complementary aspects of sleep quality not fully captured by polysomnography. Moreover, 83 

collecting self-report sleep quality data in a large, deeply phenotyped cohort offers several 84 

additional benefits. 85 

By utilising a population cohort of healthy adults, and studying a range of health outcomes in 86 

the same population, we can circumvent challenges associated with studying clinical populations 87 

and provide new insights. First and foremost, by investigating associations between sleep and 88 

outcomes across multiple health domains in the same sample, we can make direct comparisons of 89 

the relative magnitude of these effects. Second, larger samples allow us to can generate precise 90 

effect size estimates, as well as adduce in favour of the null hypothesis. Third, we investigate the 91 

associations between sleep quality and neural health in a uniquely large healthy population. 92 

Previous investigations of the consequences of poor sleep on especially neural health have generally 93 

focuses on clinical populations such as those suffering from insomnia (20,21). Although such studies 94 

are crucial for understanding pathology, the demographic idiosyncrasies and often modest sample 95 

sizes of these approaches make it hard to generalize to healthy, community dwelling lifespan 96 

populations. Moreover, most studies that study age-related changes or differences focus on (very) 97 

old age, while far less is known about young and middle aged adults (6). For these reasons, our focus 98 

on a healthy, multimodal lifespan cohort is likely to yield novel insights into the subtle changes in 99 

sleep quality across the lifespan. 100 

We will focus on three questions within each health domain: First, is there a relationship 101 

between sleep quality and health? Second, does the strength and nature of this relationship change 102 

when age is included as a covariate? Third, does the strength and nature of the relationship change 103 

across the lifespan? We will examine these questions across each of the four health domains.  104 

 105 

 106 
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METHODS 107 

Sample 108 

A cohort of 2544  (12) was recruited as part of the population-based Cambridge Centre for Ageing 109 

and Neuroscience (Cam-CAN) cohort (www.cam-can.com), drawn from the general population via 110 

Primary Care Trust (PCT)’s lists within the Cambridge City (UK) area 10,520 invitation letters were 111 

sent between 2010 and 2012, and willing participants were invited to have an interview conducted 112 

in their home, with questions on health, lifestyle demographics and core cognitive assessments. 113 

Sample size was chosen to allow for 100 participants per decile in further acquisition stages, giving 114 

sufficient power to separate age-related change from other sources of individual variation. For 115 

additional details of the project protocol see (12,22) and for further details of the Cam-CAN dataset 116 

visit http://www.mrc-cbu.cam.ac.uk/datasets/camcan/. A further subset of participants who were 117 

MRI compatible with no serious cognitive impairment participated in a neuroimaging session (22) 118 

between the 2011 and 2013. Participants included were native English speakers, had normal or 119 

corrected to normal vision and hearing, scored 25 or higher on the mini mental state (23). Note that 120 

other, more stringent cut-offs are sometimes employed to screen for premorbid dementia, such as a 121 

score of 88 or higher in the Addenbrookes Cognitive Examination – Revised (24). For the sake of 122 

comprehensiveness we repeated our analyses using this more stringent cut off (ACE-R>88), but 123 

observed no noteworthy differences in our findings, so we only report the findings based on the 124 

MMSE. Ethical approval for the study was obtained from the Cambridgeshire 2 (now East of England- 125 

Cambridge Central) Research Ethics Committee (reference: 10/H0308/50). Participants gave written 126 

informed consent. The raw data and analysis code are available upon signing a data sharing request 127 

form (see http://www.mrc-cbu.cam.ac.uk/datasets/camcan/ for more detail). 128 

 129 

 130 

 131 

 132 
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Variables 133 

Sleep Measures 134 

Sleep quality was assessed using the Pittsburgh Sleep Quality Index (PSQI), a well-validated 135 

self-report questionnaire (13,19) designed to assist in the diagnosis of sleep disorders. The questions 136 

concern sleep patterns, habits, and lifestyle questions, grouped into seven components, each 137 

yielding a score ranging from 0 (good sleep/no problems) to 3 (poor sleep/severe problems), that 138 

are commonly summed to a PSQI Total score ranging between 0 and 21, with higher scores 139 

reflecting poorer sleep quality. 140 

Health Measures 141 

Cognitive health. A number of studies have found associations between poor sleep and 142 

cognitive decline, including in elderly populations. Poor sleep affects cognitive abilities such as 143 

executive functions (25) and learning and memory processes (26), whereas short term 144 

pharmaceutical interventions such as administration of melatonin improve both sleep quality and 145 

cognitive performance (27,28). Recent work (29) concluded that “maintaining good sleep quality, at 146 

least in young adulthood and middle age, promotes better cognitive functioning and serves to 147 

protect against age-related cognitive declines”. As sleep may affect various aspects of cognition 148 

differently (30), we include measures that cover a range of cognitive domains including memory, 149 

reasoning, response speed, and verbal fluency, as well as including a measure of general cognition 150 

