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Abstract 42 

Recent epidemics of Zika, dengue, and chikungunya have heightened the need to understand the 43 

seasonal and geographic range of transmission by Aedes aegypti and Ae. albopictus mosquitoes. 44 

We use mechanistic transmission models to derive predictions for how the probability and 45 

magnitude of transmission for Zika, chikungunya, and dengue change with mean temperature, 46 

and we show that these predictions are well matched by human case data. Across all three 47 

viruses, models and human case data both show that transmission occurs between 18-34°C with 48 

maximal transmission occurring in a range from 26-29°C. Controlling for population size and 49 

two socioeconomic factors, temperature-dependent transmission based on our mechanistic model 50 

is an important predictor of human transmission occurrence and incidence. Risk maps indicate 51 

that tropical and subtropical regions are suitable for extended seasonal or year-round 52 

transmission, but transmission in temperate areas is limited to at most three months per year even 53 

if vectors are present. Such brief transmission windows limit the likelihood of major epidemics 54 

following disease introduction in temperate zones.  55 

  56 
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Main Text 57 

Epidemics of dengue, chikungunya, and Zika are sweeping through the Americas, and are part of 58 

a global public health crisis that places an estimated 3.9 billion people in 120 countries at risk 59 

(1). Dengue virus (DENV) distribution and intensity in the Americas has increased over the last 60 

three decades, infecting an estimated 390 million people (96 million clinical) per year (2). 61 

Chikungunya virus (CHIKV) emerged in the Americas in 2013, causing 1.8 million suspected 62 

cases from 44 countries and territories (www.paho.org). In the last year, Zika virus (ZIKV) has 63 

spread throughout the Americas, causing 688,040 suspected and confirmed cases, with many 64 

more unreported (http://ais.paho.org/phip/viz/ed_zika_cases.asp, as of November 17, 2016). The 65 

growing burden of these diseases (including links between Zika infection and both microcephaly 66 

and Guillain-Barré syndrome (3)) and potential for spread into new areas creates an urgent need 67 

for predictive models that can inform risk assessment and guide interventions such as mosquito 68 

control, community outreach, and education. 69 

Predicting transmission of DENV, CHIKV, and ZIKV requires understanding the 70 

ecology of the vector species. For these viruses the main vector is Aedes aegypti, a mosquito that 71 

prefers and is closely affiliated with humans, while Ae. albopictus, a peri-urban mosquito, is an 72 

important secondary vector (4,5). We expect one of the main drivers of the vector ecology to be 73 

the climate, particularly temperature. Along these lines, mathematical and geostatistical models 74 

that incorporate climate information have been valuable for predicting and responding to Aedes 75 

spp. spread and DENV, CHIKV, and ZIKV outbreaks (5–9).  76 

The effects of temperature in ectotherms are largely predictable from fundamental 77 

metabolic and ecological processes. Survival, feeding, development, and reproductive rates 78 

predictably respond to temperature across a variety of ectotherms, including mosquitoes (10,11). 79 
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Because these traits help to determine transmission rates, the effects of temperature on 80 

transmission should also be broadly predictable from mechanistic models that incorporate 81 

temperature-dependent traits. Here, we introduce a model based on this framework that 82 

overcomes several major gaps that currently limit our understanding of climate suitability for 83 

transmission. Specifically, we develop models of temperature-dependent transmission for Ae. 84 

aegypti and Ae. albopictus that are (a) mechanistic, facilitating extrapolation beyond the current 85 

disease distribution, (b) parameterized with biologically accurate unimodal thermal responses for 86 

all mosquito and virus traits that drive transmission, and (c) validated against human dengue, 87 

chikungunya, and Zika case data across the Americas. 88 

We synthesize available data to characterize the temperature-dependent traits of the 89 

mosquitoes and viruses that determine transmission intensity. With these thermal responses, we 90 

develop mechanistic temperature-dependent virus transmission models for Ae. aegypti and Ae. 91 

albopictus. We then ask whether the predicted effect of temperature on transmission is consistent 92 

with patterns of actual human cases over space and time. To do this, we validate the models with 93 

DENV, CHIKV, and ZIKV human incidence data at the country scale from the Americas from 94 

2014-2016. To isolate temperature dependence, we also statistically controlled for population 95 

size and two socioeconomic factors that may influence transmission. If temperature 96 

fundamentally limits transmission potential, transmission should only occur at actual 97 

environmental temperatures that are predicted to be suitable, and conversely, areas with low 98 

predicted suitability should have low or zero transmission (i.e., false negative rates should be 99 

low). By contrast, low transmission may occur even when temperature suitability is high because 100 

other factors like vector control can limit transmission (i.e., the false positive rate should be 101 

higher than the false negative rate). Finally, if the simple mechanistic model accurately predicts 102 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 22, 2016. ; https://doi.org/10.1101/063735doi: bioRxiv preprint 

https://doi.org/10.1101/063735


 

