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Abstract 
Our overall hypothesis is that host population immunity directed at multiple antigens will 

influence the prevalence, diversity and evolution of influenza A virus (IAV) in avian populations 

where the vast subtype diversity is maintained. To investigate how initial infection influences the 

outcome of later infections with homologous or heterologous IAV subtypes and how viruses 

interact through host immune responses; we carried out experimental infections in mallard ducks 

(Anas platyrhynchos). Mallards were pre-challenged with an H3N8 low-pathogenic IAV and 

were divided into six groups.  At five weeks post H3N8 inoculation, each group was challenged 

with a different IAV subtype or the same H3N8. Two additional pre-challenged groups were 

inoculated with the homologous H3N8 virus at weeks 11 and 15 after pre-challenge to evaluate 

the duration of protection, which showed that mallards were still resistant to re-infection after 15 

weeks. There was a significant reduction in shedding for all pre-challenged groups compared to 

controls and the outcome of the heterologous challenges varied according to hemagglutinin (HA) 

phylogenetic relatedness between the viruses used. There was a boost in the H3 antibody titer 

after re-infection with H4N5, which is consistent with original antigenic sin or antigenic 

seniority and suggest a putative strategy of virus evasion. These results imply strong competition 

between related subtypes that could regulate IAV subtype population dynamics in nature. 

Collectively, we provide new insights into within-host IAV complex interactions as drivers of 

IAV antigenic diversity that could allow the circulation of multiple subtypes in wild ducks. 

Author summary 

Many features of pathogen diversification remain poorly explored although host immunity is 

recognized as a major driver of pathogen evolution. Influenza A viruses (IAVs) can infect many 

avian and mammalian hosts, but while few IAV subtypes circulate in human populations, 

subtype diversity is extensive in wild bird populations. How do these subtypes coexist in wild 

avian populations and do they compete within these natural host populations?   Here we 

experimentally challenged mallard ducks with different IAVs to study how an initial infection 

with H3N8 determines the outcome of later infections (duration of infection and virus load) and 

antibody responses. There was complete protection to re-infection with the same H3N8 virus 

based on virus isolation. In addition, there was partial protection induced by H3N8 pre-challenge 
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to other subtypes and development of heterosubtypic immunity indicated by shorter infections 

and reduction in viral load compared to controls. This indicates that subtype dynamics in the host 

population are not independent. Amongst H3N8 pre-challenged groups, the highest protection 

was conferred to the H4N5 subtype which was most genetically related to H3N8. The H4N5 

challenge also induced an increase in H3 antibody levels and evidence for antigenic seniority. 

Thus, previous infections with IAV can influence the outcome of subsequent infection with 

different IAV subtypes. Results not only have relevance to understanding naturally occurring 

subtype diversity in wild avian populations but also in understanding potential outcomes 

associated with introduction of novel viruses such as highly pathogenic IAV H5 viruses in wild 

bird populations.  
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Introduction 
Diversification is a common feature in pathogen populations and this often involves the 

evolution of antigenic variants (1).  Examples of this exist in various pathogen systems: viruses 

(influenza A virus, Dengue virus, Bluetongue virus, and rotaviruses), bacteria (Borrelia spp , 

Neisseria meningitis, Pneumococcus) and protozoan parasites (Plasmodium spp.  and 

trypanosomes).   Antigenic variation within specific hemagglutinin (HA) and neuraminidase 

(NA) subtypes is well described with influenza A viruses (IAV) as this is an important 

consideration in developing vaccines and vaccination strategies associated with seasonal 

influenza viruses in humans and IAV affecting domestic livestock and poultry.  Though multiple 

IAV subtypes circulate in these host systems, antigenic interactions between these subtypes are 

equally important but less understood.  Shared epitopes between different HA subtypes 

associated with the HA stalk have been described and these may be important target epitopes for 

universal IAV vaccines.  Immunity to these shared epitopes also may provide partial protection 

in subsequent infections with heterologous IAV and could potentially influence clinical outcome 

and regulate subtype diversity in host populations through competition (2).    

 IAV have the capacity to infect many different hosts, from birds to mammals, however the vast 

majority of influenza subtype diversity is found in wild birds, especially waterfowl, gull, and 

shorebird populations where low-pathogenic IAV (LPIAV) representing 16 HA and 9 NA 

subtypes are maintained (3).   In these wild bird populations, IAV subtypes can be represented in 

many HA/NA combinations. Many subtypes co-circulate at the same time and same location (4-

6).  In addition, individual birds are often co-infected or sequentially infected with multiple IAV 

subtypes in a given season or year (7, 8)  

Experimental infections have demonstrated that initial infection with a specific IAV induces 

immune responses and protection against infection with homologous strains (9). Additionally, 

initial infections with a virus could induce partial protection to heterologous subtypes in 

experimental settings (9-12) and several studies have shown that LPIAV pre-exposure protects 

against a lethal highly pathogenic IAV (HPIAV) challenge (10, 13, 14). Naturally infected 

mallards (Anas platyrhynchos) in the wild also exhibit patterns of re-infections indicating 

heterosubtypic cross-immunity (8). Despite these observations little is known about the 
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mechanisms, extent, and persistence of these responses and the outcomes of re-exposures that 

have critical significance to understanding the maintenance of IAV antigenic diversity. 