(See Table 1 and (12) for more details). 151 

Neural health. Previous research suggests that individuals with a severe disruption of sleep 152 

are significantly more likely to exhibit signs of poor neural health (20,31). Specifically, previous 153 

studies have observed decreased white matter health in clinical populations suffering from 154 

conditions such as chronic insomnia (21), obstructive sleep apnoea (32,33), excessively long sleep in 155 

patients with diabetes (34), and REM Sleep Behaviour Disorder (35). Many of these studies focus on 156 

white matter hyperintensities (WMH), a measure of the total volume or number of (regions) 157 

showing low-level neural pathology  (although some study grey matter, e.g. (36,37). White matter 158 
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hyperintensities are often used as a clinical marker, as longitudinal increases in WMHs are 159 

associated with increased risk of stroke, dementia and death (38) and are more prevalent in patients 160 

with pathological sleep problems (33,34). However, use of this metric in clinical cohorts largely 161 

leaves open the question of the impact of sleep quality on neural (white matter) health in non-162 

clinical, healthy populations. To address this question, we use a more general indicator of white 163 

matter neural health; Fractional Anisotropy (FA). FA is associated with white matter integrity and 164 

myelination (39,40). We use FA as recent evidence suggests that WMHs represent the extremes 165 

(foci) of white matter damage, and that FA is able to capture the full continuum of white matter 166 

integrity (41). For more information regarding the precise white matter pipeline, see (12,22,42). 167 

Physical health. Sleep quality is also an important marker for physical health, with poorer 168 

sleep being associated with conditions such as obesity, diabetes mellitus (43), overall health (11,44) 169 

and increased all-cause mortality (45,46). We focus on a set of variables that capture three types of 170 

health domains commonly associated with poor sleep: Cardiovascular health measured by pulse, 171 

systolic and diastolic blood pressure (47), self-reported health, both in general and for the past 12 172 

months (48) and body-mass index (49). 173 

Mental health. Previous work has found that disruptions of sleep quality are a central 174 

symptom of forms of psychopathology such as Major Depressive Disorder, including both 175 

hypersomnia and insomnia (44,50), and episodes of insomnia earlier greatly increased the risk of 176 

later episodes of major depression (51). Kaneita et al. (52) found a U-shaped association between 177 

sleep and depression, such that individuals regularly sleeping less than 6, or more than 8, hours were 178 

more likely to be depressed. Both depression (53) and anxiety (54,55) are commonly associated with 179 

sleep problems. To capture these dimensions we used both scales of the Hospital Anxiety and 180 

Depression Scale (HADS) (56), a widely used and standardized questionnaire that captures self-181 

reported frequency and intensity of anxiety and depression symptoms.  182 

 183 

 184 
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 185 

Health 
domain 

Task and Description  Variable Descriptives 
Citati
on 

Cognitive 

Story Recall Immediate: 
Participants hear a short story 
and are asked to recall as 
accurately as possible.  

Recall manually scored 
for similarity and 
precision (min=0, 
max=24) 

N = 2379, M=13.14, 
SD=4.66, Range=(0-
24) 

(57) 

Cognitive 
Story Recall Delayed: 
Same as above but recall after 
30 minute delay 

Recall manually scored 
for similarity and 
precision (min=0, 
max=24) 

N = 2366, M=11.47, 
SD=4.92, Range=(0-
24) 

(57) 

Cognitive 

Letter Fluency (phonemic 
fluency): 
Participants have one minute to 
generate as many words as 
possible beginning with the 
letter 'p'. 

 Total words generated 
(min=0,max=30 ) 

N =  2360, 
M=25.38, SD=3.96, 
Range=(0-30) 

(57) 

Cognitive 

Animal Fluency (semantic 
fluency): 
Participants have one minute to 
generate as many words as 
possible in the category 
'animals'. 

Total words generated 
(min=0,max=30) 

N =  2346, 
M=25.85, SD=4.47, 
Range=(0-30) 

(57) 

Cognitive 

Cattell Culture Fair: 
Test of fluid reasoning using 
four subtests (series 
completions, odd-one-out, 
matrices and topology) 

Total correct summed 
across four subtests. 
Min=0, max=46 

N =  658, M=31.8, 
SD=6.79, 
Range=(11-44) 

(58) 

Cognitive 
Simple reaction time:  
Speed in a simple reaction time 
task 

1/response time in 
seconds 

N =  657, M=0.37, 
SD=0.08, 
Range=(0.24-0.93) 

(12) 

Cognitive 

Addenbrookes Cognitive 
Examination, Revised: 
Screening test for dementia 
using seven subtests 
(orientation, attention and 
concentration, memory, 
fluency, language, visuospatial 
abilities, perceptual abilities) 

Performance on multiple 
tests converted to 
min=0, max=100 range 

N =  2406, 
M=89.25, SD=13.4, 
Range=(0-100) 

(24) 

Neural 
White matter health: 
Measure of tract integrity using 
fractional anisotropy 

Fractional Anisotropy 
(min=0, max=1, 
averaged across 10 
tracts) 

N =  641, M=0.5, 
SD=0.03, 
Range=(0.3-0.56) 

(59) 

Physical 

Self-reported Health, in general: 
Participants use a 4-point scale 
to respond to the prompt 
"Would you say for someone of 
your age, your own health in 
general is..." 

Score from 1 = Excellent 
to 4= Poor 

N =  2404, M=2.02, 
SD=0.79, Range=(1-
3) 

(60) 

Physical 

Self-reported Health, last 12 
months: 
Participants use a 3-point scale 
to respond to the prompt "Over 
the last twelve months would 

Score from 1 = Good to 
3= Poor 

N = 2398, M=1.46, 
SD=0.71, Range=(1-
3) 

(60) 
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you say your health has on the 
whole been..." 