 6 

climate suitability for transmission, then we can use it to map climate-based transmission risk of 103 

DENV, CHIKV, ZIKV, and other emerging pathogens transmitted by Ae. aegypti and Ae. 104 

albopictus seasonally and geographically. 105 

Results 106 

Temperature-dependent transmission 107 

Data gathered from the literature (9,12–14,14–20,20–29) revealed that all mosquito traits 108 

relevant to transmission—biting rate, egg-to-adult survival and development rate, adult lifespan, 109 

and fecundity—respond strongly to temperature and peak between 23°C and 34°C for the two 110 

mosquito species (Figs. 1, S1). Humidity linearly increases survival at all mosquito life stages, 111 

but does not interact with temperature (Fig. S2). DENV extrinsic incubation and vector 112 

competence peak at 35°C (30–36) and 31-32°C (30,31,33,37), respectively, in both 113 

mosquitoes—temperatures at which mosquito survival is low, limiting transmission potential 114 

(Figs. 1, S1). Appropriate thermal response data were not available for CHIKV and ZIKV 115 

extrinsic incubation and vector competence.  116 

 117 

Fig. 1. Thermal responses of Ae. aegypti and DENV traits that drive transmission (data sources 118 

listed in Table S2). Informative priors based on data from additional Aedes spp. and flavivirus 119 

studies helped to constrain uncertainty in the model fits (see Materials and Methods; Table S3). 120 

Points and error bars indicate the data means and standard errors (for display only; models were 121 

fit from the raw data). Black solid lines are the mean model fits; red dashed lines are the 95% 122 

credible intervals. 123 

 124 
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We estimated the posterior distribution of R0(T) and used it to calculate the mean and 125 

95% credible intervals (95% CI) on the critical thermal minimum, maximum, and optimum 126 

temperature for transmission by the two mosquito species. At constant temperature, Ae. aegypti 127 

transmission peaked at 29.1°C (95% CI: 28.4 – 29.8°C), and declined to zero below 17.8°C 128 

(95% CI: 14.6 – 21.2°C) and above 34.6°C (95% CI: 34.1 – 35.6°C) (Fig. 2). Ae. albopictus 129 

transmission peaked at 26.4°C (95% CI: 25.2 – 27.4°C) and declined to zero below 16.2°C (95% 130 

CI: 13.2 – 19.9°C) and above 31.6°C (95% CI: 29.4 – 33.7°C) (Fig. 2). Overall, the thermal 131 

response curve for Ae. albopictus is shifted towards lower temperatures than Ae. aegypti, so Ae. 132 

albopictus transmission is better suited to colder environments. For a more realistic scenario in 133 

which daily temperature ranged over 8°C, the transmission peak, minimum, and maximum were 134 

slightly lower for both Ae. aegypti (28.5°C, 13.5°C, 34.2°C, respectively) and Ae. albopictus 135 

(26.1°C, 11.9°C, and 28.3°C, respectively). The lower thermal maximum under fluctuating 136 

temperatures occurs because we incorporated empirically supported irreversible lethal effects of 137 

temperatures that exceed thermal maxima for survival (see Materials and Methods).  138 

 139 

Fig. 2. Relative R0 across constant temperatures (°C; top) for Ae. albopictus (light blue lines and 140 

shading) and Ae. aegypti (dark blue lines and shading), and histograms of the posterior 141 

distributions of the critical thermal minimum (bottom left), temperature at peak transmission 142 

(bottom middle), and critical thermal maximum (bottom right; all in °C). Solid lines: mean 143 

posterior estimates; dashed lines: 95% credible intervals. R0 curves normalized to a 0-1 scale for 144 

ease of comparison and visualization.  145 

 146 
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The posterior distribution of R0(T) allows us to evaluate uncertainty in key model 147 

outcomes, including critical thermal minimum, maximum, and optimum. Uncertainty was higher 148 

for the critical thermal minimum for transmission than for the maximum or optimum, and the 149 

two mosquito species overlapped most for this outcome (Fig. 2, bottom panels). This occurred 150 

because several trait thermal responses increase gradually from low to mid temperatures but 151 

decline more steeply at high temperatures (Fig. 1), so uncertainty is greatest at low temperatures. 152 

Ae. aegypti has a substantially higher optimum and maximum temperature than Ae. albopictus 153 

(Fig. 2) due to its greater rates of adult survival at high temperatures (see Supplementary 154 

Materials for sensitivity analyses). 155 

 156 

Model validation 157 

 We used generalized linear models (GLM) to ask whether the predicted relationship 158 

between temperature and transmission, R0(T), was consistent with observed human cases of 159 