In this study, mallards were pre-challenged with a strain of H3N8 LPIAV, a common subtype in 

waterfowl, and pre-challenged ducks were subsequently re-challenged with the same strain 

(homologous challenge) or with different strains representing various subtypes (heterologous 

challenges). Groups of ducks in the homologous challenge were exposed at different time 

intervals to evaluate  long-term antibody responses and potential protection. The different strains 

used in the re-challenge represented a gradient in the degree of phylogenetic relatedness between 

the HA.  

The objective of the present study was to experimentally mimic re-infections that commonly 

occur in mallards and other ducks in nature to determine the effects on susceptibility, duration 

and intensity of viral shedding and to characterize the humoral immune response. 

Results 

Variation in Virus Load and Duration of shedding  

Homologous challenge 

Individuals were initially inoculated at 4 week of age of with LPIAV H3N8 (pre-challenge) and 

all were susceptible to infection and shed virus. Study design can be found as supporting 

information (S1 Table). Virus replication occurred in all the control groups for the H3N8 re-

challenge where Ct-values from the matrix RRT-PCR were lowest in cloacal (CL) samples at 2 

dpi, indicating a peak in virus load/shedding; Ct-values increased over time (Fig 1). None of the 

swabs from H3 pre-challenged groups were positive by virus isolation after the homologous re-

challenge; however some swabs tested positive by matrix RRT-PCR (Fig 1- 12, 3, and 4 positive 

samples in the 5, 11, and 15 week re-challenge groups, respectively).  In all cases (5-, 11-, and 

15-week re-challenge), Ct-values were higher in pre-challenged birds than in controls indicating 

that pre-challenged birds shed fewer virus copies than naïve birds when challenged with the 

same strain. The variation in Ct-Values between groups was evaluated using linear mixed models 

as described later in the methods section. The best models (S2 and S4 Tables) for the groups 5 

and 15 weeks post-challenge included dpi, group and the interaction indicating that the rate of 
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clearance was different for the different groups (a different slope per group). For the group re-

challenged after 11 weeks the best model included dpi and group (S3 Table). In all groups 

oropharyngeal (OP) shedding was generally lower than CL shedding (S1 Fig).   Individuals did 

not show symptoms of disease and all gained weigh throughout the trial. 

 

Fig 1. Pre-challenge reduces viral shedding in homologous challenge. Patterns of CL shedding in 

pre-challenged and control groups for different age and time intervals at re-challenge. The panels 

show the variation in Ct-values (mean Ct-values per group, no data points indicate negative 

RRT-PCR, lines are drawn between days with consecutive positive results) for the different 

groups: 5 weeks, 11 weeks, 15 weeks intervals between H3N8 homologous infections. 

Continuous lines and circles indicate the control groups and dashed lines with filled dots indicate 

the H3N8 pre-challenged groups. This means that pre-challenge induced protection and 

suppresses CL shedding. 

Based on comparisons of viral shedding of H3N8 during primary challenge (H3 pre-

challenge and control groups) younger individuals (4 and 9 weeks of age) had lower Ct-values 

(higher viral shedding) than older individuals (Fig 2) and duration of infection was shorter for 

older birds. Based on the best model by AICc, there were significant differences in Ct-values 

based on dpi and age group (S5 Table). The mean duration of infection for H3N8 in controls was 

4.8 to 8.4 days (primary infections) (Fig 3) and there was a significant difference reduction in the 

duration of infection in older birds (p-value = 0.02).    
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Fig 2. H3N8 CL viral shedding for the different age groups. Graph shows the variation in Ct-

values for the different age groups: grey lines are 4 weeks of age, green are 9 weeks, blue are 15 

weeks and black are ducks at 19 weeks of age. A) Cloacal and b) Oropharyngeal shedding. 
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Fig 3. Duration of shedding for H3N8 homologous challenge groups and controls. Pre-exposure 

protects against homologous re-challenge in all groups based on virus isolation from CL 

samples. Duration of infection is reduced in older age groups. 

