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Abstract

Mutations occur at vastly different rates across the genome, and between populations. Here, we measure
variation in the mutational spectrum in a sample of human genomes representing all major world populations. We
find at least two distinct signatures of variation. One, private to certain Native American populations, is novel and
is concentrated at CpG sites. The other is consistent with a previously reported signature characterized by
TCC>TTC mutations in Europeans and other West Eurasians. We describe the geographic extent of this signature
and show that it is detectable in the genomes of ancient, but not archaic humans. We hypothesize that these two
signatures are driven by independent processes and both result from differences in either the rate, or repair
efficiency, of damage due to deamination of methylated bases — respectively guanine and cytosine for the two
processes. Variation in these processes could be due to environmental, genetic, or life-history variation between

populations, and dramatically affects the spectrum of rare variation in different populations.

Introduction

For a process that provides such a fundamental contribution to genetic diversity, the human germline
mutation rate is surprisingly poorly understood. Different estimates of the mutation rate—the mean number of
mutations per-generation, or per-year—are largely inconsistent with each other [1,2], and similar uncertainty
surrounds parameters such as the paternal age effect [3-5], the effect of life-history traits [6,7], and the sequence-
context determinants of mutations [5,8]. Here, we investigate a related question. Rather than trying to determine
the absolute values of parameters of the mutation rate, we ask how much the relative mutation rate—specifically,

the relative rate of different classes of mutations—varies between different human populations.
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Motivation for this comes from two sources. First, analysis of tumor genomes has demonstrated a number
of different mutational signatures operating at different rates in somatic cells and cancers, many of which can be
linked to specific biological processes or environmental exposures [9-11]. It seems plausible that population-
specific genetic factors of environmental exposures might similarly lead to variation in germline mutation rates.
Second, it is known that some mutations, most notably TCC>TTC, are enriched in Europeans relative to East
Asians and Africans [8] though the geographical extent, history, and biological basis for this signal are unclear.
By analyzing whole-genome sequence data from diverse world populations, together with high coverage ancient
genomes, we aimed to further characterize variation in human mutation rates, to place this variation in a historical

context, and to determine the underlying biological or environmental explanations.

Results

We first analyzed data from 300 individuals sequenced to high coverage (mean coverage depth 43X) as
part of the Simons Genome Diversity project [12] (SGDP). We classified single nucleotide polymorphisms
(SNPs) into one of 96 mutational classes according to the SNP, and the two flanking bases. We represent these by
the ancestral sequence and the derived base so for example “ACG>T" represents the ancestral sequence 3’-~ACG—
5’ mutating to 3’~ATG-5". In order to increase power to detect population-specific variation, we first focused on
variants where there were exactly two copies of the derived allele in the sample (f> variants). For each individual,
we counted the number of /> mutations in each mutational class that they carried, and normalized by the number
of ATA>C mutations (the most common class and one that did not seem to vary across populations in a
preliminary analysis). The residual mutation intensities form a 96x300 matrix, and we used non-negative matrix
factorization [10,13] (NMF, implemented in the NMF package [14] in R) to identify specific mutational features.
NMF decomposes a matrix into a set of sparse factors, here putatively representing different mutational processes,

and individual-specific loadings for each factor, measuring the intensity of each process in each individual.

NMF requires us to specify the number of signatures (the factorization rank) in advance. For f; variants
we chose a factorization rank of 4, based on standard diagnostic criteria (Supplementary Fig. 1). This identified
four mutational signatures; of which two were uncorrelated with each other, were robust across frequencies,
replicated in non-cell-line samples, were consistent across samples from the same populations, and had clear
geographic distributions (Figure 1, Supplementary Fig. 2). Signature 1 corresponds to the previously described
European signal [8] characterized by TCC>T, ACC>T, CCC>T and TCT>T (possibly also including CCG>T,

which overlaps with signature 2). Loadings of this component almost perfectly separate West Eurasians from
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other populations, with South-West Asians intermediate. This component is seen most strongly in Western and
Mediterranean Europe, with decreasing intensity in Northern and Eastern Europe, the Middle East and South-west
Asia. This signal is similar to signature 11 from the COSMIC catalog of somatic mutation in cancer [15] (Pearson
correlation p=0.85) which is most commonly found in melanoma and glioblastoma and is associated with use of

chemotherapy drugs which act as alkylating agents, damaging DNA through guanine methylation.

