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Long-read sequencing technologies have potential to produce gold-standard de novo genome 
assemblies, but fully exploiting error-prone reads to resolve repeats remains a challenge1. 
Aggressive approaches to repeat resolution often produce mis-assemblies, and conservative 
approaches lead to unnecessary fragmentation. We present HINGE, an assembler that achieves 
optimal repeat resolution by distinguishing repeats that can be resolved given the data from those 
that cannot. This is accomplished by adding "hinges" to reads for constructing an overlap graph 
where only unresolvable repeats are merged. As a result, HINGE combines the error resilience of 
overlap-based assemblers with repeat-resolution capabilities of de Bruijn graph assemblers. 
HINGE was evaluated on the long-read datasets from the NCTC project2. Besides producing more 
finished assemblies than the manual pipeline of NCTC based on the HGAP assembler3 and 
Circlator4, HINGE allows us to identify 40 datasets where unresolvable repeats prevent the reliable 
construction of a unique finished assembly. In these cases, HINGE outputs a visually interpretable 
assembly graph that encodes all possible finished assemblies consistent with the reads, while other 
approaches either fragment the assembly or resolve the ambiguity arbitrarily.  
 
 
A central feature which distinguishes HINGE from existing long-read assemblers is its ability to generate an 
assembly graph with the maximum level of repeat resolution that is possible given the data. If a finished 
assembly of the genome is possible, such a graph would consist of a single cycle (in the case of a single 
circular chromosome). Otherwise, the next-best objective would be the construction of a repeat graph5,6 
where long repeats are collapsed into a single path. Such paths capture inherent ambiguities about the 
target genome that cannot be resolved given the data. Thus, constructing the maximally resolved 
assembly graph corresponds to minimizing the number of repeat-induced collapsed segments.  
 
As a prerequisite to this task, one must first understand which repeat patterns can be reliably resolved 
given the set of reads. Early studies of this fundamental problem appeared in the context of sequencing 
by hybridization7,8, and were later extended to shotgun sequencing through the notion of bridging9. A 
repeat is said to be bridged if at least one read completely contains one of its copies. As illustrated in 
Figure 1(a)-(e), for a given genome and set of reads, this allows us to define the maximally resolved 
assembly graph as the graph where only segments corresponding to unbridged repeats are collapsed. 
The de novo construction of such a graph yields the longest contigs that can be reliably constructed, and 
also describes the plausible arrangements of these contigs in the target genome.  
 
The construction of a concise assembly graph has long been a problem of interest, having been a key 
component in assembly pipelines since the early days of sequencing projects10. With the introduction of 
de Bruijn graph-based approaches5,6, the concept of a repeat graph was solidified as an intuitive way of 
representing long, potentially unresolvable, repeats. In the de Bruijn framework, the set of all k-mers is 
extracted from the reads, and used to build a graph where two k-mers that appear consecutively in a read 
are connected by an edge. This construction has the desirable property that the resulting graph is 
essentially Eulerian, and repeats longer than k base pairs are naturally collapsed into a single path. 
Furthermore, the graph construction is typically followed by repeat resolution steps, as illustrated in 
Figure 1(f). This allows several de Bruijn graph-based assemblers to produce a maximally resolved 
assembly graph where only unbridged repeats remain collapsed5,6,11,12. 
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In the context of third-generation long-read sequencing, however, standard de Bruijn graph approaches 
have not been as successful as they were in the case of short-read sequencing. Due to the high error 
rates associated with third-generation platforms, a large number of spurious k-mers is created, disrupting 
the structure of the de Bruijn graph. Recently, the concept of solid k-mers was proposed as a way to 
construct an "approximate" de Bruijn graph on a restricted set of reliable k-mers13. However, since 
overlapping reads only share a handful of solid k-mers, the resulting graph lacks the attractive features of 
de Bruijn graphs. In particular, the Eulerian structure is compromised and repeats are no longer properly 
collapsed into single paths. Overlap-based approaches, on the other hand, are more robust to read errors 
since they directly connect reads based on overlaps instead of first breaking them into k-mers. In fact, 
most available long-read assemblers3,14–16 are based on the so-called overlap-layout-consensus (OLC) 
pipeline. 
 