Heterologous challenge: subtype interaction  

All birds in the H3N8 pre-challenge were susceptible to infection and all were negative by virus 

isolation on CL swabs on 21 and 35 dpi, prior to transfer to poultry isolators for the re-challenge 

trial. All viruses replicated in control birds as detected by virus isolation and RRT-PCR, except 

for the H12N5 strain (therefore data from the H12N5 groups could not be used for comparison, 

results for this group are shown in S2 Fig).  For the H4N5, H10N7 and H6N2 viruses, Ct-values 

in H3 pre-challenged groups were higher than in the control groups indicating a reduction in 

virus replication and partial protection compared to controls (Fig 4). Ct-values from naïve 

(control) and pre-challenged ducks were evaluated using mixed models. There were significant 

differences in Ct-values between the pre-challenged group H3N8 x H4N5 group and the H4N5 

controls and best models included dpi, group and the interaction between dpi and group, which 

means a difference in clearance rate for the different groups (S6 Table).  For the H3N8 x H10N7 

and H3N8 x H6N2 groups, the best models indicated significant differences in Ct-values when 

compared with their respective controls and both dpi and group were significant (S7-S8 Tables). 

Summaries of the model selection (AICc) and significance values are provided as supplementary 

material (S6-S8 Tables). If differences in Ct-values from pre-challenged and controls are 

translated into “log” (as a difference of 3.3 Ct-values is equivalent to one log) the reduction in 

shedding ranges between 0.7 and 4.75 logs depending on the groups.  
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Fig 4. Pre-challenge reduces cloacal (CL) viral shedding after heterologous challenge. Birds 

were pre-challenged (dashed lines) or not (solid lines) with H3N8 and challenged with different 

LPIAV viruses/strains.   CL shedding showing the variation in Ct-values for the different 

heterologous challenge groups:  H4N5, H10N7, H6N2. Continuous lines and circles indicate the 

control groups and discontinuous lines indicate the H3N8 pre-challenged groups.  

Mean duration of infection (as determined by detectable viral shedding) in the control groups at 

9 weeks of age was 8 days (sd 2.90) (range 7 - 8.8 days) while in the pre-challenged groups the 

mean duration of shedding was 2.6 days (sd 2.75) ranging from 0 days in the homologous 

challenge to 2.4 days for H3N8 x H4N5 group with only two individual birds infected (two CL 

samples), to 3.6 days for the H3 x H10 group where all individuals were  infected (9 CL isolates 

recovered), and 5 days for H3N8 x H6N2 group where  individuals were also infected (9 CL 

isolates). There were no differences in the duration of shedding between the different subtypes 

(p-value = 0.83) on the naïve control groups. There were significant differences in the duration 

of infection between pre-challenged groups (p-value = 0.034) (Fig 5). 
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Fig 5. Pre-exposure reduces the duration of shedding. Duration of infection for viruses used in 

heterologous challenge (based on virus isolation for CL samples): A) controls and B) H3N8 pre-

challenged groups. 

To test if genetic distance between HA subtypes was an important determinant in the strength of 

protection the relationship between HA amino acid sequences and reduction of infection was 

evaluated. There was a negative correlation between the amino acid distance and the reduction in 

duration of infection per group (R2= 0.94, ranging from 100% to 29% depending on the subtype 

in the re-challenge) (Fig 6).  

 

Fig 6. Correlation between amino acid distance between HA in infections and the reduction in 

the duration of infection (days).  

Infectivity: Variation in Ct-values and virus isolation  

We evaluated the factors that influenced isolation success of RRT-PCR positive samples and 

found that there was a significant negative relationship between isolation and Ct-values. As 

anticipated, samples with high Ct-values tended to have a lower isolation success that those with 

low Ct-values (high number of viral RNA copies). Remarkably both the H3N8 pre-challenge 

treatment (whether samples derived from primary or secondary infections) and dpi were 

significant in the model. This indicates that the probability of detecting IAV in RRT-PCR 

positive samples by virus isolation varies related to infection history and the duration of 

infection.  This was not dependent on sample type (CL or OP) (S9 Table).   
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Serology: 

Long-term Persistence of antibodies in the Homologous challenge 

All individuals were seronegative prior to infection and seroconverted as measured by NP-

ELISA on 14 dpi after pre-challenge and all but one also had H3 specific antibodies as measured 

by MN using the homologous antigen. NP-antibodies and H3 specific antibodies were detectable 

5 weeks after initial H3N8 infection. There was no boost in the H3 antibody response in the 5 

week interval group (p-value = 0.326). For the 11 and 15 week challenge groups, there was a 

slight decrease in antibody titer over time with a boost bothin the NP and H3 specific antibody 

responses following re-challenge (11 weeks, p-value = 0.003; 15 weeks p-value = 0.032) (Fig 7, 

panels a) and c)). 
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Fig 7. Antibody dynamics for the H3N8 homologous (panels a and c) and heterologous 

challenges (panels b and d). Data points indicate the average per group over time. Arrows 

indicate the timing of re-challenge for the different groups. The different colors indicate groups 

pre-challenged with H3N8 (green is the group re-challenged after a 5 weeks interval, blue are 11 

weeks and black are at 15 weeks). The different colors indicate the different challenge groups: 

the groups challenged with H4N5 are light blue, H10N7 in orange, H6N2 in red, H12N5 in dark 

green and  H3N8 (homologous challenge for reference) are green. Continuous lines are for 

controls and dashed for H3N8 pre-challenged., a) and b) NP-ELISA ratios levels (expressed here 

as one minus the ratio) c) and d) H3 response by MN (log2 transformed titers) over time. 