Physical Systolic blood pressure 

Mean systolic blood 
pressure in mmHg, 
averaged across three 
consecutive 
measurements 

N = 577, M=120.11, 
SD=17, 
Range=(78.5-186) 

 

Physical Diastolic blood pressure 

Mean diastolic blood 
pressure in mmHg, 
averaged across three 
consecutive 
measurements 

N = 577, M=73.14, 
SD=10.48, 
Range=(49-115.5) 

 

Physical Resting pulse 

Mean pulse in beats per 
minute, averaged across 
three consecutive 
measurements 

N =  578, M=65.69, 
SD=10.5, 
Range=(40-110.5) 

 

Physical Body Mass Index (BMI) 
(weight in kg) / (height in 
m)^2 

N =  584, M=25.77, 
SD=4.59, 
Range=(16.75-
48.32) 

(61) 

Mental 
health 

Anxiety Subscale (Hospital 
Anxiety and Depression Scale 
(HADS)): 
Participants response to seven 
questions about anxiety-related 
behaviours  

Seven questions rated 
on 0 to 3 scale ('Often' to 
'Very seldom'). Min=0, 
Max=21 

N = 2393, M=5.17, 
SD=3.4, Range=(0-
19) 

(56) 

Mental 
health 

Depression Subscale (Hospital 
Anxiety and Depression Scale 
(HADS)): 
Participants response to seven 
questions about depression-
related behaviours  

Seven questions rated 
on 0 to 3 scale ('Often' to 
'Very seldom'). Min=0, 
Max=21 

N =  2373, M=3.32, 
SD=2.91, Range=(0-
14) 

 

186 

Table 1. Description of health variables across each of four domains (cognitive, neural, 

physical, mental). For each variable details are given including a description of the task it is 

derived from, relevant citations, a brief definition and descriptive statistics. 
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STATISTICAL ANALYSES  187 

We examine whether self-reported sleep patterns change across the lifespan, both for the PSQI sum 188 

score and for each of the seven PSQI components. We then examine the relationships between the 189 

sleep quality and the four health domains in three ways: First, simple regression of the health 190 

outcome on sleep variables, to determine evidence for association between poor sleep quality and 191 

poor health outcomes. Second, we include age as a covariate. Finally, we include a (standard normal 192 

rescaled) continuous interaction term to examine whether there is evidence for a changing 193 

relationship between sleep and outcomes across the lifespan.  194 

For all regressions we will use a default Bayesian approach advocated by (62–65) which 195 

avoids several well-documented issues with p-values (64), allows for quantification of null effects, 196 

and decreases the risk of multiple comparison problems (66). Bayesian regressions allows us to 197 

symmetrically quantify evidence in favour of, or against, some substantive model as compared to a 198 

baseline (e.g. null) model. This evidentiary strength is expressed as a Bayes Factor (67), which can be 199 

interpreted as the relative likelihood of one model versus another given the data and a certain prior 200 

expectation. A Bayes Factor of, e.g., 7, in favour of a regression model suggests that the data are 201 

seven times more likely under that model than an intercept only model for a given prior (for an 202 

empirical comparison of p-values and Bayes factors, see (65)). A heuristic summary of evidentiary 203 

interpretation can be seen in Figure 1.  204 

  205 
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 We report log Bayes Factors for (very) large effects and regular Bayes Factors for smaller 206 

effects. To compute Bayes Factors we will use Default Bayes Factor approach for model selection 207 

(62,63) in the package BayesFactor (68) using the open source software package R (69). As previous 208 

papers report associations between sleep and outcomes ranging from absent to considerable in size 209 

we utilize the default, symmetric Cauchy prior with width 
√2

2
 which translates to a 50% confidence 210 

that the true effect will lie between -.707 and .707. Prior to further analysis, scores on all outcomes 211 

were transformed to a standard normal distribution, and any scores exceeding a z-score of 4 or -4 212 

were recoded as missing (aggregate percentage outliers across the four health domains: Cognitive, 213 

0.41%, Mental, 0.16%, Neural, 0.37% Physical, 0.031%). 214 

 215 

RESULTS 216 

Age-related differences in sleep quality 217 

First, we examined sleep changes across the lifespan by examining age-related differences in the 218 

PSQI sum score (N= 2178, M=5.16, SD=3.35, Range=0-19). Regressing the PSQI global score on age, 219 

(see Supplementary Figure 1) showed evidence for a positive relationship across the lifespan 220 

(logBF10= 10.45). This suggests that on the whole, sleep quality decreases across the lifespan (note 221 

Figure 1. Descriptive interpretation of Bayes Factors   
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that higher PSQI scores correspond to worse sleep). Although we observe strong statistical evidence 222 

for an age-related difference (‘Extreme' according to (70)) age explained only 1.11 % of the variance 223 

in the PSQI Total score. Next, we examined each of the seven components on age in the same 224 

manner. In Supplementary Figure 2 we see that that age has varying and specific effects on different 225 

aspects of sleep quality, and did not worsen uniformly across the lifespan. For example, we observed 226 

moderate evidence that sleep latency did not change across the lifespan (Sleep Latency, BF01= 9.66, 227 

in favour of the null), Sleep Quality showed no evidence for either change or stasis (BF10= 1.64) and 228 

one sleep component, Daytime Dysfunction, improved slightly across the lifespan (BF10= 7.04). 229 

Medication). The strongest age-related decline is that of Efficiency, showing an R-squared of 6.6%. 230 