Unlike de Bruijn graphs, which are Eulerian in nature, read-overlap graphs are Hamiltonian. This means 
that the underlying genome sequence corresponds to a cycle that traverses every node (read) in the 
graph, which imposes well-known computational challenges17. Furthermore, the Hamiltonian paradigm 
does not yield a natural representation of repeat patterns, and the graph is typically riddled with 
unnecessary edges. In order to combat these issues, the string graph approach18,19 was proposed, 
originally for the Celera assembler1,10, and later adopted by several assembly pipelines3,14–16. Built via a 
transitive reduction procedure, the string graph is an overlap graph where the unique, non-repetitive parts 
of the genome correspond to simple, unbranched, paths. However, as illustrated in Figure 1(f), the string 
graph construction does not achieve optimal repeat resolution. In fact, long repeats -- both bridged and 
unbridged -- may result in undesirable graph motifs. In practice, only heuristics are used to combat these 
motifs, and building a maximally resolved overlap graph is quite difficult. 
 
We propose HINGE as a way to simultaneously attain the error resilience of overlap graph-based 
approaches and the appealing graph structure and repeat-resolution capability of de Bruijn graphs. At a 
high level, HINGE's approach to assembly can be thought of as a "repeat-aware" variation on the greedy 
algorithm20. While the classical greedy algorithm forces each read to have a single predecessor and a 
single successor, HINGE permits a small number of reads to violate this rule by adding hinges to them. 
As illustrated in Figure 1(f), hinges grant reads an additional flexibility that forces bifurcations on the graph 
at the ends of an unbridged repeat. A comparison with the traditional greedy approach is provided in 
Supplementary Figure 1. In Supplementary Figure 2, we validate this approach through a controlled 
experiment where we assemble a simulated genome with HINGE for different sets of reads and bridging 
scenarios. 
 
We evaluated HINGE on the 997 bacterial genomes of the NCTC 3000 database that were available at 
the time of writing this manuscript2. Each of these datasets consists of PacBio SMRT long reads with 
coverage depths mainly in the range 30x to 80x. The current NCTC manual assembly pipeline uses the 
HGAP assembler2,3 to produce a list of contigs, and Circlator4 to circularize contigs. The assembly graphs 
produced by HINGE with no parameter tuning for each of these datasets are available online21, along with 
the contig statistics of the NCTC pipeline results, and the assembly graph produced by Miniasm14. We 
point out that other state-of- the-art assemblers, in particular FALCON16, have runtime above one order of 
magnitude greater than HINGE (see Supplementary Figure 5), making a comparison on the entire NCTC 
database computationally prohibitive. 
 
For 822 of the 997 available datasets, HINGE produced a finished non-fragmented assembly graph, with 
additional isolated small plasmids in many cases. In 40 of these datasets, HINGE identifies unresolvable 
repeats, and the final graph admits distinct traversals (See Supplementary Table 1). In order to compare 
our results with those obtained by the NCTC manual pipeline, we restricted our attention to those 
datasets for which NCTC reports the results of their assembly. As shown in Supplementary Table 2, even 
without a circularization tool, HINGE obtains significantly more finished assemblies than the NCTC 
pipeline. Among the cases where HINGE produces an assembly graph with multiple traversals, we find 
many examples where the intuitive layout of the graph produced by HINGE resembles the idealized 
cases in Figure 1(a), and allows one to visually assess the unresolvable repeat pattern in the genome. In 
Figure 2, we analyze three such cases, and compare the graph produced by HINGE with the contigs 
produced by the NCTC pipeline. We see that by focusing on obtaining a maximally resolved assembly 
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graph rather than large contig N50 values, HINGE prevents several mis-assemblies the NCTC pipeline 
incurred. In Supplementary Figure 3, we present nine additional such cases. In Supplementary Figure 4, 
we present several cases where HINGE resolves all repeats, producing a finished circular assembly, 
while the NCTC pipeline instead fragments the assembly. In addition, in Supplementary Figures 6, 7, and 
8 we provide the same comparisons but with FALCON16 instead of the manual NCTC pipeline. 
 