Signature 2 is restricted to some South and Central American populations and, possibly, Aboriginal
Australians. It is characterized by NCG>T mutations similar to the signature caused by deamination of methylated
cytosine at CpG sites, corresponding to COSMIC signature 1 (p=0.96). Interestingly, this signal is found in South
America in Andean populations like Quechua and Piapoco, and in Central American populations such as Mayan

and Nahua, but not in the Amazonian Surui and Karitiana, nor in North American populations.

The remaining two signatures are more difficult to identify (Supplementary Fig. 2). Signature 3 is
characterized by GT>GG mutations, particularly GTG>GGG. It is found in some East Asian and some South
American populations but is not consistent within populations and does not have a consistent geographic pattern.
All affected samples are derived from cell lines. It does not match any mutational signature seen in COSMIC
(maximum p=0.05). Plausibly this represents some as-yet uncharacterized sample-specific process or cell-line
artifact. Signature 4 is diffuse, possibly representing a background mutation rate and is most correlated with
COSMIC signature 5 (p=0.52) which is found in all cancers and has unknown aetiology. It is significantly
reduced in only a single cell-line derived sample (Quechua-2), so probably represents some unknown cell-line or

data processing artifact.

We checked that these signatures were robust when we looked at different frequencies and factorization
ranks. For f; variants with rank 4 we recovered the same signatures as with f> variants (Supplementary Fig. 3), and
retained signatures 1 and 2 when we used rank 3 (Supplementary Fig. 4). At f; the variation is apparently
dominated by cell line artifacts because principal component analysis (PCA) separates cell line from non cell line
derived samples (Supplementary Fig. 5SA). However, NMF on f; variants excluding cell line derived samples
recovers signatures consistent with signatures 1 and 2 (Supplementary Fig. 5B-C). PCA on f; variants does not
distinguish cell line samples, but does separate samples by geographic region, and recovers factor loadings
consistent with NMF-derived signatures 1-3 (Supplementary Fig. 6). To check that our results were not an artifact
of the normalization we used, we repeated the analysis normalizing by the total number of mutations in each

