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ABSTRACT 20 

Summary: 16SpeB (16S rRNA-based Species Boundary) is a package of Perl programs that 21 

evaluates total sequence variation of a bacterial species at the levels of the whole 16S rRNA 22 

sequences or single hypervariable (V) regions, using publicly-available sequences. The 16SpeB 23 

pipelines filter sequences from duplicated strains and of low quality, extracts a V region of 24 

interest using general primer sequences, and calculates sequence percentage identity (%ID) 25 

through all possible pairwise alignments.  26 

Results:  The minimum %ID of 16S rRNA gene sequences for 15 clinically-important bacterial 27 

species, as determined by 16SpeB, ranged from 82.6% to 99.8%.  The relationship between 28 

minimum %ID of V2/V6 regions and full-gene sequences varied among species, indicating that 29 

%ID species limits should be resolved independently for each region of the 16S rRNA gene and 30 

bacterial species.   31 

Availability: 16SpeB and user manual are freely available for download from: 32 

https://github.com/pnpnpn/16SpeB. A video tutorial is available at: 33 

https://youtu.be/Vd6YmMhyBiA 34 

Contact: cw442@cornell.edu 35 

Supplementary information: Supplementary data are available at Bioinformatics online. 36 
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1 INTRODUCTION 37 

Fueled by recent advance in next-generation sequencing (NGS), nucleic-acid-based 38 

identification of microbes from clinical and environmental samples is an emerging area of 39 

scientific interests (Kress, et al., 2015; Shokralla, et al., 2012; van Dijk, et al., 2014; Wilson, et 40 

al., 2014). For bacteria, gene markers such as the 16S ribosomal RNA (rRNA) gene are 41 

commonly used to profile communities that encompass both cultured and uncultured species. An 42 

enduring challenge is to assign taxonomy to these marker gene sequences, especially, to assess 43 

the confidence a particular sequence read fits into its designated taxonomic rank based on 44 

percentage identity (%ID); and be able to discriminate rare or novel taxa from taxa likely arisen 45 

from sequencing errors.  46 

Over time, scientists have attempted to find a unifying threshold to define bacterial 47 

species boundary from their gene sequences. For example, a 97% sequence identity (%ID) of the 48 

full length 16S rRNA gene has been put forward as the cut-off value to define species 49 

(Drancourt, et al., 2004; Drancourt and Raoult, 2005; Ueda, et al., 1999), but the criterion has 50 

been vigorously challenged (Clarridge, 2004; Janda and Abbott, 2007; Petti, 2007; Rossi-51 

Tamisier, et al., 2015). Compounding the uncertainty about using a fixed %ID threshold for 52 

species identification, it is becoming a common trend to sequence shorter but varied reads (<400 53 

bp) of single hypervariable (V) regions, such as the V2 or V6 of the 16S rRNA gene (Bowen, et 54 

al., 2011; De Filippo, et al., 2010; Guss, et al., 2011; Kirchman, et al., 2010; Ravussin, et al., 55 

2011; Werner, et al., 2012; Wu, et al., 2011).   56 

To address some of the caveats associated with 16S rRNA gene profiling, especially to 57 

facilitate more confident taxonomy assignment, we proposed that the 16S rRNA %ID variation 58 

from known sequences shall be determined and used to guide the boundary of bacteria species-59 
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to-species. We thus develop 16SpeB (16S rRNA-based Species Boundary). 16SpeB is an 60 

analytical tool designed to identify the range of 16S %ID encompassed by individual bacterial 61 

species based on known 16S rRNA gene sequence variation.  Our goal is to promote accurate 62 

taxonomic identification of bacteria in both (near)-full 16S sequences and short reads obtained 63 

by 454, Illumina or other next-generation sequencing platforms.  64 

 65 

2 USAGE 66 

16S rRNA sequences from three 16S rRNA databases can be downloaded from 67 

Greengenes (DeSantis, et al., 2006) Ribosomal Database Project (Cole, et al., 2007) and Silva 68 

(Pruesse, et al., 2007). 16SpeB allows users to trim the (near-)full 16S rRNA sequences to their 69 

preferred length.  It can also extract the sequences of the V2 and V6 regions, which are widely 70 

used in 454 sequencing studies, by reference to the general primer sets 27F-338R and 784F-71 

1061R, respectively. Sequences that fail to satisfy the two following conditions are removed: (1) 72 

<2 bp mismatches with the general 16S primers (i.e. conserved regions of the 16S gene), and (2) 73 

relative coordinates of matched primers are within +/- 50 bp from the relative coordinates of the 74 

literature. The V2 region is trimmed to 270 bp upstream of the 338R primer. 16SpeB conducts all 75 

possible pairwise sequence comparisons by aligning all pairwise sequences using Needleman-76 

Wunsch alignment algorithm with match/mismatch score of 1/-2 and affine gap penalty 77 

open/extension of -5/-2. The minimum and 95% quantile %ID are computed for each species, 78 

providing a measure of the total known sequence variation that defines the species. 79 