In Figure 2(a), we examine NCTC11022. In this example, the incorrect resolution of a repeat by the NCTC 
pipeline causes the circular chromosomal contig to lose a 780 kb segment, returned as a separate contig. 
HINGE, on the other hand, first collapses the unbridged repeat (see Supplementary Figure 10), and then 
resolves it as the resulting graph only allows one full traversal. As shown in Figure 2(b), the NCTC 
pipeline returned a single circularized contig for NCTC9964, an apparent finished assembly. However, 
HINGE collapses an 18 kbp inverted repeat. As we show in Supplementary Figure 11, this repeat is 
unbridged, implying that there are two possible traversals of the graph, and thus two possible finished 
assemblies, both of which are captured by HINGE's graphical output. As we point out in Supplementary 
Figure 9, incorrect resolution of an inverted repeat can produce a false inversion of nearly half the 
genome length. In this sense, HINGE's careful treatment of repeats can prevent the generation of 
reference genomes containing significant mis-assemblies.  
 
In Figure 2(c), we consider NCTC9657. In this example, the NCTC pipeline returned seven unidentified 
contigs, but HINGE returns a single large chromosomal connected component, and three small plasmids. 
In this case, HINGE produces a graph motif characteristic of an unbridged triple repeat, similar to Figure 
1(d). As shown by a coverage analysis in Supplementary Figure 12(a), this is indeed a triple repeat and 
contig 1 of the NCTC pipeline incorrectly resolves it. In addition, we examine the plasmids produced by 
the NCTC pipeline in Figure 2(d), and note that two of them share an unbridged repeat (see also 
Supplementary Figure 12(b)). Therefore, it is possible that these two contigs came from a single plasmid, 
and HINGE keeps them merged on the graph to retain this unresolvable ambiguity. In Supplementary 
Figure 6, we verify that the performance of FALCON16 on the examples in Figure 2 is very similar to that 
of the NCTC pipeline. 
 
As illustrated by these examples, HINGE seeks to construct a user-friendly, informative, overlap graph as 
its main output, as opposed to most OLC assemblers, which employ assembly graphs in their inner 
workings3,15,16 but output a list of long contigs. To the best of our knowledge, Miniasm14 is the only other 
assembler to produce a graph as the main assembly output. However, Miniasm is based on the string 
graph paradigm, which does not achieve the graph layout HINGE strives for as we empirically observe21.  
 
Three new ingredients distinguish HINGE from other assembly pipelines. First, a pre-assembly phase is 
responsible for hinging the reads. Intuitively, hinges are placed at the beginning and end of unbridged 
repeats, giving reads the freedom to "bend" at those points. This allows other reads to match an internal 
segment of the hinged read, as illustrated in the third row of Figure 1(f). We point out that the beginning 
and end of repeats can be detected based on the alignments found by tools such as DAligner22, which we 
run on the read dataset prior to the HINGE pipeline. As illustrated by pile-o-grams (see Supplementary 
Figure 14), the beginning and end of "piles" of alignments indicate the beginning and end of repeats. After 
annotating repeat boundaries, a careful cross-checking among annotated reads allows us to filter out 
annotations pertaining to bridged repeats. This is described in detail in Figure 3 and in the Methods 
section. 
 
The second algorithmic innovation in HINGE lies in the graph layout step. Most OLC assemblers adopt 
the string graph paradigm18,19, which often produces assembly graphs that are unnecessarily dense. 
HINGE replaces the string graph algorithm with a variant of the greedy algorithm. This follows a recent 
line of theoretical work that found that variants of the greedy algorithm (such as the “not-so-greedy” 
algorithm23 and the greedy merging algorithm24) can produce a sparse overlap graph without mis-
assemblies. As described in Supplementary Figure 1, if hinges are correctly placed, a hinge-aided greedy 
algorithm can prevent the mis-assemblies produced by the classical greedy approach.  
 
The third new ingredient introduced by HINGE is the use of global information to resolve repeats. As 
illustrated in Figure 2(a) and Supplementary Figure 9(a), simple unbridged repeats can be resolved. The 
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sparsity and Eulerian-like nature of the graph produced by HINGE allows such repeats to be 
algorithmically identified straightforwardly. The graph can then be untangled, resolving the repeat. 
 
