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Abstract 

Concern about the reproducibility and reliability of biomedical research has been rising. An 

understudied issue is the prevalence of sample mislabeling, one impact of which would be 

invalid comparisons. We studied this issue in a corpus of human genomics studies by comparing 

the provided annotations of sex to the expression levels of sex-specific genes. We identified 

apparent mislabeled samples in 46% of the datasets studied, yielding a 99% confidence lower-

bound estimate for all studies of 33%. In a separate analysis of a set of datasets concerning a 

single cohort of subjects, 2/4 had mislabeled samples, indicating laboratory mix-ups rather than 

data recording errors. While the number of mixed-up samples per study was generally small, 

because our method can only identify a subset of potential mix-ups, our estimate is conservative 

for the breadth of the problem. Our findings emphasize the need for more stringent sample 

tracking, and that re-users of published data must be alert to the possibility of annotation and 

labelling errors. 
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Recent years have seen an increase in concern about the quality of scientific research, along with 

efforts to improve reliability and reproducibility [1,2]. These issues are highly relevant to 

genomics studies, which deal with complex and often weak signals measured genome-wide. In 

transcriptomics studies (our focus here), mRNA is extracted from samples and processed using 

microarrays or RNA-seq, followed by statistical analysis to identify patterns of interest (e.g. 

differential expression). Much work has been done to raise awareness of technical issues in such 

studies such as RNA quality [3] and batch effects [4] and many investigators are aware of the 

need to address them [5]. In addition, great effort was put into establishing guidelines for 

annotation standards of expression data into public repositories [6]  In contrast, a key step in 

many scientific experiments, but which has received less attention, is the importance of 

maintaining an accurate correspondence between the experimental conditions or sources of the 

samples and the eventual data. Simply put, for the analysis to be valid, the samples must not be 

mixed up. If mix-ups are present but undetected, the conclusions of the analysis might be 

affected and pollute the literature, as well as create a lurking problem for those who re-use the 

data. 

The obviousness of the need to avoid mix-ups suggests that investigators should be well aware of 

the risk, and take steps to reduce it, such as careful bookkeeping (e.g., permanent sample tube 

labels matched to data files). However we recently became concerned that mix-ups might not be 

rare. Our concerns came to a head when we reanalyzed four publically available datasets of 

Parkinson’s disease subjects [7]. As part of our quality checks of the data, we examined 

expression levels of sex-specific genes (genes expressed only in males or in females), and 

compared these with the corresponding subject sex meta-data annotations from each of the 
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papers. To our surprise, we found discordance between the sex predicted based on expression 

levels of sex-specific genes and the manuscript-annotated sex in two out of the four datasets 

(Supplementary Fig. S3). This finding, and other anecdotal observations, led us to examine this 

issue more broadly.  

Sex-specific genes are well-suited for this purpose. In genetics studies, genotypes of the sex 

chromosome are routinely used to identify mislabeled samples [8,9], moreover, sex check is a 

built-in option for some of the dedicated software [10].  Given that genetic abnormalities 

resulting in disagreement between genotypic and phenotypic sex are rare [11], any disagreements 

are very likely to stem from errors and may also be indicative of other dataset quality issues. 

Using such genes for quality checks of transcriptome data is not widespread practice, but it is 

well known that several X- and Y-linked genes show sex-specific patterns of expression. A 

limitation of this approach is that mix-ups that do not yield conflicting sex labels (e.g., swapping 

two female samples) cannot be detected. But at the very least it can provide a lower bound for 

the amount of mix-ups and if any are detected it should trigger a reassessment of the tracking of 

all samples in the study. 

In this study, we focused on publically available human expression profiling experiments that 

included individuals of both sexes. To our surprise we found strong evidence of mix-ups in 

nearly half of them. Importantly, for the vast majority of the studies we were able to validate that 

the disagreement between metadata- and gene-based gender is prevalent in the original 

manuscript. This indicate that the disagreements are not a result of erroneous gender description 

during data submission to public repository. An additional 10% of the studies have samples of 

ambiguous sex that suggests the possibility of samples being mistakenly combined or other 

quality problems. While it is possible that a small number of the cases we identify are due to sex 
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chromosome abnormalities, we regard the most likely explanation for most to be laboratory mix-

ups or errors in the meta-data annotations. Our findings suggest a widespread quality control 

issue in genomics studies. 