sample, rather than the number of ATA>C mutations, and obtained equivalent results (Supplementary Figure 7).
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97 Demographic effects such as population size changes confound direct estimates of mutation rate
98 differences. However, the proportion of mutations likely attributable to signature 1 (i.e TCT>T, TCC>T, CCC>T
99 and ACC>T) increases from a mean of 7.8% in Africans to 10.0% (range 8.8-11.1%) in West Eurasians which,
100 with the strong assumption that the only differences in mutation are the ones we detected, would provide a lower-
101 bound for the increase in genome-wide mutation rate of 2.3% (range 1.1-3.6%). A similar calculation for
102 American samples with apparent excess of signature 2 gives a range of increase of 4.9-10.8%.
103
104 We replicated these results using data from phase 3 of the 1000 Genomes project [16], confirming that
105 mutations consistent with signature 1 are enriched in populations of European and South Asian ancestry (Figure
106 2A) and that mutations consistent with signature 2 are enriched in Peruvians (PEL) and Mexicans (MXL) — the
107 two 1000 Genomes populations with the most Native American ancestry (Figure 2B).
108
109 To study the time depth of these signals, we investigated whether signature 1 could be detected in ancient
110 samples by constructing a corrected statistic, that measures the intensity of the mutations enriched in signature 1,
111 normalized to reduce spurious signals that arise from ancient DNA damage (methods). This statistic is enriched to
112 European levels in both an eight thousand year old European hunter-gatherer and a seven thousand year old Early
113 European Farmer [17] but not in a 45,000 year old Siberian [18], nor in the Neanderthal [19] or Denisovan[20]
114 genomes (Figure 3). This statistic is predicted by neither estimated hunter-gatherer ancestry, nor early farmer
115 ancestry, in 31 samples from 13 populations for which ancestry estimates were available [17] (linear regression p-
116 values 0.22 and 0.15, respectively). Thus the effect is not strongly driven by this division of ancestry. If it has an
117 environmental basis, it is not predicted by latitude (linear regression of signature 1 loadings against latitude;
118 p=0.68), but is predicted by longitude (p=6x10"%; increasing east to west). We cannot apply the same approach to
119 Signature 2, because post-mortem deamination of methylated CpG sites is common in all ancient DNA, even
120 when treated with uracil-DNA glycosylase [21].
121
122 Finally, we investigated the dependence of the two signatures on four genomic features. First we
123 investigated dependence on transcriptional strand. Signature 1 shows a skew whereby the C>T mutation is more
124 likely to occur on the transcribed (i.e. noncoding) strand in West Eurasians, relative to populations from other
125 regions (Figure 4 A&B). Because transcription coupled repair is more likely to repair mutations on the transcribed
126 strand [22] this result, consistent with Harris (2015) [8], suggests that the excess signature 1 mutations in West
127 Eurasians are driven more by G>A than by C>T mutations. Signature 2 shows a global skew where the C>T
128 mutation is more likely to occur on the untranscribed strand, consistent with these mutations resulting from
129 deamination of methylated cytosine, and we do not see a significant difference between individuals with high

130 wversus low levels of signature 2 mutations (Figure 4 C,D). Second, we obtained methylation data for a testis cell
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131 line, produced by the Encyclopedia of DNA Elements (ENCODE) project [23]. Signature 2 mutations are ~8.5
132 times as likely to occur in regions of high (>=50%) versus low (<50%) methylation. We do not detect any

133 difference in this ratio between regions, or between individuals with high versus low signature 2 mutation rates,
134 although the number of mutations involved is probably too low to provide much power (Methods; Fisher’s exact
135 test P=0.14). Third, we tested dependence on B statistic [24], a measure of conservation. We found that the

136 relative magnitudes of both signatures 1 and 2 depend on B statistic, but that both these dependencies were

137 independent of the per-population intensities of the signatures (Figure 5 A,B). This, along with a similar result for
138 recombination rate, (Figure 5 C,D) confirm that the differences we detect are truly due to differences in mutation
139 rate, and not some other force like natural selection, recombination or biased gene conversion.

140

141 Discussion

142

143 We characterized two independent signals of variation in mutation rates between human populations,
144 however this may not be comprehensive. Our power to detect differences in mutation rates depends on a number
145 of factors, including sample size, and the level of background variation. For example, we would expect to have
146 more power to detect recent variations in Native Americans because they have relatively low background

147 wvariation. Nonetheless, it is clear that the patterns we did identify are robust, and represent real differences in
148 mutation rates.

149

150 We cannot be definitive about the causes of these patterns, but our analyses provide a number of clues. In
151 terms of the immediate mutagenic cause, signature 1 is most similar to COSMIC [15] signature 11 (Pearson

152 correlation p=0.85), which is associated with alkylating agents used as chemotherapy drugs, damaging DNA

153 through guanine methylation. The reversal of transcriptional strand bias for this signature in West Eurasians

154 supports the idea that the increased rate of these mutations in West Eurasians is driven by damage to guanine
155 bases, consistent with deamination of methyl-guanine to adenine, leading to the G>A (equivalently C>T)