DENV, CHIKV, and ZIKV. Specifically, we assessed whether R0(T) was an important predictor 160 

of the probability of autochthonous transmission occurring and of the incidence given that 161 

transmission occurred. We also controlled for human population size, virus species, and two 162 

socioeconomic factors. (Note that we focused on testing the R0(T) model, rather than on 163 

constructing the best possible statistical model of human case data.) To do this, we used the 164 

version of the Ae. aegypti R0(T) model that includes 8°C daily temperature range, along with 165 

country-scale weekly case reports of DENV, CHIKV, and ZIKV in the Americas and the 166 

Caribbean between 2014-2016. We first addressed the fact that countries with larger populations 167 

have greater opportunities for (large) epidemics by creating two predictors that incorporate 168 

scaled R0(T) and population size. In the models of the probability of autochthonous transmission 169 
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occurring we used the product of the posterior probability that R0(T) > 0 (which we notate as 170 

GR0) and the log of population size (p) to give log(p)*GR0. In the models of incidence given that 171 

transmission does occur we used the log of the product of simple R0(T) and population size 172 

log(p*R0(T)).  To control for several socioeconomic factors that might obscure the impact of 173 

temperature, we also included log of gross domestic product (GDP) and log percent of GDP in 174 

tourism (using logs to improve normality). These are potential indicators of investment in and/or 175 

success of vector control and infrastructure improvements that prevent transmission. By 176 

comparing models that included the R0(T) metric alone, socioeconomic factors alone, or both, we 177 

tested whether R0(T) was an important predictor of observed transmission occurrence and 178 

incidence (see Table S4). We used both in-sample and out-of-sample analyses to assess the fit of 179 

each model, focusing on whether or not the R0(T) metric was included in each of the best models. 180 

For the probability of autochthonous transmission occurring, the model that included both 181 

the R0(T) predictor and socioeconomic predictors had overwhelming support based on Bayesian 182 

Information Criterion (BIC; model PA5 relative probability = 1, Table S4). Based on deviance 183 

explained, the models that included R0(T), with or without the socioeconomic predictors out-184 

performed the model that did not include R0(T) (Table S4; Figs. 3A, S3). In analyses of out-of-185 

sample accuracy, models that included the R0(T) metric (with or without the socioeconomic 186 

factors) were surprisingly accurate. They predicted the probability of transmission with 86-91% 187 

out-of-sample accuracy for DENV (Table S4). For CHIKV and ZIKV, models that included the 188 

R0(T) metric or population alone had 66-69% out-of-sample accuracy (Table S4). There were no 189 

significant differences in out-of-sample accuracy between the top four models but for both 190 

DENV and CHIKV/ZIKV the best model was significantly better than the worst model (see 191 

Supplementary Code for full results). The lower out-of-sample accuracy for CHIKV and ZIKV 192 
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likely reflects the much lower frequency of positive values and the lower total sample size of this 193 

dataset. All results were similar for a set of models that separated GR0 from population size, so 194 

for simplicity we show the model predictors that combines GR0 and population size here (see 195 

Table S4 and Supplementary Code for results of other models). Together, these analyses suggest 196 

that R0(T) is an important predictor of transmission occurrence, but that CHIKV and ZIKV need 197 

further data to better explain the probability of transmission occurrence (Figs. 3A, S3). 198 

 199 

Fig. 3. Ae. aegypti R0(T) and population size predict the probability and magnitude of 200 

transmission of DENV, CHIKV, and ZIKV across the Americas. A, log(p)*GR0 (the posterior 201 

probability that R0(T) > 0 times the log of population size) versus the probability of local 202 

transmission in the data. B, log(p*R0(T)) (log of R0(T) times the population size) versus the log 203 

of incidence, given that it exceeds the threshold for local transmission. Tick-marks and points: 204 

human transmission occurrence and incidence data, respectively, by country-week in the 205 

Americas and Caribbean. Lines and shaded areas: mean and 95% CI from GLM fits for DENV 206 

(blue) and CHIKV and ZIKV (red). For simplicity, we show the models that only include the 207 

covariates log(p)*GR0 or log(p*R0(T)), respectively, and do not include the socioeconomic 208 

covariates (models PA6 and IM4 in Table S4). For each case report data point, log(p)*GR0 and 209 

log(p*R0(T)) were calculated at the mean temperature 10 weeks prior to the reporting week (38). 210 

  211 

 R0(T) was also an important predictor of incidence, given that autochthonous 212 

transmission did occur. Within-sample, incidence was best predicted by the model that included 213 

both R0(T) and the socioeconomic predictors (model IM5 in Table S4) based on BIC (relative 214 

probability = 1). The models that included R0(T) out-performed those that did not based on 215 
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deviance explained (Table S4). In out-of-sample validation, the models that included R0(T) 216 

explained the magnitude of incidence based on mean absolute percentage error (85-86% 217 

accuracy versus 83% accuracy for models that did not include R0(T); Table S4), but this 218 

difference was not statistically significant. For illustration, we show the simpler model that only 219 

contains the R0(T) predictor in the main text (Fig. 3B; model IM1 in Table S4). Notably, the 220 