Finally, we entered all seven components into a Bayesian multiple regression 231 

simultaneously, to examine to what extent they could, together, predict age. The best model 232 

included every component except Sleep Duration (logBF10= 142.98). Interestingly, this model 233 

explained 13.66% of the variance in age, compared to 1.12% for the PSQI Total score, and 6.6% for 234 

the strongest single component (efficiency). This shows that lifespan changes in self-reported sleep 235 

are heterogeneous and partially independent, and that specific patterns and components need to be 236 

taken into account simultaneously to fully understand age-related differences in sleep quality. These 237 

finding shows that neither the PSQI sum score nor the sleep components in isolation fully capture 238 

differences in sleep quality across the lifespan. 239 

The analysis above suggests that conceptualizing ‘poor sleep’ as a single dimension does not 240 

reflect the subtleties in lifespan changes – An often computed sumscore changes little across the 241 

lifespan, whereas the totality of sleep symptoms shows far stronger, and more subtle, patterns. To 242 

better elucidate individual differences in sleep quality we next use Latent Class Analysis (71). This 243 

technique will allow us examine individual differences in sleep quality across the lifespan in more 244 

detail than afforded by simple linear regressions: Rather than examining continuous variation in 245 

sleep components, LCA classifies individuals into different sleep types, each associated with a distinct 246 
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profile of ‘sleep symptoms’. If there are specific constellations of sleep problems across individuals, 247 

we can quantify and visualize such sleep types.  248 

To analyse the data in this manner, we binarized the responses on each component into 249 

‘good’ (0 or 1) or ‘poor’ (2 or 3). Our measures of PSQI symptoms straddle the border between 250 

continuous and categorical – Although some are fully continuous (e.g. sleep latency) others are less 251 

so. For instance, although scored on a range of four several of the scales (such as Subjective Sleep 252 

quality) have implicitly binary response options of ‘Very good’ and ‘fairly good’ on the one hand and 253 

‘fairly bad’ and ‘very bad’ on the other. As analytical work in psychometrics (72) suggests that likert-254 

like graded scales can be treated as continuous only from five ordinal categories upwards, by fitting 255 

an LCA we are erring on the side of caution (although a latent profile analysis would likely give 256 

similar results). Note that although our analysis divides individuals into discrete classes with specific 257 

profiles, it is still possible to examine the conditional response likelihood of responding ‘yes’ to each 258 

symptom as a continuous metric (between 0 and 1) that reflects the nature of the association 259 

between the class and the outcome. By modelling sleep ‘types’ we hope to illustrate the complex 260 

patterns in a more intelligible manner – notably, doing so allows us to examine whether the 261 

likelihood of belonging to any sleep ‘type’ changes as a function of age.  262 

Next we examined evidence for distinct sleep types using We fit a set of possible models 263 

(varying from 2 to 6 sleep types) We found that the four class solution gives the best solution, 264 

according to the Bayesian Information Criterion (73) (BIC for 4 Classes = 11874.67, lowest BIC for 265 

other solutions= 11892.17 (5 classes) (with 50 repetitions per class, at 5000 maximum iterations). 266 

Next we inspected the nature of the sleep types, the prevalence of each ‘sleep type’ in the 267 

population, and whether the likelihood of belonging to a certain sleep type changes across the 268 

lifespan. See Figure 2 for the component profiles of the four sleep types identified.  269 

 270 

 271 
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 272 

Figure 2. Latent Class Analysis. Panel A shows the sleep quality profiles for each of the four 
classes. Panel B shows the conditional probability of belonging to each class across the 
lifespan. 
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Class 1, ‘Good sleepers’, make up 68.62% of participants. Their sleep profile is shown in 273 

Figure 2A, top left, and is characterised by a low probability of responding ‘poor’ to any of the sleep 274 

components. Class 2, ‘inefficient sleepers’, make up 13.05% of the participants, and are 275 

characterized by poor sleep Efficiency: Members of this group uniformly (100%) report poor sleep 276 

Efficiency, despite relatively low prevalence of other sleep problems, as seen in Figure 2A, top right. 277 

Class 3, ‘Delayed Sleepers’ seen in the bottom left of Figure 2a, makes up 9.76% of the participants: 278 

characterized by modestly poor sleep across the board, but a relatively high probability of poor 279 

scores on Sleep Latency (60%), Sleep Quality (54%) and sleep Disturbance (29.2%). Finally, Class 4, 280 

‘Poor sleepers’, make up 8.6% of the participants, shown bottom right in Figure 2A. Their responses 281 

to any of the seven sleep components are likely to be ‘poor’ or ‘very poor’, almost universally so for 282 

‘sleep quality’ (97%) and ‘Sleep Efficiency’ (96.6%).  283 

Next, we including age as a covariate (simultaneously including a covariate is known as 284 

latent class regression or concomitant-variable latent class models (74). This analysis, visualised in 285 

Figure 2b, shows that the probability of membership of each classes compared to the reference class 286 

(good sleepers) changes significantly across the lifespan for each of the classes (Class 2 versus class 287 

1: beta/SE= 0.054/0.0069, t=7.9, Class 3 versus class 1: beta/SE= -0.020/0.0057, t=-3.63, Class 4 288 

versus class 1: beta/SE 0.015/0.0049, t=3.05), for more details on generalized logit coefficients , see 289 