Through this novel approach to repeat resolution and graph representation, HINGE brings a fresh 
perspective to the assembly problem. By focusing on the construction of a maximally resolved assembly 
graph in a user-friendly fashion, HINGE is well aligned with the recent push for the standardization of 
graph references, as opposed to the traditional contig representation. The HINGE graph is a natural 
representation of a set of possible assemblies, and is amenable to further repeat resolution, which can be 
attempted using additional long-range information such as paired-end reads, Hi-C reads, or by leveraging 
biological insight. Finally, we point out that while the repeat complexity is relatively mild in the bacterial 
genomes we consider (as evidenced by the large number of finished assemblies), it is much more severe 
in higher organisms25. This highlights the importance of the careful treatment to repeats carried out by 
HINGE and the value of the proposed method to genome assembly. 
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Figure 1: The goal of HINGE is to produce a maximally resolved assembly graph, where repeats that are 
bridged by the reads are not collapsed, and repeats that are unbridged are collapsed in a natural way, 
similar to what is achieved with de Bruijn graphs. (a) If at least one of the two copies of a repeat is 
bridged (green segments), the maximally resolved assembly graph should separate the two copies. (b) If 
a genome has an unbridged repeat (orange segments) then the two copies of the repeat should be 
collapsed into one in the assembly graph. Notice that in the absence of other interleaved repeats (see 
Supplementary Figure 2), this graph only allows one traversal, and the repeat can be resolved. (c) The 
maximally resolved representation of an unbridged inverted repeat (i.e., reverse-complemented copies) is 
a dumbbell-shaped graph. As shown in Supplementary Figure 9(b), an unbridged inverted repeat yields a 
graph with two possible traversals. (d) If the genome contains an unbridged triple repeat (shown in blue), 
then the assembly graph collapses all three copies. As in the case of the inverted repeat, such a graph 
allows two distinct traversals. (e) If one of the copies of the triple repeat is bridged, the two remaining 
copies behave as a regular unbridged repeat. (f) The representation of a bridged and an unbridged 
repeat in the de Bruijn graph approach, in the standard string graph approach, and according to HINGE. 
The de Bruijn graph approach collapses the repeated segment, which allows a natural repeat resolution 
step if a bridging read is found. The representation in the string graph (if there is no read entirely 
contained in the repeat) is an hourglass-like motif, which can be difficult to detect (though there are many 
heuristics to attempt to do this). HINGE identifies the start and end of an unbridged repeat and places 
hinges at the corresponding reads. When the repeat is not bridged, the hinges allow the correct segments 
corresponding to the repeat to collapse in the graph. When a repeat is bridged, however, HINGE does not 
place any hinges on the reads, and the repeat is resolved on the graph. This way, HINGE emulates the 
graph constructed via a de Bruijn graph approach, but under an overlap-graph framework.  
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Figure 2: (a) On the NCTC11022 dataset (Escherichia coli), the NCTC pipeline returned two large 
(circular) contigs due to an incorrect resolution of a 20 kbp unbridged repeat (see Supplementary Figure 
10). By first collapsing this repeat and then resolving it due to the existence of a unique traversal of the 
graph, HINGE produces a single large chromosomal contig of length 5.1 Mbp. The nodes in the HINGE 
graph are colored according to the position the corresponding reads align to in the NCTC pipeline contigs. 
(b) On the NCTC9964 dataset (Escherichia coli), the NCTC pipeline returned one circular chromosomal 
contig of length 5.1 Mbp. HINGE outputs a graph where an inverted repeat of length 18 kbp is collapsed. 
As shown in Supplementary Figure 11, this repeat is unbridged and hence the graph admits two distinct 
traversals. In order to prevent a mis-assembly, HINGE does not attempt to resolve the repeat. (c) The 
NCTC pipeline on the NCTC9657 dataset (Klebsiella pneumoniae) returned seven unidentified contigs 
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(three large ones). HINGE's output graph has one large connected component and two smaller plasmid 
connected components. The large component corresponds to a circular chromosome with an unbridged 
triple repeat and an unbridged repeat, and is a combination of the three large contigs of the NCTC 
pipeline. We note that contig 1 of the NCTC pipeline incorrectly resolves a triple repeat that is 
fundamentally unresolvable given the reads (see Supplementary Figure 12), hence creating a mis-
assembly. (d) Here we show one of the smaller components HINGE outputs for NCTC9657. Due to an 
unbridged repeat, there are two possible resolutions (two plasmids or a single plasmid), and HINGE 
outputs the unresolved graph to prevent a mis-assembly.  
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Figure 3: HINGE pipeline: (a) The input to the HINGE pipeline is a set of PacBio SMRT reads. We use 
DAligner22 to obtain pairwise alignments between these reads, which allow a pile-o-gram to be 
constructed for each read. (b) We then detect reads with chimeric segments and discard them from the 
pipeline. Reads with chimeric segments have a sharp change in the set of reads shown on the pile-o-
gram, or segments where no other read aligns. Reads with these patterns can be detected and discarded 
from the assembly pipeline. (c) The remaining reads are then passed on to the hinging unit. Here we 
identify reads that contain part of a repeat, but do not bridge it. A large increase in the number of matches 
starting (resp. ending) at the same point in the pile-o-gram indicates the start (resp. end) of a repeat. This 
yields repeat annotations on the reads. We then check if reads with repeat annotations bridge a repeat 
(as explained in Supplementary Figure 15). If not, we place a hinge on the read. (d) In order to make sure 
that we only have one hinge for the beginning (resp. end) of each repeat, we match hinges that 
correspond to the beginning of the same repeat, and only keep the hinge whose read extends the most 
into the repeat (See Supplementary Figure 16 for details). We also identify maximal reads, i.e., reads that 
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are not contained in any other read, and pass them on to the layout unit. (e) In the layout unit we use a 
hinge-aided greedy algorithm to build the read overlap graph. The basic algorithm is the greedy algorithm, 
but the matches considered while picking the greedy predecessor/successor of a read include internal 
matches starting/ending at hinges. (see Supplementary Figure 16 for details). (f) After obtaining the read-
overlap graph, we resolve repeats that admit only one traversal. This is done when all traversals of the 
graph must resolve the repeat in the same way. (g) Finally, we extract contigs from the read-overlap 
graph and use standard consensus methods to return the graph corresponding to our assembly with the 
corresponding sequences. 
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Methods 
 