models that contained R0(T) predicted incidence well for all three viruses, despite the lower 221 

incidence of CHIKV and ZIKV.  222 

 The ability of the model to explain the probability and magnitude of transmission is 223 

notable given the coarse scale of the human incidence versus mean temperature data (i.e., 224 

country-scale means), the lack of CHIKV- and ZIKV-specific trait thermal response data to 225 

inform the model, the nonlinear relationship between transmission and incidence, and all the 226 

well-documented factors other than temperature that influence transmission. Together, these 227 

analyses show simple mechanistic models parameterized with laboratory data on the two 228 

mosquito species and dengue virus are consistent with observed temperature suitability for 229 

transmission. Moreover, the similar responses of human incidence of ZIKV, CHIKV, and DENV 230 

to temperature suggest that the thermal ecology of their shared mosquito vectors is a key 231 

determinant of outbreak location, timing, and intensity. 232 

 233 

Mapping climate suitability for transmission 234 

The validated model can be used to predict where transmission is not excluded (posterior 235 

probability that R0(T) > 0, a conservative estimate of transmission risk). Considering the number 236 

of months per year at which mean temperatures do not prevent transmission, large areas of 237 

tropical and subtropical regions, including Puerto Rico and parts of Florida and Texas, are 238 
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currently suitable year-round or seasonally (Fig. 4). These regions are fundamentally at risk for 239 

DENV, CHIKV, ZIKV, and other Aedes arbovirus transmission during a substantial part of the 240 

year (Fig. 4). Indeed, DENV, CHIKV, and/or ZIKV local transmission has occurred in Texas, 241 

Florida, Hawaii, and Puerto Rico (www.cdc.gov). On the other hand, many temperate regions 242 

experience temperatures suitable for transmission three months or less per year (Fig. 4), and the 243 

virus incubation periods in humans and mosquitoes restrict the transmission window even 244 

further. Temperature thus limits the potential for the viruses to generate extensive epidemics in 245 

temperate areas even where the vectors are present. Moreover, many temperate regions with 246 

seasonally suitable temperatures currently lack Ae. aegypti and Ae. albopictus mosquitoes, 247 

making vector transmission impossible (Fig. 4, black line). The posterior distribution of R0(T) 248 

also allows us to map months of risk with different degrees of uncertainty (e.g., 97.5%, 50%, and 249 

2.5% posterior probability that that R0 > 0), ranging from the most to least conservative (Fig. 250 

S5). 251 

 252 

Fig. 4. Map of predicted temperature suitability for virus transmission by Ae. albopictus and Ae. 253 

aegypti. Color indicates the consecutive months in which temperature is permissive for 254 

transmission (predicted R0 > 0) for Aedes spp. transmission based on the minimum likely range 255 

(> 97.5% posterior probability that R0 > 0). Black line indicates the CDC estimated range for the 256 

two Aedes spp. in the United States. Model suitability predictions combine temperature mean 257 

and 8°C daily variation and are informed by laboratory data (Figs. 1, S1) and validated against 258 

field data (Fig. 3). 259 

 260 

Discussion 261 
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Temperature is an important driver of—and limitation on—vector transmission, so 262 

accurately describing the temperature range and optimum for transmission of DENV, CHIKV, 263 

and ZIKV is critical for predicting their geographic and seasonal patterns of spread. We directly 264 

estimated the temperature – transmission relationship using mechanistic transmission models for 265 

each mosquito species (Fig. 2). These models are built using empirical estimates of the 266 

(unimodal) effects of temperature on mosquito and pathogen traits that drive transmission, 267 

including survival, development, reproduction, and biting rates (Figs. 1, S1). Because these trait 268 

thermal responses are unimodal across the majority of ectotherm taxa and traits, and because the 269 

traits combine nonlinearly to drive transmission, the emergent relationship between temperature 270 

and transmission is difficult to infer directly from field data or from individual trait responses. 271 

Here, we present a model of temperature-dependent DENV, CHIKV, and ZIKV transmission 272 

that advances on previous models because it is mechanistic, fitted from experimental trait data, 273 

and validated against human case data at a broad geographic scale (Fig. 3). This mechanistic 274 

understanding is valuable for extrapolating beyond the current spatial and temporal range of 275 

transmission (Fig. 4). Of the four previous mechanistic temperature-dependent Ae. aegypti 276 

DENV or CHIKV transmission models we were able to reproduce, our model has a similar 277 

optimum but higher critical thermal maximum than two of the models (39,40), and declines 278 

much more steeply at high temperatures than two other models (7,9) (Fig. S6).  279 

