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Abstract

Motivation: Gene trees reconstructed from sequence alignments contain poorly supported branches
when the phylogenetic signal in the sequences is weak. When a species tree is available, the signal of
gains and losses of genes can be used to correctly resolve the unsupported parts of the gene history.
Unfortunately, finding the best (i.e. most parsimonious) resolution has been shown to be NP-hard if
transfers are considered as possible gene scale events, in addition to gene originations, duplications and
losses.

Results: We propose an exact, parameterized algorithm solving this problem in single-exponential time,
where the parameter is the number of connected branches of the gene tree that show low support from the
sequence alignment or, equivalently, the maximum number of children of any node of the gene tree once
the low-support branches have been collapsed. We propose a way to choose among optimal solutions
based on the available information. We show the usability of this principle on several simulated and
biological data sets. The results show a comparable or better quality than several other tested methods
having similar goals, but with a lower running time and a guarantee on the optimality of the solution.
Availability: Our algorithm has been integrated into the ecceTERA phylogeny package, available at
http://mbb.univ-montp2.fr/MBB/download_sources/16__ecceTERA and which can be run
online at http://mbb.univ-montp2.fr/MBB/subsection/softExec.php?soft=eccetera.
Contact: celine.scornavacca@umontpellier.fr

1 Introduction A way to approach this true history is to use the information contained
Constructing good gene trees is both crucial and very challenging for in a species tree to correct the branches of a gene tree that are not supported

molecular evolutionary studies. The most common way to proceed is to by the alignment. The interpretation of a gene tree in the view of a

. . . . . species tree necessitates the introduction of gene scale events, as the birth
compute a multiple alignment of nucleotide or protein sequences from

a gene family, and search for an evolutionary tree that is most likely to of the gene, its death, its replication and diversification by speciation,
produce this alignment (under some evolutionary model). It is strongly
advised to additionally compute statistical supports on the branches of
the output tree, as this tells whether they are inferred from the signal

of mutations contained in the alignment or are chosen at random in the

duplication, and horizontal gene transfer (SzollGsi et al., 2015). If costs
are assigned to each gene scale event, each such complete history, called
a reconciliation, has a total cost. Binary gene trees reconstructed with
the additional information of this reconciliation score show a higher
quality, according to all tests on methods that are able to perform such
a construction: MowgliNNI (Nguyen et al., 2013), ALE (SzollGsi et al.,
2013), Tera (Scornavacca et al., 2015), TreefixDTL (Bansal et al., 2014)
and JPrIME-DLTRS (Sjostrand et al., 2014) (we enumerate only the
methods allowing horizontal gene transfers). However, these methods

absence of signal (Felsenstein, 2004). It is very rare that the gene sequences
contain enough mutations, but not too many, to support all the branches
of a gene phylogeny (Mossel and Steel, 2005). In consequence, it is very
rare that a maximum-likelihood tree computed from a multiple alignment

reflects the true history of the genes. e ) -
generally require intensive computing time.

Here, we provide an algorithm that, given a species tree .S and a
gene tree G with supports on its branches, computes a modified gene
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tree G’ such that all well-supported branches of G are in G’ and, no
thusly modified gene tree has a lower reconciliation cost than G’. "Well
supported" is defined by a threshold chosen by the user, or by an adaptive
method which sets this support according to the algorithm complexity.
This problem reduces to the reconciliation of non-binary gene trees with
binary species trees, which has been showed to be NP-complete (Kordi
and Bansal, 2015). We employ amalgamation principles (Scornavacca
et al., 2015) to prove its fixed-parameter tractability with respect to a
reasonable parameter: the maximum number of children of any node of the
gene tree once the low-support branches have been collapsed. We provide
an implementation and we propose a way to choose among all optimal
solutions according to the (both low and high) supports of the branches of
the input tree.

We show on both simulated and real data sets that our method produces
gene trees of comparable quality than those constructed by competitive
methods, often in a smaller amount of time. The software is easy to use,
so that anyone having a gene tree with supports and a species tree can
quickly obtain a better-quality gene tree, or even correct a whole database
in reasonable time.