 

Antibody responses to heterologous challenge 

All individuals tested seronegative by NP-ELISA prior to infection. Individuals pre-challenged 

with H3N8 seroconverted on both NP-ELISA and H3 MN by 14 dpi. Based on the NP-ELISA 

response there was an increase in S/N ratios in all groups after the secondary challenge including 

the group challenged with H12N5  (Fig 7, panel b). There were no differences in H3 MN titers 

between groups of birds assigned to the different heterologous groups after initial H3N8 

infection (p= 0.261, 14 dpi) and prior to secondary infection (p= 0.242, 35 dpi).  An increase in 

the H3 MN titer was observed in the H3N8 x H4N5 challenge group (p-value = 0.200) (Fig 7, S9 

Table); antibodies to H4 were also detected (Fig 8). Similarly the group H3N8 x H10N7 showed 

a slight increase in the H3 MN titer.  To evaluate the variation in H3 MN titers between H3 pre-

challenged groups and the influence of time (i.e. prior to and after re-challenge) we used mixed 

models. The best model included the effect of dpi (S10 Table). All groups and most individuals 

developed detectable antibodies against the challenge viruses used in secondary challenges (Fig 

7). MN results from sera collected at the termination of the experiment using a panel of H1-H15 

prototype strains are shown in Figure 8. Most individuals had antibodies specific to the HA 

subtypes they were challenged with however, one sample MN positive to H1N1 was observed in 

the homologous group (5 weeks interval).  
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Fig 8. Heat map indicating virus neutralization profiles after secondary infection against a 

complete panel of H1-H12 and H14-H15 antigens for the different treatments (only antigens with 

positive MN included). Colored boxes indicate the titers based on the legend. The challenge 

groups are indicated on the horizontal axis while the vertical axis indicates the antigens used in 

the neutralizations and their phylogenetic relationships. The homologous challenge 5 weeks 

interval is indicated by a *, 11 weeks by § and 15 weeks interval by &. 

Discussion 
Many IAV HA/NA subtype combinations coexist in duck, gull and shorebird populations and it 

is notable that their abundance and relative diversity varies over time and space (4-6). What 

determines whether a particular virus is more common than others? Is one subtype driving the 

abundance of other subtypes? How are subtypes interacting in the mallard-IAV system? 

Pathogen fitness or success is usually measured by transmission risk that could be based on 

different transmission parameters such as the duration of infection and pathogen load (15) as 

well as how long viruses could remain infectious in the environment (16, 17). Another important 

parameter is the development of protective immune responses characterized by the strength, 

specificity, duration, and potential response to subsequent exposures (25). Protective responses 
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may be especially important in multi-strain/subtype pathogen systems such as occurs with IAV 

and ducks.   

Homologous challenge 

Here, we studied the persistence of protection to homologous IAV challenge by initially 

infecting mallards with H3N8 and re-challenging three groups with the same virus at different 

time intervals.  The initial H3N8 induced long-term protection against homologous re-infection 

for up to 15 weeks post-challenge which is much longer than expected. None of the re-

challenged birds, regardless of time interval, shed virus as determined by virus isolation and that 

was true for all age groups and time intervals. Although some RRT-PCR positives were detected 

in re-challenged individuals, the Ct-values were significantly higher than in control groups 

indicating a low number of RNA copies possibly associated with non-infective virus. The 

observed protection and detectable antibody response is inconsistent with results from previous 

studies that concluded that infection conferred no protection against re-infection and that 

detectable antibody responses in ducks were short-lived (18, 19). It was considered that antibody 

responses may not be detectable or protective due to the truncated structure of the IgY. A 

possible explanation of this inconsistency is that these truncated antibodies neutralize IAV but 

lack HI activity (20). Our results are in agreement with other studies in both ducks and gulls that 

reported partial to complete protection against re-infection depending on the viruses, time 

between infections, host species and age and detection method (9, 21, 22).  The long-term 

persistence of antibodies after natural infection, artificial challenge or vaccination has been 

reported in captive birds up to 6 to 9 months post-exposure (23-25) though it is not know which 

parameters (i.e. HI or MN titers) are correlated to protection. When examining patterns in H3N8 

infections for the different age classes in the naïve controls all individuals were susceptible and 

competent to infection. The duration of infection and viral load in controls varied according to 

age. This is indicative of a different degree of exploitation, consistent with earlier findings (26), 

and that could also influence subsequent transmission risk and subtype diversity in cases were 

subtypes display a seasonal pattern.  