Results 

We identified a corpus of 70 human gene expression studies that had sample sex annotation 

(4160 samples in total) run on two platforms. We developed a simple robust method for 

classifying samples by sex based on three sex specific genes – XIST, RPS4Y1 and KDM5D. XIST 

(X-inactive specific transcript) is expressed from the inactive X chromosome and acts to silence 

its expression and thus, is only expressed in female subjects. KDM5D (Lysine (K)-Specific 

Demethylase 5D) and RPS4Y1 (Ribosomal Protein S4, Y-Linked 1) are both located on the Y 

chromosome, and thus are only expressed in male subjects. Although additional sex-specific 

genes exist, we determined that KDM5D, RPS4Y1 and XIST are the only sex-specific genes 

consistently showing high expression levels in the associated sex in all tissues. Our method 

assigns a predicted sex based on gene expression to each sample, which we refer to as “gene-

based sex” (see methods). We also performed a second analysis to identify samples where a 

gene-based sex could not be confidently assigned.  Such samples might reflect technical 

problems, but could also be due to true biological effects; for example, XIST expression is altered 

in some cancers and in early stages of development [12]. We then compared gene-based sex to 

the sex according to the provided sample annotations (“meta-data-based sex”) for the 70 studies, 

seeking samples with disagreements. Fig. 1 shows examples of studies with no discrepant 

samples (1A) and with discrepancies (1B). Similar plots for all datasets analyzed are shown in 

supplementary Fig. S2. All calls of discrepant or ambiguous sex were followed by manual 

confirmation. 
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We found samples with a discrepancy between the meta-data sex information and the gene-based 

sex in 32/70 (46%) of the datasets (ambiguous samples excluded; summarized in Table 1; details 

in supplementary table S2). Although datasets containing mismatched samples were more 

prevalent among cancer datasets (50% vs 43%, cancer vs. non-cancer, respectively), the 

proportion of mismatched samples was similar in cancer and non-cancer samples (2.14% vs 

1.93%; Table 1). This discrepancy might be explained by on average higher number of samples 

in cancer datasets from our corpus (Supplementary Table S1).  As expected, the proportion of 

samples with ambiguous gene-based sex was much higher in cancer as compared to non-cancer 

samples: 23/887 (2.6%) in cancer vs. 11/3273 (0.3%; Table 1). In total, 34 samples were flagged 

as ambiguous, though we note that 12/34 (35%) would have been signed to the discrepant sex by 

our method. Ambiguous samples were found in 15/70 (21%) of the studies (eight of which also 

contained mismatched samples).  

 

 

 

Because the sex annotations we used to this point were obtained from the sample descriptions in 

GEO, there was a possibility that the discrepancies we identified were due to mistakes 

introduced during the communication of the data from the submitter to GEO. If this were the 

case, the results in the original publication (29/31 of the affected studies had an associated 

publication) would be unaffected, though users of the GEO data would still be affected. To check 

this possibility, we went back to the 29 original publications to see if the sex labels provided in 

the paper matched those in GEO (detailed in Supplementary Table 1). This check was not always 

possible because many publications did not provide detailed meta-data in the paper or 
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supplementary materials; GEO provides the only record. In 12/31 cases, sufficient detail was 

provided for us to confirm that the discrepant sex labels were present in the publication, and in 

all of them there was agreement between the meta-data in the publication and the meta-data in 

GEO. In 13 cases only summaries were given in the publication (e.g. “10 males and 9 females in 

group X”). In 10 of these 13 studies, the summary counts in the publication agree with GEO. In 

the other three, both GEO and gene-based totals disagree with the publication-based totals. In 

other words, there seems to have been miscommunication with GEO in addition to a sex 

annotation discrepancy in the original study report. Finally, for four data sets meta-data was not 

provided or ambiguously described in the paper. We failed to find any unambiguous case in 

which we would infer the only problem was a miscommunication with GEO.  

The analysis presented cannot distinguish between actual sample mix-ups (e.g., tube swaps) and 

errors in the meta-data (incorrect recording of the subject’s sex). Fortuitously, we identified data 

sets where it can be determined that at least in some cases, samples were probably physically 

mixed up. In addition to the 70 data sets used above, we analyzed four datasets that all used 

human brain RNA from the same collection of subjects (the Stanley Array Collection 

http://www.stanleyresearch.org/brain-research/array-collection/). In this case the meta-data is 

common across the four laboratories since they are all analyzing the same individuals (though 

not all studies analyzed all the individuals). If the meta-data is incorrect, then all of the studies 

should show discrepancies for the same samples. If the samples were mixed up in a particular 

laboratory (or by the sample provider at the time they were sent to the laboratory), each study 

would have different discrepancies. We found that out of the four available datasets with data 

corresponding to the same subjects, two datasets contained mismatched samples (a single 

mismatched sample was identified in the “AltarA” study, and five in the “Dobrin” study; 
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supplementary Fig. S3). Importantly, the mismatched subjects differed between the datasets and 

samples from the same subjects appeared as correctly annotated in the other datasets. This 

suggests that the mismatched cases are likely to represent mislabeled samples rather than 

mistakes taking place during the recording of the subjects’ sex.   