The HINGE assembly pipeline, depicted in Figure 3, has been designed to assemble PacBio SMRT 
reads. Here we describe technical aspects of the workflow.  
 
Read database and alignment 
 
We use DAZZ_DB26 to maintain a database of the PacBio reads. We use DAligner22 to get pairwise 
alignments between all reads. 
 
No initial error-correction step 
 
Unlike most available long-read assembly pipelines, HINGE bypasses an initial error correction step. To 
the best of our knowledge, Miniasm14 and Ra27 are the only other OLC assembler that dispenses with this 
step. Abruijn13 also has no error-correction step, though it is not based on the OLC paradigm. The fact 
that standard overlappers like DAligner22 can obtain pairwise alignments at error rates of around 15% 
allows us to use this approach. By avoiding the typical initial error-correction step, we avoid the risk of 
removing the heterogeneity that may differentiate certain approximate repeats, which can cause them to 
become indistinguishable given the error-corrected reads. The idea of bypassing the error correction step 
was proposed in talks by Gene Myers. 
 
Chimeric read filter 
 
Chimeric reads are the result of a sequencing error, and are usually made up of multiple segments that 
come from different parts of the genome. If not properly handled, these reads create mis-assemblies. 
HINGE's chimera filter unit is the first place in the pipeline where pile-o-grams (See Supplementary Figure 
13(f)) are used. We mark a read segment as chimeric if the set of reads aligned to it undergoes an abrupt 
change. We also mark a read segment as chimeric if the number of matches goes below a fixed 
threshold. For each read, we keep the longest segment without any chimeric segments. If this segment is 
shorter than a threshold, we discard the read completely. 
 