Heterologous challenge 

Results from IAV heterologous challenge experiments of ducks, geese and gulls have reported 

varying levels of partial protection upon re-challenge (11, 29, 30, 35). Such protection has also 
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been reported from field-based studies (8, 27) and from experimental work where birds were 

challenged with HPIAV and effects could be measured by morbidity/mortality responses(10, 13). 

It has also been reported that the order in which IAV subtypes are used to challenge the host is 

important. For instance, H3 appears to be poorly immunogenic and less protective as a primary 

infection compared to H4 that induced a stronger protective response (12). The variation in 

reported protection from previous studies may be the result of asymmetric responses associated 

with strain or subtype specific variation that may be dependent on the virus causing primary 

infections (11, 12, 28).  

We observed a partial protection to re-challenge in the individuals subsequently infected with 

heterologous subtypes indicating development of heterosubtypic cross-immunity by H3N8. 

When assessing the outcome of re-challenge there was a significantly lower viral load and 

shorter duration of infection in CL samples for all the groups pre-challenged with H3N8 

compared to the naïve controls. This shorter period of detectable viral shedding is in agreement 

with estimates from the field (29, 30) and was observed for all re-challenged viruses.  

The extent of partial protection, as measured by a decrease in duration of detectable viral 

shedding following re-infection was influenced by the genetic relatedness of the HA. This 

suggests immune mediated competition trough cross-reactive responses (31, 32) and this could 

be related to both acquired humoral and cell mediated mechanisms (33). Broadly neutralizing 

antibodies have been defined across HA groups (34) and within HA group (35, 36) that are 

targeting conserved epitopes in the stalk (37, 38). Stalk antibodies are boosted upon re-infection 

and is it therefore thought that cross-reactive anti-stalk as well as anti-NA antibodies (39) can 

diminish the severity of the disease in re-infections. Studies in humans have found consistent 

patterns of cross-immunity within HA group with increased severity of the disease in cohorts 

exposed with an HA of the opposite group during childhood when studying age-specific 

mortality caused by 1918 H1N1 and by HPIAV H5 and H7 (40, 41).  It has been proposed that 

extinction of influenza strains in humans could be driven by population immunity by stalk and 

NA antibodies (39) through competitive exclusion between strains (2). Moreover, initial 

infections with a specific virus increases the probability of later infections by viruses from a 

different HA clade and group in wild mallards (8). Comparable processes are likely acting in the 

avian IAV system where lineage replacement with strains from different continents has been 
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reported (42, 43). Theory predicts that antigenic variants tend to organize as discrete non-

overlapping strains (1) in populations where cross-reactivity between viruses induces 

competition (i.e. case of H13 and H16) contrasting to the situation where cross-reactivity induces 

enhancement or facilitation, like Dengue, and variants may be antigenically clustered (44).  

Ducks after the heterologous re-challenge shed viruses even if they were able to clear infections 

rapidly. An implication of that is the potential for selective processes like viral escape and 

antigenic drift to act in the same way as leaky vaccines (45, 46). For instance, that in turn would 

be driving antigenic evolution as observed for H5N1 HPIAV (47) or similarly for seasonal H3N2 

in humans (48). Indeed, the estimates of divergence for some HA subtype indicate that 

divergence is relatively recent (40).  

Infectivity 

Isolation success from RRT-PCR positive samples from secondary infections (re-challenge), as 

expected, was correlated with Ct-value, but was significantly lower compared to isolation results 

from primary infections in controls. This discrepancy has implications when interpreting field 

data based on molecular diagnostics rather than virus isolation and may explain why isolation 

rates from PCR positive samples often vary. This relationship also corroborates findings from the 

field where samples from adults have a lower isolation success than samples from juveniles (49) 

and where RRT-PCR positive samples used in experimental trials have not infected ducks (50). 

Therefore we propose caution when using transformations of Ct-values (proxy for RNA copies) 

to EID50/ml or TCID50/ml by a standard curve based on a virus grown at optimal conditions such 

as cell culture or embryonated eggs as infectivity in hosts varies according to several parameters 

(age of host, previous exposure, specific virus and infection dose…).  

Antibody dynamics  
Antibody levels (NP and H3 MN), after H3N8 infection, decreased over time but most 

individuals remained positive for the duration of the experiment (15 weeks); all birds remained 

protected against homologous challenge. There was a substantial boost in the antibody responses 

after homologous challenge for the long-term groups (11 and 15 weeks) but not for the group re-

infected after 5 weeks where a rapid blocking of the infection may not have activated antibody 

recall. Additionally, the hyperimmune sera after homologous challenge did not cross-react with 

other IAV subtypes, except for one individual positive by H1 at a low titer of 20. 
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The heterologous re-infections resulted in a boost in the NP-antibody responses in all H3 pre-

challenged groups. Interestingly most of the individuals had neutralizing antibodies against the 