 80 

3  APPLICATION OF 16SpeB   81 
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16SpeB was initially developed to identify species limits of Acetobacter and Lactobacillus in a 82 

pyroseqeuncing analysis of the gut microbiota of Drosophila melanogaster (Wong, et al., 2011).  83 

Here we extend the application of  16SpeB to determine the %ID of (near-)full 16S rRNA genes 84 

that defines the species boundary of 15 clinically-important bacterial species (listed in 85 

Supplementary Data Set 1); and to determine the %ID of the V2 and V6 regions widely used in 86 

pyrosequencing studies that correlate with this species boundary. The 15 bacterial species were 87 

selected on the criteria that a broad range of publicly-available sequences (3 to 454) and 88 

phylogenetic diversity (including representatives of Actinobacteria, Bacteroidetes, Chlamydiae, 89 

Firmicutes and Proteobacteria) were represented.  In total, 1,296 sequences were analyzed. The 90 

minimum %ID of (near-) full 16S sequences varied from 99.8% (Neisseria gonorrhoeae) to 91 

82.6% (Staphylococcus aureus) (Table 1).  Just two (13%) of the 15 species had minimum %ID 92 

close to predicted 97% threshold for species boundary (Neisseria meningitidis 97.0%, and 93 

Listeria monocytogenes 97.1%); and 11 (73%) species deviated from 97% by more than one 94 

percentage point.  Values of the 95% quantile are provided in Table 1 and may prove to be more 95 

useful than minimum %ID for some species, e.g. Staphylococcus aureus, where  the minimum 96 

%ID is suspected to be artefactually low (possibly through mis-identification). 97 

     As anticipated, the minimum %ID of both the V2 and V6 regions varied positively with 98 

%minimum ID of the (near-) full sequence of the 16S genes (Supplementary Figure 1).  The 99 

relationships were not, however, tight indicating that the rates of sequence evolution of 100 

individual V regions are not closely correlated to each other or to other regions of the 16S gene.  101 

The implication is that, just as the 97% threshold is not a reliable index of the taxonomic species 102 

limit, so there is no simple linear relationship linking the minimum %ID of the V2 or V6 103 

sequences to the (near-) full 16S sequence across multiple bacterial species.   104 
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   We conclude that the %ID species limits should be resolved independently for each region of 105 

the 16S rRNA gene and each bacterial species. Therefore, 16SpeB can serve as an important tool 106 

that facilitates accurate taxonomic identification and proper interpretation of 16S rRNA gene 107 

pyrosequencing data.   108 

 109 
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TABLE 1. The minimum and 95% quantile %ID of the (near-)full 16S rRNA gene, and the V2 and V6 regions of the 15 clinically-116 

important bacteria117 

  Minimum %ID 95% quantile %ID 

Species  
Number of sequences 

(pairs)  
(near)-full 

16S  
V2  V6  

(near)-full 
16S  

V2  V6  

Bacteroides fragilis  345 (59340)  0.928 0.899 0.928 0.978 0.959 0.973 

Clostridium bifermentans  58 (1653)  0.926 0.928 0.787 0.967 0.967 0.893 

Chlamydia trachomati  15 (105)  0.950 0.921 0.954 0.958 0.942 0.959 

Corynebacterium 
diphtheriae  

10 (45)  0.942 0.920 0.912 0.946 0.934 0.918 

Haemophilus influenzae  92 (4186)  0.901 0.831 0.891 0.951 0.925 0.907 

Helicobacter pylori 59 (1711)  0.949 0.895 0.939 0.977 0.960 0.961 

Listeria monocytogenes  26 (325)  0.971 0.939 0.966 0.974 0.953 0.969 

Mycobacterium leprae  4 (6)  0.984 0.967 0.992 0.984 0.967 0.992 

Mycobacterium 
tuberculosis  

10 (45)  0.984 0.982 0.988 0.989 0.985 0.992 

Mycoplasma hominis  6 (15)  0.899 0.949 0.681 0.899 0.949 0.681 

Neisseria gonorrhoeae  3 (3)  0.998 1.000 1.000 0.999 1.000 1.000 

Neisseria meningitidis  133 (8778)  0.970 0.927 0.962 0.990 0.978 0.981 

Staphylococcus aureus  454 (102831)  0.826 0.604 0.843 0.980 0.981 0.973 

Streptococcus pneumoniae 47 (1081)  0.980 0.938 0.977 0.986 0.963 0.985 

Yersinia pestis  34 (561)  0.979 0.960 0.966 0.986 0.967 0.977 
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SUPPLEMENTARY DATA SET 1. List of 16S rRNA sequences used in the study 118 

SUPPLEMENTARY FIGURE 1. Relationship between a) minimum and b) 95% quantile %ID of V2/V6 119 

region and (near)-full 16S rRNA gene sequence across the 15 bacterial species used in this study. (V2 120 

region: black, solid squares; V6 region: grey, open circles). 121 
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