Hinge placement 
 
The next step in the HINGE pipeline is the hinge placement. To do so, we first annotate repeats by 
detecting the start/end of large number of internal matches on reads. On the pile-o-gram, this usually 
corresponds to a large pile of matches starting/ending at the same point (See Supplementary Figures 13 
and 14). We then verify whether the repeat annotation corresponds to a repeat that is bridged by that 
read. This is done by making sure that the internal matches starting (resp. ending) at the repeat 
annotation do not end in a pile (resp. do not start in a pile). If a repeat annotation is detected as bridged, 
no hinge is placed (although the annotation is maintained for downstream use). Otherwise an in-hinge or 
out-hinge is placed, depending on whether that is the beginning or the end of the repeat. This process is 
illustrated in Supplementary Figure 15. In this step, we also filter out the reads which are contained in 
other reads to retain only maximal reads. 
 
Hinge processing 
 
After placing the hinges, we attempt to remove many of them. The reason for that is two-fold. First, if a 
repeat is bridged, we do not want the repeat to collapse, so no hinges should be placed on the 
corresponding reads. Second, for each unbridged repeat, we only want one read to have an in-hinge and 
one read to have an out-hinge. As illustrated in Figure 3(d), we want to keep the in-hinge and out-hinge 
on the reads that extend the most into the repeat.  
 
We achieve this via a two-step hinge filtering. In the first step, we take each read containing a hinge, and 
consider all of its overlaps. By an overlap, we mean a match between the end of a read and the beginning 
of another read. If the match instead occurs at the interior of at least one of the reads, we refer to it as an 
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internal match. We remove an in-hinge if the read has a (suffix) overlap that starts before the hinge. 
Similarly, we kill an out-hinge if the read has a (prefix) overlap that ends after the hinge.  
 
In the second stage of hinge filtering, we kill an in-hinge if another read has an in-hinge corresponding to 
the start of the same repeat, but the read extends more into the repeat. Similarly, an out-hinge is killed if 
another out-hinge is found on a read that extends more into the repeat. These two filtering steps are 
illustrated in Supplementary Figure 15.  
 
We point out that, in the first filtering stage, when a read has its hinge removed due to a bridged repeat, 
we mark this read as "poisoned". This annotation is used in the greedy layout algorithm to prevent a 
bifurcation from occurring at a bridged repeat, guaranteeing that the two copies remain separate. We 
describe this in detail in Supplementary Figure 16. 
 
Hinge-aided greedy layout 
 
Once the reads have been properly hinged, we move on to the graph layout step, where we employ a 
variation of the greedy algorithm. Each read picks its left extension to be its longest prefix match, and its 
right extension to be the longest suffix match. Unlike in the classical greedy algorithm, we do not restrict 
our search to overlaps. Instead, we consider (non-poisoned) overlaps and internal matches that start/end 
at a hinge. 
 
Repeat resolution 
 
Once constructed, the graph allows us to identify certain repeats that, although unbridged, can still be 
resolved based on the graph layout. As illustrated in Figure 2(a) and Supplementary Figure 9(a), when a 
repeat loop allows only one possible traversal, the loop can be untangled. We point out that the sparse 
and Eulerian-like nature of the graph produced by the hinge-aided greedy algorithm are important to allow 
this repeat resolution to be done in an automated fashion. 
 
Handling Read Orientation and Double-Strandedness  
 
Since the orientation of the reads is unknown, as it is typical in all assembly pipelines one must consider 
each read and its reverse complement. Hence for each read we in fact create two nodes in the graph, 
and the constructed graph is symmetric. At the end of the graph construction, for visualization purposes, 
we overlay each node and its reverse complement.  
 
Consensus 
 
In order to generate consensus sequences for the resulting graph contigs, we first create a draft 
assembly by simply concatenating sections of the error-prone reads corresponding to unbranched paths 
on the graph. We then consider the alignment of all the original reads onto these draft contigs, and utilize 
a majority-based consensus to clean up these draft sequences. We reuse some code from FALCON16 to 
perform this task. The result is output as a GFA file. We point out that the final contig sequences can be 
optionally run through Quiver3 to further polish the assembly. 
 
Graph Visualization 
 
All assembly graphs produced by HINGE were visualized using Gephi28.  
 
Software availability 
 
The HINGE assembler is available online at: https://github.com/fxia22/HINGE. 
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