We were surprised that nearly 50% of studies had at least one labeling error, and were concerned 

that this might be an overestimate by chance, due to sampling error. To address this we 

computed confidence intervals for our estimate of the fraction of affected studies, yielding a 

95%-confident lower bound of 36% and a 99% lower bound of 33% (upper confidence bounds 

were 56% and 60% respectively). We also note that our independent observations of 2/4 datasets 

containing misannotations described in Santiago et al. [13] and in 2/4 of the Stanley data set are 

in agreement with a relatively high estimate. Thus we project that, with 99% certainty, if all 

expression studies in GEO could be checked for mix-ups based on sex-specific genes, the 

fraction affected would be at least 33%. 

Discussion 

Using a simple approach to compare sample annotations for sex to expression patterns, we found 

that nearly 50% of datasets we checked contain at least one discrepancy. Our findings are also in 

general agreement with another study that examined this issue in cancer datasets [14], although 

in cancer there is an expectation of more ambiguity of sex marker expression [12]. In the case of 

the Stanley brain datasets, we could determine that the problem is likely to stem from laboratory 

mix-ups rather than an error in recording the subject’s sex. While our analysis is limited to a 

corpus of studies where sex information was available along with the presence of good markers 

on the microarray platform, our data suggest a widespread problem. 
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What is the impact of this issue? Viewed optimistically, a single mixed-up sample is not likely to 

dramatically affect the conclusions of a well-powered study. In addition, our analysis suggests a 

lower (99% confident) estimate of “only” 33% of studies with a sex misannotation, which might 

provide a small amount of comfort to optimists – it could be worse. However, the sample 

mislabeling we identified might be the tip of the iceberg, because sex-specific genes can only 

reveal mixed-up samples with differing sex. We also suggest that sample mix-ups might 

correlate with other quality problems. Indeed, many of the misannotated datasets we found have 

additional issues such as undocumented batch effects, outlier samples, other apparent sample 

misannotations (not sex-related), and discordance in sample descriptions reported in different 

parts of the relevant publication (supplementary table S2). The presence of samples with 

ambiguous gene-based gender in non-cancer samples is suggestive of even more quality 

problems. This is because expression patterns of sex-specific genes could be treated as a positive 

quality control for the expression data as a whole, serving as indicators for the reliability of other 

gene signals. Deviations from the expected pattern might indicate samples were mixed together, 

or suggest problems with RNA quality. 

Our conclusions are two-fold. First, there is an alarming degree of apparent mislabeling of 

samples in the genomics literature. In at least the specific cases we identified, the trust in the 

reliability of the findings reported is certainly not improved. Second, because it is simple to 

check the expression patterns of sex markers, the tests we performed should become a routine 

part of all genomics studies where sex can be inferred from the data. 
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Methods 

Except where mentioned, data analysis was performed using the R/Bioconductor environment 

[15,16]. Source code for the analysis is available in a Github repository 

(https://github.com/min110/mislabeled.samples.identification).  

We identified datasets containing sex information as experimental factors by searching the 

Gemma database [17]. Out of an initial 121 data sets we focused on 79 studies run on the 

Affymetrix HG-U1333Plus_2 and HG-U133A platforms as they have the same sex marker genes 

(GEO platform identifiers GPL570 and GPL96 respectively). The annotations in Gemma, which 

originate from GEO sample descriptions augmented with manual annotation, were re-checked 

against GEO, resulting in the correction of errors for 14 samples. Data sets that contained 

samples of only one sex, represented data from sex-specific tissues (e.g. ovary or testicle) or 

contained numerous missing values were excluded (9 datasets). A final set of 70 studies (a total 

of 4160 samples) met criteria. Table 1 summarizes the data included and full details of each 

study are in Supplementary Table S1. Whenever possible, data were reanalyzed from .CEL files. 

The signals were summarized using RMA method from the Affymetrix “power tools” 

(http://media.affymetrix.com/partners_programs/programs/developer/tools/powertools.affx), log2 

transformed and quantile normalized as part of the general Gemma pre-processing pipeline.  

Probeset selection: The male-specific genes KDM5D and RPS4Y1 are represented by a single 

probeset on both platforms included in our analysis. XIST is represented by two probesets on the 

GPL96 platform and by seven probesets on the GPL570 platform. With the exception of the 

221728_x_at probeset, XIST probesets were highly correlated with each other, and negatively 

correlated with the KDM5D and RPS4Y1 expression in all of the datasets analyzed 
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(supplementary Fig. S4). The poor-performing XIST probeset (221728_x_at) was excluded from 

further analysis. The final set was 4 probesets for GPL96 and 8 probesets for GPL570. 