156 mutations that we observe. Signature 1 is also highly correlated with COSMIC signature 7 (p=0.76), caused by
157 ultraviolet (UV) radiation exposure but it is difficult to imagine how this could affect the germline, would not
158 explain our observed increase in ACC>T mutations, would not be expected to reverse the strand bias, and should
159 produce an enrichment of CC>TT dinucleotide mutations in West Eurasians that we do not observe (p=0.41).
160 Harris (2015) [8] suggested that UV might cause germline mutations indirectly through folate deficiency in

161 populations with light skin pigmentation (since folate can be degraded in skin by UV radiation). It is unknown
162 what mutational signature would be caused by this effect, but the fact that we do not observe enrichment of

163 signature 1 in other lightly pigmented populations like Siberians suggests that it is not driving the signal.
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Signature 2 seems most likely to be driven by deamination of methylated cytosine at CpG sites, which is
the major source of C>T muations at these sites. We find no evidence of any qualitative difference between the
CpG mutations in populations with high rates of signature 2 compared to other populations. Therefore we
hypothesize that variation in both signatures is driven by differences either in methylation (of guanine and
cytosine, respectively) level, rate of deamination of methylated bases, or in the efficiency of repair of damage

caused by deamination of methylated bases.

Why these factors would vary between populations is another question and, for this study, a matter for
speculation. Possibilities include variation in life-history traits, variation in environment, or systematic variation
in mutational or DNA repair processes due to either natural selection or neutral evolution. Over longer timescales,
variation in life history traits, for example the timing of reproduction and the onset of fertility, can lead to
variation in both total mutation rate and in the mutational spectrum, particularly in the relative rates of CpG and
non-CpG mutations [1,6,7,25,26]. While these effects are dramatic and important on the timescale of hominid
evolution, we do not think that variation in life-history traits drives the variation that we observed within humans.
First, we see little variation within African populations, despite great social and cultural diversity across the
populations represented in our study. Second, variation in signature 1 across Eurasia seems very smooth (Figure
1B) and we know of no life-history traits that vary so smoothly across populations. Signature 2 varies less
smoothly, and the relative rate of CpG mutations is known to be affected by life-history traits, although the
magnitude of the signal seems too large. For example, in the 1000 Genomes project, the proportion of rare C>T
mutations at CpG sites (a lower bound for the difference in mutation rate) varies by up to ~5% across populations
(Figure 2 B), on the same order as the difference in the proportion of CpG substitutions between human and
baboon lineages [26]. Studies of de novo mutations in humans have found no significant effect of paternal age on
CpG:non-CpG mutation ratio [4,5], but we cannot exclude the possibility that variation in signature 2 is driven by

dramatic variation in some other life history trait.

Other than life-history traits, damage or repair rates might vary either because of inherited variation in
DNA repair efficiency or other biochemical processes, or because of external environmental factors. In the first
case, a promising approach to detecting a causal locus would be to map mutation rate variation, either in large
pedigrees or in an admixed population like African Americans. In the second, we might identify the factor by
looking for correlations with environmental features, through mutation accumulation experiments in other
species, or comparison with mutational signatures identified in cancer with known causes. So far, however, the

ultimate cause of this variation remains unknown.
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It is important to understand changes in the mutation rate on the timescale of hominid evolution in order
to calibrate demographic models of human evolution [27] and the observation of variation in mutation rates
between populations [8] made this calibration even more complicated. One further consequence of our results is
that the rate of CpG mutations, often assumed to be almost “clock-like” [7,25,26] may also vary over short
timescales, meaning that they may not be as useful for model calibration as previously though. Further work in
this area will involve more detailed measurement of mutation rates in diverse populations — to date, most work on
somatic, cancer, or de novo germline mutations has been conducted in popualtions of West Eurasian origin — and
the extension of these approaches to other populations will be required to fully understand variation in mutation

rates and its consequences for demographic modeling.