HA antigens they had been exposed to. This also includes the H12N5 that replicated poorly but 

resulted in serological imprinting in three of the five individuals per group. Additionally no 

cross-reactivity to other subtypes was observed when tested by MN with a panel of HA (H1-H12 

and H14-H15).  H3-specific antibodies were detected by MN after H3N8 primary infection and 

persisted in the majority of individuals until the end of the experiment. There were interesting H3 

antibody dynamics patterns for the H3N8 X H4N5 group that showed a boost in H3 titer (Fig 8) 

consistent with original antigenic sin (OAS); H4 antibodies were also detected in this challenge 

group (Fig 9). This phenomenon of interference was first described after sequential influenza re-

infections in humans (51, 52). Older individuals can have a broader immunity through repeated 

exposure with highest titers to the strains individuals were exposed to early in life that are 

“senior strains”, a singularity known as antigenic seniority or imprinting (40, 53). Currently, we 

report OAS in avian hosts and between different HA subtypes (H3/H4 and possibly for H3/H10), 

however we expect that phenomenon could also arise between other IAV subtypes. Thus the 

order in which individuals are challenged with a specific virus influences the future recognition 

of viruses and the specificity of the responses that ultimately shapes the outcome of later 

exposures in life. Since population immunity influences the emergence and spread of new strains 

and can influence vaccination success, it is critical to have a better understanding of these 

processes in different host species. We need to increase our understanding of cross-reactivity 

patterns and boosting dynamics in re-infections to ultimately predict risks of IAV spread into 

different host populations in a context of non-naïve populations for instance using antibody 

landscapes (54).  

The high degree of heterosubtypic immunity and subsequent competition found between 

common HA subtypes from ducks indicates that perpetuation of any subtype is dependent on the 

other viruses in the population and may explain the cyclic or chaotic nature in the prevalence of 

some subtypes. Partial immunity or complete immunity induced by pre-infection may reduce 

transmission potential in subsequent infections but also may promote the high degree of IAV 

antigenic diversity observed in wild avian populations. This competition may also result in 

subtype succession over time, like the predominance of H3 and H4 in fall migration (4-6) and 

spring blooming of other subtypes within Group 2 such as H7 or H10 (55). With equal strength 
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of HA immunity to all subtypes the present antigenic diversity found in wild birds would be 

unlikely. Surprisingly, the results from H13 and H16 experimental infections in black-headed 

gulls showed limited cross-immunity between subtypes and suggest independent cycles for these 

viruses (21).   

However, for some strains or subtypes, cross-immunity may not be the only factor explaining the 

dynamics in the pathogen population. We believe that virus fitness linked to host-specificity and 

functionality of IAV proteins (56) is also playing an important role as evidenced by the fact that 

the H12N5 IAV used in this study did not successfully replicate in mallards even though it was 

isolated from that host.  

 A possible interpretation of these results is that population immunity can reduce the probability 

of transmission and potential introduction success of exotic antigenic variants (57).  Previous 

studies have reported protection to HPIAV induced by pre-exposure to LPIAV strains in 

different bird species (10, 13). In the context of H5N8 HPIAV clade 2.3.4.4 or other HPIAV 

context the present results suggest that cross-immunity could also reduce viral shedding and 

contribute to stopping the spread of specific virus in wild ducks that have naturally been exposed 

to LPIAV (58-60). 

We believe that the competitive processes described here and in other studies occur in nature 

although in natural host populations the complexity of the system increases due to the extensive 

subtype diversity of co-circulating viruses that these birds are continuously exposed to. Thus, 

based on our results we propose that the extent of competition at individual level through host 

immunity could be determined by many different interacting parameters: the strains involved in 

infections, the exposure history (or boost responses like OAS) and likely time between 

exposure/s (assuming that immune memory decreases over time). These are many of the same 

factors that are considered in evaluating immune responses and protection against influenza in 

humans and domestic animals.  
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Material and Methods 

Virus selection, stock preparation and titrations 
 All LPIAV viruses used in these trials represented common North American subtypes and were 

originally isolated from wild mallards in Minnesota, USA (5).  Viruses included: 

A/Mallard/MN/AI07-4724/2007 (H3N8), A/Mallard/MN/AI11-4213/2011(H4N5), 

A/Mallard/MN/AI11-4982/2011(H6N2), A/Mallard/MN/AI11-4412/2011(H10N7) and 

A/Mallard/MN/AI11-3866/2011(H12N5). Virus stocks were propagated by a second passage in 

specific pathogen free (SPF) embryonated chicken eggs. Stocks were endpoint titrated using the 

method of Reed and Muench Method (61) in eggs to determine the median egg infectious dose 

(EID50/0.1 ml).  

Ducks were inoculated with 0.1ml at an approximate dose/dilution of 106.0 EID50/0.1ml; the 

inoculum was split between intranasal and oropharyngeal routes. Based on back titration, the 

titers of the inoculums, expressed in EID50/ 0.1 ml, were 105.8 for H3N8 pre-challenge, 106.5 for 

H12N8 and H6N2, 106.4 for H3N8 (5 week challenge), 106.8 for H10N7, 106.0 for H3N8 (11 week 

challenge), 106.2 for H4N5, 106.3 for H3N8 (15 week challenge).  