Even though the thermal response data are imperfect—for example, CHIKV and ZIKV 280 

thermal response data are missing—and the human case data are reported at a coarse spatial 281 

scale, the validation analyses suggest that R0(T) is an important predictor of both the probability 282 

of transmission occurring and the magnitude of incidence for DENV, CHIKV, and ZIKV. This 283 

has several key implications. First, temperature-dependent transmission is pervasive enough to 284 
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be detected at a coarse spatial scale. Second, dynamics of the mosquito predict transmission for a 285 

suite of Ae. aegypti-transmitted viruses, without additional virus-specific information. Third, 286 

climate and socio-economic factors combine to shape variation in incidence across countries. 287 

Finally, these simple predictors explain a substantial proportion of the variance in both the 288 

probability and intensity of transmission. 289 

Predicting arbovirus transmission at a higher spatial resolution and precision will require 290 

more detailed information on factors like the exposure and susceptibility of human populations, 291 

environmental variation (e.g., oviposition habitat availability, seasonal and daily temperature 292 

variation), and socioeconomic factors. However, as a first step our mechanistic model provides 293 

valuable insight because it makes broad predictions about suitable environmental conditions for 294 

transmission, it is mechanistic and grounded in experimental trait data, it is validated against 295 

human case data, and its predictions are applicable across three different viruses. Using these 296 

thermal response models as a scaffold, additional drivers could be incorporated to obtain more 297 

precise and specific predictions about transmission dynamics, which could in turn be used for 298 

public health and vector control applications. For this purpose, all code and data used in the 299 

models are available as Supplementary Files. 300 

The socio-ecological conditions that enabled CHIKV, ZIKV, and DENV to become the 301 

three most important emerging vector-borne diseases in the Americas make the emergence of 302 

additional Aedes-transmitted viruses likely (potentially including Rift Valley fever, yellow fever, 303 

Uganda S, or Ross River viruses). Efforts to extrapolate and to map temperature suitability (Fig. 304 

4) will be critical for improving management of both ongoing and future emerging epidemics. 305 

Mechanistic models like the one presented here are useful for extrapolating the potential 306 

geographic range of transmission beyond the current envelope of environmental conditions in 307 
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which transmission occurs (e.g., under climate change and for newly invading pathogens). 308 

Accurately estimating temperature-driven transmission risk in both highly suitable and marginal 309 

regions is critical for predicting and responding to future outbreaks of these and other Aedes-310 

transmitted viruses. 311 

Materials and Methods 312 

Temperature-sensitive R0 models 313 

We constructed temperature-dependent models of transmission using a previously 314 

developed R0 framework. We modeled transmission rate as the basic reproduction rate, R0—the 315 

number of secondary infections that would originate from a single infected individual introduced 316 

to a fully susceptible population. In previous work on malaria, we adapted a commonly used 317 

expression for R0 for vector transmission to include the temperature-sensitive traits that drive 318 

mosquito population density (11): 319 

𝑅" 𝑇 = % & '	) & 	* & 	+,- . /012 . 	345 & 	678 & 	95: &
;	<	= & >

?/@
    (1) 320 

Here, (T) indicates that the trait is a function of temperature, T; a is the per-mosquito biting rate, 321 

b is the proportion of infectious bites that infect susceptible humans, c is the proportion of bites 322 

on infected humans that infect previously uninfected mosquitoes (i.e., b*c = vector competence), 323 

µ is the adult mosquito mortality rate (lifespan, lf = 1/µ), PDR is the parasite development rate 324 

(i.e., the inverse of the extrinsic incubation period, the time required between a mosquito biting 325 

an infected host and becoming infectious), EFD is the number of eggs produced per female 326 

mosquito per day, pEA is the mosquito egg-to-adult survival probability, MDR is the mosquito 327 

immature development rate (i.e., the inverse of the egg-to-adult development time), N is the 328 

density of humans, and r is the human recovery rate. For each temperature-sensitive trait in each 329 
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mosquito species, we fit either symmetric (Quadratic, -c(T – T0)(T – Tm)) or asymmetric (Brière, 330 

cT(T – T0)(Tm – T)1/2) unimodal thermal response models to the available empirical data (41). In 331 

both functions, T0 and Tm are respectively the minimum and maximum temperature for 332 

transmission, and c is a positive rate constant.  333 

We consider a relativized version of the R0 equation because absolute values of R0 334 

depend on additional factors not captured in our model. Therefore, R0 > 0 is an absolute 335 

threshold for whether or not transmission is possible, but the model does not predict when 336 

transmission is stable (i.e., absolute R0 > 1). While absolute estimates of R0 are difficult to obtain 337 

and different model formulations can produce different results, our use of relative R0 adequately 338 

describes the nonlinear relationship between mosquito and virus traits and transmission. 339 

Different expressions for R0, including the square of equation (1), map monotonically onto our 340 

function, so they produce identical estimates for the points at which transmission declines to zero 341 

and peaks. 342 

We fit the trait thermal responses in equation (1) based on an exhaustive search of 343 

published laboratory studies that fulfilled the criterion of measuring a trait at three or more 344 

constant temperatures, ideally capturing both the rise and the fall of each unimodal curve (Tables 345 