(71). The frequency of Class 1 (Good sleepers) peaks in middle to late adulthood, dropping 290 

increasingly quickly after age 50. Class 2 (Inefficient sleepers) are relatively rare in younger 291 

individuals, but the prevalence increases rapidly in individuals over age 50. On the other hand, Class 292 

3 (Delayed sleepers) shows a steady decrease in the probability of an individual showing this profile 293 

across the lifespan, suggesting that this specific pattern of poor sleep is more commonly associated 294 

with younger adults. Finally, the proportion of Class 4 (poor sleepers) members increases only 295 

slightly across the lifespan. Together, the latent class analysis provides additional evidence that the 296 

PSQI sum score as an indicator of sleep quality does not fully capture the subtleties of age-related 297 

differences. Age-related changes in sleep patterns are characterized by specific, clustered patterns 298 
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of sleep problems that cannot be adequately characterized by summation of the component scores. 299 

The above analyses show how both a summary measure and individual measures of sleep quality 300 

change across the lifespan. Next, we examined the relationships between sleep quality measures 301 

(seven components and the global PSQI score) and health variables (specific variables across four 302 

domains, as shown in Table 1).  303 

 304 

Sleep, health domains and age 305 

Cognitive health 306 

First, we examined the relationships between sleep quality and seven measures of cognitive health 307 

(see Table 1 for details). We visualize our findings using tileplots (75). Each cell shows the numeric 308 

effect size (R-squared, 0-100) of the bivariate association between a sleep component and a health 309 

outcome, colour coded by the statistical evidence for a relationship using the Bayes Factor. If the 310 

parameter estimate is positive, the r-squared value has the symbol ‘+’ added (note the 311 

interpretation depends on the nature of the variable, cf. Table 1). As can be seen in Supplementary 312 

Figure 3, several relationships exist between measures of cognitive health and measures of sleep 313 

quality. However, these results attenuate in a multiple regression model including age as shown in 314 

Figure 3.  315 
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 316 

The cognitive abilities most strongly associated with poor sleep are a measure of general cognitive 317 

health, ACE-R, and a test of verbal phonemic fluency. Two patterns emerged: First, the strongest 318 

predictor across the simple and multiple regressions was for the PSQI Total score. Tentatively this 319 

suggests that a cumulative index of sleep problems, rather than any specific pattern of poor sleep, is 320 

the biggest risk factor for poorer cognitive performance. Secondly, after controlling for age, the most 321 

strongly affected cognitive measure is phonemic fluency, the ability to generate name as many 322 

different words as possible starting with a given letter within a minute. Verbal fluency is commonly 323 

used as a neuropsychological test (76). Previous work suggests it depends on both the ability to 324 

cluster (generating words within a semantic cluster) and to switch (switching between categories), 325 

and is especially vulnerable to frontal and temporal lobe damage (with specific regions dependant 326 

on either a semantic or phonemic task (77)). Although modest in size, our findings suggests this task, 327 

Figure 3. Simple regressions between sleep components and Cognitive Health. 
The strength of the effect is colour-coded by Bayes Factor, and the effect size is shown as 
r-squared (as a percentage out of 100). Sample varies across components and measures 
due to varying missingness. Cattell and Reaction Time were measured only in the imaging 
cohort: mean N = 648, N=11.11. Sample sizes for 5 other domains are similar: mean N= 
2300.25, SD= 65.57) 
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dependent on multiple executive processes, is particularly affected by poor sleep quality (78). The 328 

second strongest association was with the ACE-R, a general cognitive test battery similar in style and 329 

content to the MMSE. When an interaction term with age was included, little evidence for 330 

interactions with age (mean logBF10=-2.09, see Supplementary Figure 4), suggesting that the 331 

negative associations between sleep and cognitive performance are a constant feature across the 332 

lifespan, rather than specifically in elderly individuals. Together this suggests that poor sleep quality 333 

is modestly but consistently associated with poorer general cognitive performance across the 334 

lifespan, most strongly with semantic fluency.  335 

 336 

Neural Health 337 

Using Diffusion Tensor Imaging, we estimated a general index of white matter integrity in 10 tracts 338 

(59) (shown in Supplementary Figure 5), by taking the average Fractional Anisotropy in each white 339 

matter ROI (see (79) for more information). We use the data from a subsample of 641 individuals 340 

(age M=54.87, range 18.48-88.96) who were scanned in a 3T MRI scanner (for more details regarding 341 

the pipeline, sequence and processing steps, see (22,79). Regressing neural WM ROI’s on sleep 342 

quality, we find several small effects, with the strongest associations between sleep efficiency and 343 

neural health (see Supplementary Figure 6). All effects are such that poorer sleep is associated with 344 

poorer neural health, apart from a small effect in the opposite direction for Uncinate and Daytime 345 

Dysfunction (BF10= 6.20). However, when age is included as a covariate, the negative associations 346 

between sleep quality and white matter health are attenuated virtually to zero (Figure 4, 347 

mean/median BF10= 0.18/.10), with Bayes Factors providing strong evidence for the lack of 348 

associations between sleep quality and white matter integrity. One exception was observed: The use 349 

of Sleep Medication is associated with better neural health in the corticospinal tract, a region 350 

previously found to be affected by pathological sleep problems such as sleep apnoea (33). However, 351 
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this effect is very small (BF10=3.24) given the magnitude of the sample and the range of comparisons, 352 

so should be interpreted with caution.  353 

 354 

Finally, we tested for any interactions by including a mean-scaled interaction term (sleep*age, 355 