The HA and NA segments of the isolates were amplified (62) and later sequenced using Sanger 

method. Geneious (version mac6_4_8_0_4) was used for sequence alignments and to calculate 

amino acid distances. Sequences are publically available in GenBank (KX814369-KX814375). 

Experimental infections 

All protocols for raising, infecting, and sampling mallards were approved by the IACUC at the 

University of Georgia (UGA; AUP#: A2013 05-021-Y1-A1). 

One-day-old mallards (Murray McMurray Hatchery, Webster City, IA, USA) were raised in 

captivity at the animal resources facilities of the College of Veterinary Medicine, UGA.  Food 

and water were supplied ad libitum. All individuals were identified with bands and unique ID 

numbers. Individuals did not exhibit behavioral changes or overt symptoms of disease during the 

duration of the trial. All birds gained weight before and throughout the challenge studies. At four 

weeks of age, 40 ducks were moved to Biosafety Level (BSL) 2+ facilities and were pre-

challenged with the H3N8 LPIAV.  
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The study design included re-challenges with homologous and heterologous viruses (Table S1). 

Prior to the re-challenges, ducks were randomly divided into groups (five individuals per group, 

approximate ratio 1:1 females: males) and were moved into BSL 2+ poultry isolators at the 

Poultry Diagnostic Research Center, Athens, GA, USA that are intended to house up to five adult 

size mallards. After 2 days of acclimation, the re-challenge was conducted as previously 

described (11). Each pre-challenged group had a control group (i.e. age matched naïve 

individuals). Ducks were humanely euthanized at the end of all challenge trials at 14 dpi 

following protocols approved at the UGA. For the homologous challenge one group of five 

ducks was challenged with the same H3N8 at five weeks after the initial H3N8 pre-challenge and 

two additional groups were re-challenged with the H3N8 virus at weeks 11 and 15 post-H3N8 

inoculation. Groups in the heterologous challenges were inoculated five weeks after initial H3N8 

infection with subtypes representing different levels of relatedness between the key antigenic 

proteins HA and NA of the H3N8 used in the pre-challenge: H4N5, H10N7, H6N2 and H12N5. 

Sampling, Extraction and Virus isolations  
Swabs were collected from the cloaca (CL) and oropharynx, (OP) and were placed in separate 

tubes containing 2 ml BHI media supplemented with antimicrobials(11). Swab samples were 

collected on 0-8 and on 10, 12 and 14 and 21 (only after H3N8 pre-challenge) days post infection 

(dpi) and kept cold until transfer to the laboratory where they were stored at -80 C° until 

processing.  

 

Virus isolations was performed on swabs from all birds during all challenges on 0, 2, 4, 6, 8, 10, 

12, 14 dpi as previously described (63) using two 9 to 11 days-old SPF embryonated chicken 

eggs. To insure that all birds were negative before any bird movement or subsequent challenge, 

all birds were tested by virus isolation on 21 dpi after the H3N8 pre-challenge and on 0 dpi prior 

to all subsequent viral challenges.  

 

RNA extraction and RRT-PCR 

RNA from samples collected on 1 to 14 dpi were extracted using the MagMAX-96 AI/ND Viral 

RNA Isolation kit (Ambion, Austin, TX, USA) on the Thermo Electron KingFisher magnetic 
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particle processor (Thermo Electron Corporation, Waltham, MA, USA) (63). Negative (BHI 

media) and positive (diluted isolate) controls were included in each extraction. Molecular 

detection of the IAV matrix gene by Real-time Reverse Transcriptase PCR (RRT-PCR) (64) was 

conducted with the Qiagen OneStep RT-PCR kit (Qiagen, Valencia, CA, USA) and the Cepheid 

SmartCycler System (Cepheid, Sunnyvale, CA, USA) (63). Negative and positive controls were 

used on the extraction step and an IAV matrix gene transcript (National Veterinary Services 

Laboratory, Ames, IA, USA) was included as positive control in the RRT-PCR. Samples with 

cycle threshold (Ct) values lower than 40 were considered positive and Ct –values were used as a 

proxy for viral load. 