Assigning gene-based (biological) sex to samples: The expression data for the selected sex 

markers were extracted from the normalized data for each data set. For each of these small 

expression matrices, we applied standard k-means clustering (using the “kmeans” function from 

the “stats” package in R [18] to classify the samples into two clusters. We assigned the two 

clusters as “male” or “female”, based on the centroid values of each of the probesets: 

specifically, the cluster with higher values of the XIST probesets centroids and a lower value of 

KDM5D and RPS4Y1 centroids was assigned as a “female” cluster. To identify samples with 

ambiguous sex, we calculated the difference between the median expression level of the XIST 

probesets and the median expression level of the KDM5D and RPS4Y1 probesets. We compared 

this difference with the cluster-based gender, and validated that the difference is positive for 

samples assigned as females and negative for samples assigned as males. We excluded 34 

samples that showed disagreement in this comparison since they could not provide a conclusive 

result for the gene—expression-based sex. We note that 12 (35%) of these would have been 

assigned to a cluster contradicting their annotated sex if we had retained them.  

Manual validation of the discrepancy between the gene-based sex and the meta-data-based 

sex: For all the cases where a discrepancy was found between the gene-expression-based sex and 

the meta-data-based sex, we manually examined the original studies to check if the mismatch 

was due to incorrect annotation of the sample during the data upload to GEO, or was present in 

the original paper. Since most of the manuscripts only contain summary statistics of the 

demographic data (13/31, supplementary table S2), direct sample-by-sample validation was not 

possible for most studies. For these studies we used the highest resolution level of group 
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summary statistics, provided in the publication to validate that the data in the paper corroborate 

the data in GEO. In addition, for all of the datasets with mismatched samples, we manually 

evaluated the expression values of the relevant probesets using the GEO2R tool on the GEO 

website. 

Confidence interval estimate for population proportion of studies with misannotated 

samples: We used the properties of the binomial distribution to compute the confidence interval 

for the population estimate of affected data sets using the “qbinom” function in R. 

Analysis of Stanley Foundation datasets: CEL files and sample metadata were downloaded 

directly from the Stanley Medical Research Institute genomic database 

(https://www.stanleygenomics.org/stanley/). CEL files were pre-processed, quantile normalized 

and log2 transformed using the rma  function from the “affy” package in R Bioconductor [15,16].   
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Table 1. Summary of discrepancies between the gene expression-based and annotated sex 

in human microarray datasets 

 
Unclassified samples are samples with disagreement between their classification using k-means 
clustering and the median expression of the sex specific probesets. 
Datasets were considered as “correctly annotated” only if they did not contain mismatched or 
unclassified samples 

 

Figures and figure legends 

 

 

 

 

 

 

 

 

 

 

 All Datasets 
Non-cancer 

Datasets 

Cancer 

Datasets 
All  Samples 

Non-cancer 

Samples 

Cancer 

Samples  

Correctly 

annotated 
31 (44%) 30 (51%) 1 (8%) 4043 (97%) 3213 (98%) 830 (94%) 

Mismatched 31 (46%) 25 (43%) 6 (50%) 83 (2%) 64 (1.9%) 19 (2.14%) 

Unclassified 15 (21%) 7 (12%) 8 (67%) 34 (0.8%) 11 (0.3%) 23 (2.6%) 

Total  70 58 12 4160 3273 887 
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Figure 1. Representative plots showing expression levels of sex-specific 

probesets 

Expression level of probesets representing the XIST (red), KDM5D (black) and RPS4Y1 (blue) 

genes. “MetaFemale” and “MetaMale” indicate the meta-data annotated sex of the samples and 

their total number in brackets. The “M” and “F” along the X axis indicates the gene-based sex of 

the samples, as determined by k-means clustering.  Log2-transformed expression levels are 

plotted. 

 (a) Representative dataset with no mismatched samples. (b) Representative dataset with two 

mismatched samples (highlighted with grey bars). Gene-based sex that contradicts the annotated 

sex of the sample is highlighted in bold at bottom. 
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Supporting information captions 

Table S1. Description of datasets included in the study 

Table S2. Detailed description of all datasets with mislabeled samples 

Fig S1. Disagreement between gene-based and annotated sex in three datasets participating 
in the metaanalysis of Parkinson’s disease 

Fig S2. Expression of probesets corresponding to the sex-specific genes XIST, KDM5D and 
RPS4Y1 in datasets analyzed in the current study. 

Fig S3. Gene-based and metadata-based sex in four datasets of similar subjects from 
Stanley Array collection. 

Fig S4. Correlation of probests corresponding to sex-specific genes 
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