Supplementary Figure 7). This analysis found evidence for a significant interaction, between the 356 

Superior Longitudinal Fasciculus (SLF) and Sleep Medication (BF10= 13.77), such that better neural 357 

health in the SLF was associated with the use of Sleep Medication more strongly in older adults. 358 

Together, these findings suggest that in general, once age is taken into account, self-reported sleep 359 

problems in a non-clinical sample are not associated with poorer neural health, although there is 360 

some evidence for a modest associations between better neural health in specific tracts and the use 361 

of sleep medication in the elderly.  362 

Figure 4. Multiple regressions between sleep components and Neural Health. Each cell represents 
the relationship between a sleep component and the mean neural health in a given tract as index 
by Fractional Anisotropy. Numbers represent R-squared, the sample size is show in the last 
column. Strong associations are observed between measures of Sleep Efficiency and multiple 
tracts, along with sporadic associations between other components and tracts. White matter 
tracts abbreviations: Uncinate fasciculus (UNC), superior longitudinal fasciculus (SLF), inferior 
longitudinal fasciculus (ILF), inferior Fronto-occipital fasciculus (IFOF), forceps minor (FMin), 
forceps major (FMaj), cerebrospinal tract (CST), the ventral cingulate gyrus (CINGHipp), the dorsal 
cingulate gyrus (CING), and the anterior thalamic radiations (ATR). N varies slightly across 
components due to varying missingness (N mean = 631.325, SD = 10.32). 
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  363 

Physical health 364 

Next we examined whether sleep quality is associated with physical health. Figure 5 shows 365 

the simple regressions between sleep quality and physical health. Strong associations were found 366 

between poor overall sleep (PSQI sum score) and poor self-reported health, both in general 367 

(logBF10=77.51) and even more strongly for health in the past 12 months (logBF10=91.25). This may 368 

be because poorer sleep, across all components, directly affects general physical health (43,80) or 369 

because people subjectively experience sleep quality as a fundamental part of overall general health. 370 

A second association was between BMI and poor sleep, most strongly for Duration (logBF10=4.69).  371 

This not only replicates previous findings but is in line with an increasing body of evidence 372 

that suggests that shorted sleep duration causes metabolic changes, which in turn increases the risk 373 

of both diabetes mellitus and obesity (43,81,82). Next, we examined whether these effects were 374 

attenuated once age was included. We show that although the relationships are slightly weaker, the 375 

overall pattern remains (Supplementary Figure 8), suggesting these associations are not merely co-376 

occurences across the lifespan. Our findings suggest self-reported sleep quality, especially sleep 377 

Duration, is related to differences in physical health outcomes in a healthy sample. 378 
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 Finally, there was evidence of a single interaction with age (Supplementary Figure 9): 379 

Although poor sleep Duration was associated with higher diastolic blood pressure in younger adults, 380 

it was associated with lower diastolic blood pressure in older individuals (BF10= 8.43). This may 381 

reflect the fact that diastolic blood pressure is related to cardiovascular health in a different way 382 

across the lifespan, although given the small effect size it should be interpreted with caution. 383 

 384 

Mental health 385 

Finally, we examined the relationship between sleep quality and mental health, as measured by the 386 

Hospital Anxiety and Depression Scale (56). One benefit of the HADS in this context is that, unlike 387 

some other definitions (e.g. the DSM-V), sleep quality is not an integral (scored) symptom of these 388 

dimensions. As shown in Supplementary Figure 10, there are very strong relationships between all 389 

aspects of sleep quality and measures of both anxiety and depression. The strongest predictors of 390 

Figure 5 Physical health and sleep quality. Numbers represent R-squared, the sample size is show 
in the last column. Strong associations between general indices of health and sleep quality are 
found, and several more modest relationships with BMI and sleep quality. Self-reported health (12 
month and General) were measured in the full cohort (Mean = 2315.37, SD=66.29), the other 
indicators were measured in the imaging cohort only (Mean = 569.87, SD= 11.16). 
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Depression are Daytime Dysfunction (logBF10= 245.9, R^2=19.26%), followed by the overall sleep 391 

score (logBF10= 170.5, R^2=14.92%) and sleep quality (logBF10= 106.8, R^2=8.9%). The effects size for 392 

Anxiety was comparable but slightly smaller in magnitude. When age is included as a covariate the 393 

relationships remained virtually unchanged (Supplementary Figure 11), suggesting these 394 

relationships are present throughout across the lifespan. These findings replicate and extend 395 

previous work, suggesting that sleep quality is strongly associated with both anxiety and depression 396 

across the lifespan. 397 

Finally we examined a model with an interaction term (Supplementary Figure 12). Most 398 

prominently we found interactions with age in the relationship between HADS depression and the 399 

PSQI Total, and in the relationship between HADS depression and Sleep Duration, such that for the 400 

relationship between anxiety and overall sleep quality is stronger in younger adults (BF10 =9.91, see 401 

Figure 6). Together our findings show that poor sleep quality is consistently, strongly and stably 402 

associated with poorer mental health across the adult lifespan.  403 

 404 

Non-linear associations between sleep and health outcomes 405 

In the above analyses, we focused on linear associations between symptoms and health outcomes. 406 