Serology 
Serum samples were collected from the right jugular vein and transferred into serum separator 

tubes (Becton, Dickinson and Company, Franklin Lakes, NJ, USA), centrifuged upon arrival to 

the lab and serum was stored at -20 C° until analysis. Serum samples were taken immediately 

prior to H3N8 pre-challenge and prior to all subsequent challenges as well as at 14 dpi and 

between challenges for the homosubtypic long-term groups. Serum samples were tested with a 

commercially available nucleoprotein (NP)-ELISA kit (bELISA; FlockChek AI MultiS-Screen 

antibody test kit; IDEXX Laboratories, Westbrook, Maine, USA). Specific antibodies against the 

different HA subtypes used in the trial were detected using a virus microneutralization (MN) 

assay in Madin Darby Canine Kidney cells (MDCK; ATCC, Manassas, VA, USA) as described 

previously (57). Sera were additionally tested using the same viruses used for inoculation in the 

challenge and with prototype strains for H1-H12 and H14-H15 (65) (S1 Appendix)  to detect  

cross-reactivity. These antigens also were prepared in MDCK and tests were run using an 

antigen concentration of 100 TCID 50 /25 µl. 

 

Statistical analysis  
All analyses were run on the R software (66) using the GAMM, nlme and lme4 packages. Model 

selection was done using Akaike Information Criterion (67) corrected for small sample size 

(AICc) within the package AICcmodavg. To evaluate the viral shedding or load we used the Ct-

values from the matrix RRT-PCR runs that are proportional to the RNA copy numbers from 
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original samples. First, we studied the variation in Ct-values in pre-challenged and naïve controls 

for the different treatment groups with different time periods between infections. The strategy 

was to use linear models and include individuals as random effect using mixed models (package 

GAMM) due to repeated sampling of the same individuals over the course of infection.  The 

models that were evaluated included the factors: dpi, treatment group, both factors and the 

interaction. Ct-values from 1 dpi were not included in the analysis as they likely residual 

inoculum rather than true virus replication (at 1 dpi the Ct- values were close to 40). Models 

including the random effect of individual and the additive effect of dpi were tested but the 

increased complexity of the models was penalized based on the AICc and some of them had 

convergence problems. In the same way, the variation of Ct-values from all H3N8 control groups 

including age as factor was assessed. For the heterologous re-challenge, the variation in Ct-

values from control and pre-challenged groups for each of the different viruses was evaluated as 

described before. The total duration of infection or shedding was estimated by counting the days 

between inoculation and last positive virus isolations in CL swabs (which also includes cases of 

intermittent shedding). Birds that died or were euthanized before 14 dpi were not included in 

analysis. Duration of infection between groups was compared using Krustal-Wallis test. 

To explore the relation between HA similarity and the degree of protection we estimated the 

amino acid distance between the H3 and the different HA of re-challenges and the reduction in 

the duration of infection within group (subtracting the mean duration of infection in pre-

challenge groups to the duration in controls, calculated as the mean duration in controls minus 

the duration in pre-challenged as a %). The aminoacid distance was then correlated with the 

reduction in shedding per group.  

Next, to explore the influence of different variables on isolation success (binomial response: 

successful or unsuccessful) we used Generalized Linear Mixed Models (GLMM) as in (49). The 

explanatory variables included in the models were: Ct-value, sample type (OP and CL swabs), 

dpi and treatment (pre-challenged or naïve individuals which means samples from a primary or 

secondary infection). Additionally, since individual birds were re-sampled and samples are not 

independent we added the individual as a random effect in the models. Interactions were not 

included to avoid convergence problems.  
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Last, MN antibody titers (as log2 transformed) between groups at a single day of sampling were 

compared using the Krustal-Wallis test and the paired t-test was used to compare values in two 

different days within groups. Samples with a titer lower than 20 were arbitrarily given a titer of 

log2 2.5 for the model testing. The variation in antibody titers to H3 by MN was explored based 

on the different sampling occasions (dpi) and groups also using mixed models in the package 

GAMM.  

One duck died (12 dpi in group H6N2) and swabs were already IAV negative, necropsy showed 

no gross lesions caused by LPIAV. Another duck was euthanized due difficulties walking 

associated to husbandry in captivity (6 dpi in group H3N8 X H6N8). These birds were not 

included in the analysis. The H3N8 x H12N5 group was not included in the analysis because of 

poor replication of this virus in the pre-exposed and naïve groups. 
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Suplementary figures 

 

  

S1 Fig. Oropharyngeal shedding showing the variation in Ct-values (average per group) for the 

different groups. Homologous challenge groups at infected at different time intervals are shown 

in top panels.  Heterologous challenge groups are in lower panels). Continuous lines indicate the 

controls groups and discontinuous lines indicate the H3N8 pre-challenged groups (same colors as 

previous). * A single positive isolate from OP swab was an H10N7 detected at 0 dpi in the 

H10N7 control group. This duck was the last of a total of five to be inoculated in that isolator 

and this isolation was attributed to contamination with the inoculum. No birds had been exposed 

to H10N7 prior to this day. 
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S2 Fig. Variation in H12N5 shedding and Ct-values from 0 to 14 dpi. There was limited 

replication and shedding of the virus on the individuals inoculated with the H12N5. Only five CL 

swabs were positive by virus isolation while eight of the oropharyngeal swabs were positive by 

virus isolation. a) CL swabs and b) OP swabs 
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