S1-S2). Constant-temperature laboratory conditions are required to isolate the direct effect of 346 

temperature from confounding factors in the field and to provide a baseline for estimating the 347 

effects of temperature variation through rate summation (42). We attempted to obtain raw data 348 

from each study, but if they were not available we collected data by hand from tables or digitized 349 

data from figures using WebPlotDigitizer (43). We obtained raw data from Delatte (18) and Alto 350 

(20) for the Ae. albopictus egg-to-adult survival probability (pEA), mosquito development rate 351 

(MDR), gonotrophic cycle duration (GCD, which we assumed was equal to the inverse of the 352 
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biting rate) and total fecundity (TFD) (Table S2). Data did not meet the inclusion criterion for 353 

CHIKV or ZIKV vector competence (b, c) or extrinsic incubation period (EIP) in either Ae. 354 

albopictus or Ae. aegypti. Instead, we used DENV EIP and vector competence data, combined 355 

with sensitivity analyses.  356 

Following Johnson et al. (44), we fit a thermal response for each trait using Bayesian 357 

models. We first fit Bayesian models for each trait thermal response using uninformative priors 358 

(T0 ~ Uniform (0, 24), Tm ~ Uniform (25, 45), c ~ Gamma (1, 10) for Brière and c ~ Gamma (1, 359 

1) for Quadratic fits) chosen to restrict each parameter to its biologically realistic range (i.e., T0 < 360 

Tm and we assumed that temperatures below 0°C and above 45°C were lethal). Any negative 361 

values for all thermal response functions were truncated at zero, and thermal responses for 362 

probabilities (pEA, b, and c) were also truncated at one. We modeled the observed data as arising 363 

from a normal distribution with the mean predicted by the thermal response function calculated 364 

at the observed temperature, and the precision τ, (τ = 1/σ), distributed as τ ~ Gamma (0.0001, 365 

00001). We fit the models using Markov Chain Monte Carlo (MCMC) sampling in JAGS, using 366 

the R (45) package rjags (46). For each thermal response, we ran five MCMC chains with a 367 

5000-step burn-in and saved the subsequent 5000 steps. We thinned the posterior samples by 368 

saving every fifth sample and used the samples to calculate R0 from 15-40°C, producing a 369 

posterior distribution of R0 versus temperature. We summarized the relationship between 370 

temperature and each trait or overall R0 by calculating the mean and 95% highest posterior 371 

density interval (HPD interval; a type of credible interval that includes the smallest continuous 372 

range containing 95% of the probability, as implemented in the coda package (47)) for each 373 

curve across temperatures. 374 
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We fit a second set of models for each mosquito species that used informative priors to 375 

reduce uncertainty in R0 versus temperature and in the trait thermal responses. In these models, 376 

we used Gamma-distributed priors for each parameter T0, Tm, c, and τ fit from an additional 377 

‘prior’ dataset of Aedes spp. trait data that did not meet the inclusion criteria for the primary 378 

dataset (Table S3). We found that these initial informative priors could have an overly strong 379 

influence on the posteriors, in some cases drawing the posterior distributions well away from the 380 

primary dataset, which was better controlled and met the inclusion criteria. We accounted for our 381 

lower confidence in this data set by increasing the variance in the informative priors, by 382 

multiplying all hyperparameters (i.e., the parameters of the Gamma distributions of priors for T0, 383 

Tm, and c) by a constant k to produce a distribution with the same mean but 1/k times larger 384 

variance. We chose the value of k based on our relative confidence in the prior versus main data. 385 

Thus we chose k = 0.5 for b, c, and PDR and k = 0.01 for lf. This is the main model presented in 386 

the text (Fig. 2). It is comparable to some but not all previous mechanistic models for Ae. aegypti 387 

and Ae. albopictus transmission (Fig. S6). Results of our main model, fit with informative priors, 388 

did not vary substantially from the model fit with uninformative priors (Figs. S7-S8). 389 

Effects of humidity on dengue R0 390 

Like temperature, humidity is expected to affect vector transmission via its effects on 391 

mosquito populations. Specifically, we expected humidity to affect egg-to-adult survival and 392 

adult survival. Using the methods described above, we extracted experimental laboratory data on 393 

these traits measured at a range of constant humidities in the laboratory. We searched for Aedes 394 

spp. survival probability data across temperature and humidity. We obtained data on Aedes 395 

aegypti egg hatching probability (48) and Anopheles gambiae lifespan (49), which we used in 396 

absence of Aedes spp. because they have a similar (tropical, anthrophilic) life history. We used 397 
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linear regression to estimate the relationship between these traits and relative humidity (%), 398 

plugged them into the R0(T) equation (assuming the probability of egg hatching and egg-to-adult 399 

survival have the same relationship with humidity), and plotted R0 versus temperature across a 400 

range of relative humidity values (Fig. S2). For the dataset that included variation in temperature 401 

and humidity independently, there was no interaction between the unimodal temperature 402 

response and the linear humidity response (i.e., humidity did not affect the relationship between 403 

lifespan and temperature) (49). The resulting relationship between R0 and relative humidity was 404 

exponential. Humidity is not included in the main models presented in the text. 405 