However, for one aspect of sleep, namely sleep duration (in hours), evidence exists that these 407 
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associations are likely to be non-linear, such that both shorter and longer than average sleep are 408 

associated with poorer health outcomes (e.g. (83–85). This is echoed in clinical criteria for 409 

depression, which commonly include that include both hyper- and hypo-somnia as ‘sleep disruption’ 410 

symptoms – In other words, both too much or too little sleep are suboptimal. To examine whether 411 

we observe evidence for non-linearities we examined the relationship between raw scores on sleep 412 

duration (in hours, not transformed to PSQI norms) and health outcomes across the four domains. If 413 

the association between sleep and outcomes is indeed u-shaped (or inverted U, depending on the 414 

scale) then a Bayesian regression would prefer the less parsimonious model that includes the 415 

quadratic term. We observed no non-linear associations between any neural or cognitive health 416 

variables. We find strong evidence for a quadratic (subscript q) over a linear (subscript l) associations 417 

between sleep duration and HADS anxiety (logBFql= 19.98), even more strongly so with HADS 418 

Depression (logBFql= 25.83, see Figure 7A shows the strongest curvilinear association, namely with 419 

depression). We find a similar u-shaped curve with general health (BFql= 277.81) and self-reported 420 

health over the last 12 months (BFql=887.59), the latter shown in Figure 7b. Together, these analyses 421 

support previous conclusions that some (although not all) poorer health outcomes can be associated 422 

with both too much and too little sleep. 423 

 424 

Figure 7. Curvilinear associations between sleep duration in hours and A) HADS 
depression and B) general health (self-reported). For visual clarity a small amount of 
random jitter was added to the data points. 
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DISCUSSION 425 

In this study, we report on the associations between age-related differences in sleep quality and 426 

health outcomes in a large, age-heterogeneous sample of community dwelling adults of the 427 

Cambridge Neuroscience and Aging (Cam-CAN) cohort. We find that sleep quality generally 428 

decreases across the lifespan, most strongly for sleep Efficiency. However age-related changes in 429 

sleep patterns are complex and multifaceted, so we used Latent Class Analysis to identify ‘sleep 430 

types’ associated with specific sleep quality profiles. We found that Younger adults are more likely 431 

than older adults to display a pattern of sleep problems characterised by poor sleep quality and 432 

longer sleep latency, whereas older adults are more likely to display inefficient sleeping, 433 

characterised by long periods spent in bed whilst not asleep. Moreover, the probability of being a 434 

‘good’ sleeper, unaffected by any adverse sleep symptoms, decreases considerably after age fifty.  435 

 Notably, closer investigation of the sleep classes reveals likely further complexities of age-436 

related differences. The category ‘poor sleepers’, most prevalent in older adults, shows high 437 

conditional likelihood of ‘poor sleep’ across all symptoms except ‘daytime dysfunction’. One possible 438 

explanation is that almost all individuals in this group are beyond retirement age. For this reason, 439 

they likely have greater flexibility in tailoring their day to day activities to their energy levels (as 440 

opposed to individuals working fulltime), and are therefore less likely to consider themselves 441 

‘disrupted’ even in the presence of suboptimal sleep. Although more detailed, interview-based 442 

investigations would be necessary to examine the precise nature of these findings, it stands to 443 

reason that certain symptoms change not just in prevalence but also in meaning across the lifespan. 444 

One key strength of our broad phenotypic assessment allows for direct comparison of the 445 

different measures of sleep quality and four key health domains. We find strongest associations 446 

between sleep quality and mental health, moderate relations between sleep quality and physical 447 

health and cognitive health and sleep, virtually all such that poorer sleep is associated with poorer 448 

health outcomes. We did not find evidence for associations between self-reported sleep and neural 449 

health. Notably, the relationships we observe are mostly stable across the lifespan, affecting 450 
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younger and older individuals alike. A notable exception to these effects is the absence of any strong 451 

relation (after controlling for age) between sleep quality and neural health as indexed by tract-based 452 

average fractional anisotropy. Perhaps surprisingly, given we found strong relationships in the same 453 

sample between sleep and other outcomes (e.g. mental health, Figure 10) we find that self-reported 454 

sleep problems in a non-clinical sample are not associated with fractional anisotropy above and 455 

beyond old age. This is despite the fact that previous work within the same cohort observed 456 

moderate to strong associations between white matter and various cognitive outcomes (42,86,87). 457 

However, although notable, our finding does not rule out that such associations do exist with other 458 

white matter metrics, that they would be observed with objective measures of sleep such as 459 

polysomnography, or that the co-occurrence of age-related declines in sleep quality and white 460 

matter share an underlying causal association that cannot be teased apart in a cross-sectional 461 

sample.  462 

One strength of our study is the assessment of neuroimaging metrics, namely fractional 463 

anisotropy, in a large, community-dwelling healthy population. Fractional anisotropy is often used in 464 

studies of aging (e.g. Madden, is relatively reliable (88)) and is sensitive to clinical anomalies such as 465 

white matter hyperintensities. However, the relationship between FA and white-matter health is 466 

indirect (40,89) and drawbacks include its inability to distinguish crossing fibers (e.g. (40,89) and 467 

vulnerability to movement and the fact that it likely reflects a combination of underlying 468 

physiological properties. Various alternative white matter metrics exist, including summary 469 

measures of diffusivity (e.g. axial/radial/mean diffusivity), volumetric measures of white matter 470 

hyperintensity (e.g.) and various innovative measures currently in development, but their 471 