Methods

Identifying mutational signatures

We used SNPs called in 300 individuals from the Simons Genome Diversity Project [12] (SGDP).
Variant sites were called at filter level 1, and then any site that was variable in any sample was genotyped in every
sample. We polarized SNPs with the ancestral allele inferred in the human-chimp ancestor, and classified by the
two flanking bases in the human reference (hgl9). We restricted to sites of given frequencies and merged reverse
complement classes to give counts of SNPs occurring in 96 possible mutational classes. We then normalized these
counts by the frequency of ATA>ACA mutations. The remaining matrix represents the normalized intensity of
each mutation class in each sample, relative to the sample with the lowest intensity. Formally, let C; be the

counts of mutations in class 7 for sample j. Then, the intensities that we analyze, Xj;are given by,

v oS

ij
C{ATA>C} j

We decomposed this matrix X using non-negative matrix factorization [13] implemented in the NMF R
package [14] with the multiplicative algorithm introduced by Lee & Seung (1999) [13], initialized using the non-
negative components from the output of a fast/CA analysis[28] implemented in the fast/CA package in R
(https://cran.r-project.org/web/packages/fastiCA/index.html). For the diagnostic plots in Supplementary Fig. 2,
we used 200 random starting points to compare the results of different runs. When we initialized the matrix
randomly, rather than using fast/CA, we obtained a slightly closer fit to the data (root-mean-squared error in X of

0.024 vs 0.025) and similar factor distributions (Supplementary Fig. 8A), except that all signatures were
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dominated by CpG mutations (Supplementary Fig. 8B). Removing a constant amount of each CpG mutation from
each signature recovered signatures close to the fast/CA-initialized signatures (Supplementary Fig. 8C), so we
concluded that this was a model-fitting artifact, and did not reflect true signatures. Finally we performed the

analysis on a matrix normalized be the total number of mutations in each sample Y;; C;; rather than the number of

ATA>C mutations. (Supplementary Figure 7).

The ordering of the factors is arbitrary so, where necessary, we reordered for interpretability. To plot
mutational signatures and compare with the COSMIC signatures, we rescaled the intensities of each class
according to the trinucleotide frequencies in the human reference genome. The scale of the weightings is therefore
not easily interpretable. To perform principal component analysis on X, we normalized so that the variance of

each row was equal to 1.

Analysis of 1000 Genomes data

We classified 1000 Genomes mutations according to the ancestral allele inferred by the 1000 Genomes
project, and counted the number of /> and f; variants carried by each individual in each mutation class. We ignored
SNPs that were multi-allelic or where the ancestral state was not confidently assigned (confident assignment
shown by a capital letter in the “AA” tag in the “INFO” field of the vcf file). We excluded the four outlying
samples: HG01149(CLM), NA20582 & NA20540 (TSI), NA12275(CEU), NA19728(MXL).

Analysis of ancient genomes

We identified heterozygous sites in five ancient genomes from published vef files, and restricted to sites

where there was a single heterozygote in the SGDP. The corrected signature 1 log-ratio is defined by

X{TCC>A}jX{ACC>A}jX{TCT>A}jX{CCC>A}j
M =log,
{TCA>A},/‘X{ACA>A}jX{TCA>A}jX{CCA>A}j

and then normalized so that the distribution in African populations has mean 0 and standard deviation 1. We

estimated bootstrap quantiles by resampling the counts C;; for the ancient samples and recomputing M.
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Transcriptional strand

We downloaded the knownGenes table of the UCSC genes track from the UCSC genome browser
(http://genome.ucsc.edu/). Taking the union of all transcripts in this table, we classified each base of the genome
according to whether it was transcribed on the + or — strand, both, or neither (including uncalled bases). These
regions totaled 607Mb, 637Mb, 36Mb and 1,599Mb of sequence respectively. We then counted mutations in our
dataset that occurred in regions that were transcribed on the + or — strand, ignoring regions where both or neither

strand was transcribed.