Incorporating daily temperature variation in transmission models 406 

Because organisms do not typically experience constant temperature environments in 407 

nature, we incorporated the effects of temperature variation on transmission by calculating a 408 

daily average R0 assuming a daily temperature range of 8°C, across a range of mean 409 

temperatures. This range is consistent with daily temperature variation in tropical and subtropical 410 

environments but lower than in most temperate environments. At each mean temperature, we 411 

used a Parton-Logan model to generate hourly temperatures and calculate each temperature-412 

sensitive trait on an hourly basis (50). We assumed an irreversible high-temperature threshold 413 

above which mosquitoes die and transmission is impossible (51,52). We set this threshold based 414 

on hourly temperatures exceeding the critical thermal maximum (Tm in Tables S1-S2) for egg-to-415 

adult survival or adult longevity by any amount for five hours or by 3°C for one hour. We 416 

averaged each trait over 24 hours to obtain a daily average trait value, which we used to calculate 417 

relative R0 across a range of mean temperatures. We used this model in the validation against 418 

human cases (Fig. 3) and the risk map (Fig. 4). 419 

Model validation with DENV, CHIKV, and ZIKV incidence data 420 
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To validate the model, we used data on human cases of DENV, CHIKV, and ZIKV at the 421 

country scale and mean temperature during the transmission window. Using statistical models 422 

(as described below), we estimated the effects of predicted R0(T) on the probability of local 423 

transmission and the magnitude of incidence, controlling for population size and several 424 

socioeconomic factors. We downloaded and manually entered Pan American Health 425 

Organization (PAHO) weekly case reports for DENV and CHIKV for all countries in the 426 

Americas (North, Central, and South America and the Caribbean Islands) from week 1 of 2014 427 

to week 8 of 2015 for CHIKV and from week 52 of 2013 to week 47 of 2015 for DENV 428 

(www.paho.org). ZIKV weekly case reports for reporting districts (e.g., provinces) within 429 

Colombia, Mexico, El Salvador, and the US Virgin Islands were available from the CDC 430 

Epidemic Prediction Initiative (https://github.com/cdcepi/) from November 28, 2015 to April 2, 431 

2016. We aggregated the ZIKV data into country-level weekly case reports to match the spatial 432 

resolution of the DENV, CHIKV, and covariate data.  433 

 434 

Temperature data collection 435 

We matched the DENV, CHIKV, and ZIKV incidence data with temperature using daily 436 

temperature data from METAR stations in each country, averaged at the country level by 437 

epidemic week. A previous study found a six-week lagged relationship between temperature and 438 

oviposition for Aedes aegypti in Ecuador (38). Assuming that the subsequent transmission, 439 

disease development, medical care-seeking, and case reporting in humans takes an additional 440 

four weeks, we assumed a priori a ten-week lag between temperature and incidence (i.e., mean 441 

temperature for the week that is ten weeks prior to each case report). METAR stations are 442 

internationally standardized weather reporting stations that report hourly temperature and 443 
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precipitation measures. Outlier weather stations were excluded if they reported a daily maximum 444 

temperature below 5°C or a daily minimum temperature above 40°C during the study period, 445 

extremes that would certainly eliminate the potential for transmission in a local area. Because 446 

case data are reported at the country level, we needed a collection of weather stations in each 447 

country that accurately represent weather conditions in the areas where transmission occurs, 448 

excluding extreme areas where transmission is unlikely. For the study period of October 1, 2013 449 

through April 30, 2016, we downloaded daily temperature data for each station from Weather 450 

Underground using the weatherData package in R (53). We removed all data from Chile because 451 

it spans so much latitude and the terrain is so diverse that its country-level mean is unlikely to be 452 

very representative of the temperature where an outbreak occurred.  453 

Socioeconomic covariate data 454 

 We accessed available data on projected 2016 gross domestic product (GDP) for 455 

countries of interest via the International Monetary Fund’s World Economic Outlook Database 456 

(http://www.imf.org/external/ns/cs.aspx?id=28). The direct and total contributions of tourism to 457 

GDP in 2016 were compiled from World Travel and Tourism Council economic impact reports 458 

(http://www.wttc.org/research/economic-research/economic-impact-analysis/country-459 

reports/#undefined). We retrieved population size data for 2013-2015 from the United Nations 460 