physiological validity is ongoing (89,90).  472 

While there are limitations of self-report measures including in older cohorts (19), including 473 

the fact that they likely reflect different aspects of sleep health than polysomnography (sleep in the 474 

lab), our results suggest there are considerable advantages in using self-reported sleep measures: 475 

first, obtaining sleep quality data in a large and broadly phenotyped sample is feasible; and second, 476 
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our results demonstrated clear and consistent associations across multiple domains for both 477 

subjective (e.g. self-reported health) and objective measures (e.g. memory tests, BMI), which both 478 

replicate and extend previous lab-based sleep findings. Future work should ideally simultaneously 479 

measure polysomnography and self-report in longitudinal, large scale cohorts to fully capture the 480 

range of overlapping and complementary relations between different aspects of sleep quality and 481 

health outcomes (19).  482 

For both self-report and objective measures of sleep quality an open question is that of 483 

causality: Does poor sleep affect health outcomes, do health problems affect sleep, are they both 484 

markers of some third problem, or do causal influences go both ways? Most likely, all these patterns 485 

occur to varying degrees. Previous studies have shown that sleep quality causally affects health 486 

outcomes such as diabetes (43) and memory consolidation (1) while other evidence suggests that 487 

depression directly affect sleep quality (91,92) and that damage to neural structures may affect 488 

sleep regulation (93). Although our findings are in keeping with previous findings, our cross-sectional 489 

sample cannot tease apart the causal direction of the observed associations, more work remains to 490 

be done to disentangle these complex causal pathways.  491 

In our paper we focus on a healthy, age-heterogeneous community dwelling sample. This 492 

allows us to study the associations between healthy aging and self-reported sleep quality, but comes 493 

with two key limitations of the interpretations of our findings. First and foremost, our findings are 494 

cross-sectional, not longitudinal. This means we can make inferences about age-related differences, 495 

but not necessarily age-related changes (94,95). One reason why cross-sectional and longitudinal 496 

estimates may diverge is that older adults can be thought of as cohorts that differ from the younger 497 

adults in more ways than age alone. For example, our age range includes individuals born in the 498 

twenties and thirties of the 20th century. Compared to someone born in the 21st century, these 499 

individuals will likely have experience various differences during early life development (e.g. less 500 

broadly accessible education, lower quality of healthcare, poorer nutrition and similar patterns). For 501 

some of our measures, these are inherent limitations –truly longitudinal study of neural aging is 502 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 8, 2017. ; https://doi.org/10.1101/060145doi: bioRxiv preprint 

https://doi.org/10.1101/060145
http://creativecommons.org/licenses/by/4.0/


28 
 

inherently impossible as scanner technology has not been around sufficiently long. This means our 503 

findings likely reflect a combination of effects attributable to age-related changes as well as baseline 504 

differences between subpopulations that may affect both mean differences as well as 505 

developmental trajectories. 506 

Second, our sample reflects an atypical population in the sense that they are willing and able 507 

to visit the laboratory on multiple occasions for testing sessions. This subsample is likely a more 508 

healthy subset of the full population, which will mean the range of (poor) sleep quality as well as 509 

(poorer) health outcomes will likely be less extreme that in the full population. However, this 510 

challenge is not specific to our sample. In fact, as the Cam-CAN cohort was developed using stratified 511 

sampling based on primary healthcare providers, our sample is likely as population-representative as 512 

is feasible for a cohort of this magnitude and phenotypic breadth (see (12) for further details). 513 

Nonetheless, a healthier subsample may lead to restriction of range (96), i.e. an attenuation of the 514 

strength of the associations observed between sleep quality and health outcomes. Practically, this 515 

means that our results likely generalise to comparable, healthy community dwelling adults, but not 516 

necessarily to populations that include those affected by either clinical sleep deprivation or other 517 

serious health conditions.  518 

Conclusions 519 

Taken together, our study allows several conclusions. First, although we replicate the age-520 

related deterioration in some aspects of sleep quality, other aspects remain stable or even improve. 521 

Second, we show that the profile of sleep quality changes across the lifespan. This is important 522 

methodologically, as it suggests that PSQI sum scores do not capture the full picture, especially in 523 

age-heterogeneous samples. Moreover, it is important from a psychological standpoint: We show 524 

that ‘sleep quality’ is a multidimensional construct and should be treated as such if we wish to 525 

understand the complex effects and consequences of sleep quality across the lifespan. Third, 526 

moderate to strong relations exist between sleep quality and cognitive, physical and mental health, 527 

and these relations largely remain stable across the lifespan. In contrast, we show evidence that in 528 
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non-clinical populations, poorer self-reported sleep is not reliably associated with poorer neural 529 

health. Finally, we find that for absolute sleep duration, we replicate previous findings that both 530 

longer and shorter than average amounts of sleep are association with poorer self-reported general 531 

health and higher levels of depression and anxiety.  532 

Together with previous experimental and longitudinal evidence, our findings suggest that at 533 

least some age-related decreases in health outcomes may be due to poorer sleep quality. We show 534 

that self-reported sleep quality can be an important indicator of other aspects of healthy functioning 535 

throughout the lifespan, especially for mental and general physical health.  Our findings suggest 536 

accurate understanding of sleep quality is essential in understanding and supporting healthy aging 537 

across the lifespan. 538 
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Supplementary Figure 11. 

Supplementary Figure 12. 
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