Methylation status

We downloaded the Testis BC 1 and 2 (two technical replicates from the same sample) tables from the
HAIB Methyl RRBS track from the UCSC genome browser (http://genome.ucsc.edu/). We constructed a list of
33,305 sites where both replicates had >=50% methylation and another list of 166,873 sites where both replicates
had <50% methylation. We then classified the CpG mutations in our dataset according to which, if either, of these
lists they fell into. Ultimately, there were only 1186 classified mutations in the whole dataset, including 43 in
Native American samples and 12 in Native American samples with high rates of signature 2. Therefore, although
we found no significant interactions between methylation status and population, it may be simply that we lack

power to detect it.

B statistic and recombination rate

We classified each base of the genome according to which decile of B statistic [24] or HapMap 2

combined recombination rate [29] (in 1kb blocks) it fell into and counted mutations in each class.

Code availability

Scripts used to run the analysis are available from https://github.com/mathii/spectrum.
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295 Figure 1: Distribution and characterization of mutational signatures 1 and 2. A: Factor coefficients for these two
296 signatures, for 300 individual samples colored by region. B: Geographic representation of the factor loadings from
297 panel A. Darker colors represent higher loadings. C: Characterization of the signatures in terms of mutation

298 intensity for each of 96 possible classes. Bars are scaled by the frequency of each trinucleotide in the human

299 reference genome. Below, the most highly correlated signatures from the COSMIC database are shown for

300 comparison.
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Figure 2: Signatures 1 and 2 in the 1000 Genomes. A: Proportions of /> and f; variants in signature 1 (here
defined as TCT>T, TCC>T, CCC>T and ACC>T) in each 1000 Genomes individual, by population. B:
Proportions of /> and f; variants in signature 2 (here defined as NCG>T, for any N) in each 1000 Genomes

individual, by population (five outlying samples excluded).
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308 Figure 3: Signature 1, corrected to be more robust to ancient DNA damage (Methods), for f> variants in the SGDP

309 individuals, by region, and in five high coverage ancient genomes. Solid lines show 5-95% bootstrap quantiles.
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Figure 4: Transcriptional strand bias in mutational signatures. We plot the log of the ratio of mutations occurring
on the untranscribed versus transcribed strand. Therefore a positive value indicates that the C>T mutation is more
common than the G>A mutation on the untranscribed (i.e. coding) strand. P values in brackets are, respectively,
ANOVA P-values for a difference between regions and t-test P-values for a difference between i) West Eurasia
and other regions (excluding South Asia) in A&B ii) 11American samples with high rates of signature 2
mutations and other regions in C&D. A: Boxplot of per-individual strand bias for mutations in signature 1
(TCT>T, TCC>T, CCC>T and ACC>T). One sample (S_Mayan-2) with an extreme value (0.48) is not shown. B:
Population-level means for each of the mutations comprising signature 1. C,D: as A&B but for signature 2. We

separated out the 11 American samples with high rates of signature 2 mutations.
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320

321 Figure 5: Dependence of mutational signatures on genomic features. A,B: dependence on conservation, measured
322 by B statistic (O=lowest B statistic; highest conservation). A: Comparison of proportions of signature 1 mutations
323 between West Eurasia and other populations (excluding South Asia). Blue dashed lines show a fitted linear model
324 of dependence with no interaction term. B: Comparison of proportions of signature 2 mutations between the 11
325 American samples with the highest proportions, and all other samples. Blue dashed lines show a fitted quadratic
326 model of dependence with no interaction term. C,D: As A&B, but showing dependence on recombination rate

327 decile computed in 1kb bins.
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388

389 Supplementary Figure 1: Diagnostic plots for NMF using variants of different frequencies. Rows from top-

390 wariants at frequency 2, 3 and 4. Columns- each plot shows the value of a measure, computed over 50 random
391 start points, for factorization ranks from 2 to 8. From left to right: Dispersion, a measure of reproducibility of
392 clusters across runs (1=perfectly reproducible); Residual sum of squares (lower=better fit); Silhouette, a measure
393 of how reliably elements can be assigned to clusters (1=perfectly reliably). In supplementary plots, we denote the
394 signatures obtained from f. variants with rank & by signature,, so the signatures in the main text are equivalent to

395 signature, 4.