Population Division (https://esa.un.org/unpd/wpp/Download/Standard/Population/) and averaged 461 

them across the three years for each country. 462 

Validation analyses with human incidence versus temperature datasets 463 

To validate the R0(T) model while controlling for population and socio-economic factors, 464 

we used generalized linear regression on the weekly case count data. Importantly, we focused on 465 

testing whether the case counts were consistent with the transmission – temperature relationship 466 
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predicted from our model, rather than on maximizing the variation explained in the statistical 467 

model. We are more specifically interested in understanding autochthonous transmission (i.e., 468 

locally acquired, not just imported cases). We set country-level thresholds for the number of 469 

cases defining autochthonous transmission for our three diseases separately, based on current 470 

transmission understanding: seven cases of CHIKV, 70 cases of DENV, and three cases of 471 

ZIKV. The resulting data consisted of zeros for no transmission and positive case counts when 472 

transmission is presumed to be occurring. To model these data, we used a hurdle model that first 473 

uses logistic regression on the presence/absence of local transmission data to understand the 474 

factors correlated with local transmission occurring or not (PA analysis).  Then we modeled the 475 

log of incidence (number of new cases per reporting week) for positive values with a gamma 476 

generalized linear models (GLM; i.e., incidence analysis). 477 

We were interested in understanding whether R0(T) was an important predictor of human 478 

transmission occurrence and incidence, after controlling for potentially confounding factors like 479 

population size and socioeconomic conditions. To do this, we fit a series of models with different 480 

subsets of predictors that included R0(T), the socioeconomic variables with population, or both 481 

(see Table S4 for full models). To control for human population size, we created new metrics 482 

based on R0(T) and population size to use for validation against the PAHO incidence data. We 483 

define GR0, which is the posterior probability that R0(T) > 0. We use log(p)*GR0, where p is the 484 

population size, as the relevant R0-based predictor for the PA analysis. For the incidence 485 

analysis, we instead use log(p*R0(T)) as the predictor. In all cases log refers to the natural 486 

logarithm. For simplicity, we refer to these as the R0(T) metrics hereafter and in the Results. 487 

In both the PA and incidence analyses, we first used the full data sets to examine which 488 

of the candidate models best described the data. Randomized quantile residuals indicated that the 489 
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logistic and gamma GLM models were performing adequately. We compared the approximate 490 

model probabilities, calculated from the BIC scores, as well as the proportion of deviance 491 

explained (D2) from each model. Next we examined the performance of the models in predicting 492 

out of sample, for both PA and incidence analyses. To do this we created 1000 random 493 

partitions, where 90% of the data were used to train the model and 10% were used for testing. In 494 

the PA analyses we classified each partition based on presence/absence, with separate 495 

classification thresholds for DENV versus CHIKV/ZIKV as these grouping had much different 496 

probabilities of occurrence. We assessed the performance of the model for the PA analysis based 497 

on the mean misclassification rate. In the incidence analyses we assessed the model performance 498 

based on the predictive mean absolute percentage error (MAPE). Since differences in prediction 499 

success between the models in both the PA and incidence analyses were not statistically 500 

significant, we present the simpler models that only include the R0(T) metrics in the main text 501 

(Fig. 3) and the models that additionally include socioeconomic covariates in the Supplementary 502 

Information (Figs. S3-S4). We plotted the model predictions as a function of the R0(T) metrics 503 

together with the observed data for the PA and incidence analyses using the R package visreg 504 

(54).  505 

Mapping temperature suitability for transmission 506 

Using our validated model, we were interested in where the temperature was suitable for 507 

Ae. aegypti and/or Ae. albopictus transmission for some or all of the year to predict the potential 508 

geographic range of outbreaks in the Americas. We visualized the minimum, median, and 509 

maximum extent of transmission based on probability of occurrence thresholds from the R0 510 

models for both mosquitoes. We calculated the number of consecutive months in which the 511 

posterior probability of R0 > 0 exceeds a threshold of 0.025, 0.5, or 0.975 for both mosquito 512 
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species, representing the maximum, median, and minimum likely ranges, respectively. The 513 

minimum range is shown in Fig. 4 and all three ranges are overlaid in Fig. S5. This analysis 514 

indicates the predicted seasonality of temperature suitability for transmission geographically, but 515 

does not indicate its magnitude. To generate the maps, we cropped monthly mean temperature 516 

rasters from 1950-2000 for all twelve months (Worldclim; www.worldclim.org/) to the Americas 517 

(R, raster package, crop function) and assigned cells values of 1 or 0 depending on whether the 518 

probability that R0 > 0 exceeded the threshold at the temperatures in those cells (Table S3). We 519 

then synthesized the monthly grids into a single raster that reflected the maximum number of 520 

consecutive months where cell values equaled 1. The resulting rasters were plotted in ArcGIS 521 

10.3, overlaying the three cutoffs (Figure 3). We repeated this process for both mosquito species. 522 

 523 
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Figure 1 666 
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Figure 2 669 
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Figure 3 672 

 673 
  674 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 22, 2016. ; https://doi.org/10.1101/063735doi: bioRxiv preprint 

https://doi.org/10.1101/063735


 

 32 
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