17


https://doi.org/10.1101/063578
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/063578; this version posted July 13, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

A B Signature 3

& Celklines ® EastAsia

o Other ® Africa Pima2

B B8 © WestEurasia
Miso-2 ® America B
B © Oceania Han3
SouthAsia
® CentralAsiaSiberia
B

< o
E om s Mixe-3
3 Mongola-1
© -]
g‘ o ) Dai-4
.LZ e (e} B Miao-1

Ot Russian-1

B
Dﬁ B
Quechua-2
®
Signature 3
c C>A C>G T T>A T>C T>G D C>A G T

T>C T>G

g
g
Signature 3 Signature 4
& Cell lines ® EastAsia = ® Cell lines = * EastAsia
O Other ® Africa o Other * Africa
© * WestEurasia * WestEurasia
“ B g o Anfierica © America
o & « Oceani ® f
Smg® eanias * Oceania
® ® ] =™ SquthAsia SouthAsia
® x‘@ 00 . (ZemralAsiaSiberia * CentralAsiaSiberia
® "s®E® o S [
% = go =
— b 4 & ® ™
9] ° g oF 9]
S S
= N g =)
— o [¢] %o ° — B
© © ®
c o m c &
k=) LI k=) E
wv o wv
o & =
= E% O%D B = =
. ® &‘OEO B iy o o
o Fp gy o
o B
® © mf ° L ) By N
B
Signature 4 Signature 2

396

397 Supplementary Figure 2: Distribution and characterization of mutational signatures,4 3 and 4. A: Per-sample

398 coefficients for signatures 3 and 4. B: Geographic distribution of signatures 3 and 4. C: Mutational spectrum of

399 signature 3. D: Mutational spectrum of signature 4. E-F: Comparison of loadings of 1 and 2 with signatures 3 and

400 4.
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402 Supplementary Figure 3: Mutational signatures inferred from f; variants with rank 4. A: Factor coefficients for
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411 Supplementary Figure 5: Analysis of f; variants A: The first two principal components of the mutational

412 spectrum of f; variants, showing the difference between cell line and primary tissue derived samples. B&C:

413 Mutational signatures inferred from f; variants with rank 2, but excluding cell line samples. B: Factor loadings for
414 signature;+, 1 and 2 (asterisk denotes no cell lines). C: Mutational signatures;«, 1 and 2. Signature;«, 1 is

415 confounded with CpG mutations in this case, but clearly shows an elevated level of TCC>T and ACC>T

416 mutations.
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417
418 Supplementary Figure 6: Principal component analysis of the mutational spectrum of f, variants. A&B:
419 Principal component positions. Labeled by sample source (A) and geographic region (B). C: Component loadings.

420 Note that principal components 2,3 and 4 correspond roughly to mutational signatures, 4 3, 2 and 1 respectively.
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421
422 Supplementary Figure 7: NMF analysis of {2 variants at rank 4 - as the main analysis, but normalizing the

423 mutational spectra by the total number of mutations in each sample, rather than the number of ATA>C mutations.
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425 Supplementary Figure 8: NMF analysis of f; variants at rank 4 with random initialization of the NMF algorithm.

426 A: Distribution of signatures across samples. B: Mutational signatures 1-4 (starting top left, anticlockwise). C:
427 Mutational signatures 1-4 where, for each CpG mutation class, we subtracted the minimum over all four

428 signatures from the signature.

24


https://doi.org/10.1101/063578
http://creativecommons.org/licenses/by/4.0/