2 An FPT algorithm for reconciling gene trees
with polytomies

2.1 Reconciliation of binary gene trees

For our purposes a rooted phylogenetic tree' T = (V(T), E(T),r(T)) is
atree, where V' (T') is the set of nodes, E(T') is the set of arcs, all oriented
away from r(7T'), the root. For an arc (z,y) of T, we call = the parent
of y, and y a child of x. The number of children of z, denoted by k;, is
called the out-degree of x. If a path from the root to y contains x, then x
is an ancestor of y and y is a descendant of x. This defines a partial order
denoted by y <7 z,andy <7 xif z # y. The subtree of T" that is rooted
at anode u of T" (denoted by T%,) is the result of deleting all nodes v with
v fT u from T'. Nodes with no children are leaves, all others are internal
nodes. The set of leaves of a tree T is denoted by L(7T). The leaves of
T are bijectively labeled by a set £(T") of labels. A tree is binary if all
internal nodes have exactly two children. A tree 7" is dated if a total order
<p on internal nodes is given that extends <. Each internal node then
implies a date between 1 and |V (T')| — | L(T")| (the root) and all the leaves
are assumed to have date 0. The dated subdivision T" of a dated tree T'
is obtained by replacing each arc (x, y) by a path containing k additional
nodes, where k + 1 is the difference between the date of x and the date of
y.

A reconciliation involves two rooted phylogenetic trees, a gene tree G
and a species tree S, both binary. Their relation is set by a function
s : L(G) — L(S), which means that each extant gene belongs to an
extant species. Note that s does not have to be injective (several genes of
G can belong to the same species) or surjective (some species may not
contain any gene of G). A reconciliation o of G in S is a mapping of each
internal node u of G into a sequence (a(u)1, a(u)2,...) of nodes of S
if S is undated or nodes of the dated subdivision S’ of S if S is dated.
Herein, for each ¢ > 1, we have a(u);+1 <7 a(u); and o(u); satisfies
the constraints of any one of the possible events among duplication (ID),
transfer (T), loss (IL), or speciation (S) — see Appendix 1 for details. This
ensures that a coherent gene history can be extracted from «. Given costs
for individual D, T and L events (it is usually assumed that speciation
does not incur cost), denoted §, 7 and A respectively, a reconciliation «
is assigned the cost ¢(a) := dd + t7 + I\, where d, ¢ and [ denote the
respective numbers of events of type D, T and L implied by ov. We denote
by R(G, S) the set of all possible reconciliations of G in S and define
eprL(G, S) = minger(a,s) ¢(a), that is, the minimum cost over all

possible reconciliations of G in S. We call eprr, (G, S) the cost of G with
respect to a species tree S.

Problem 1. Most Parsimonious Reconciliation (MPR)
Instance: a (dated) binary species tree S, a binary gene tree G, costs 9,
T, A for respective D, T, L events
Output: a reconciliation of minimal cost of G in S

This problem can be solved in O(|S|? - |G|) time (Doyon et al., 2010)
for dated trees, and O(|S| - |G|) time for undated ones (Bansal et al.,
2012). In the following, we turn our attention to non-binary gene trees and
we consider the species tree as dated. Nevertheless, every result is also
valid for the undated case with better complexity, see Section 3.3.

2.2 Resolution of non-binary gene trees

If a node in a tree T" has more than two children, we call this node a
polytomy. Note that a node a of T partitions L(7T) into two sets, the
descendants of a and all others. Given a gene tree G with at least one
polytomy, a binary tree G’ is called binary resolution of G if G can be
obtained from G’ by contracting edges. We denote by BR(G) the set of
all binary resolutions of G.

Problem 2. Polytomy Solver under the DTL framework
Instance: a dated binary species tree S, a gene tree G, costs 6, T, A
respectively for D, T, L events
Output: a binary resolution G' of G minimizing cpr1 (G, S)

This problem is known to be NP-hard (Kordi and Bansal, 2015), and
can be solved in polynomial time for 7 = oo (Lafond et al., 2012).
A brute-force approach would need to generate all binary resolutions.
There are (2n — 3)!! = ﬁ(%(n — 1))™~! different rooted binary trees
on n leaves, which gives | BR(G)| ~ [l,ev(anL(e) ﬂ(%(ku -
1))*«—1 different binary resolutions of G. This yields an algorithm with
time complexity O(|S|? - |G| - | BR(G)|). Using the following result, we
can improve on the brute-force approach.

Theorem 2.1. Let S be a species tree, let G be a gene tree with a unique
polytomy at its root. Let G', G* € BR(G) and let v’ , u* be vertices of G’/
and G*, respectively, such that L(G' ;) = L(G«). Let o € R(G', S)
and B € R(G*,S) such that a(u’)1 = B(u*)1. Then, the result of
replacing the restriction of o to G; , by the restriction of B to G}« is a
reconciliation of R(G’, S).

We donot give a proof of Theorem 2.1 here because it will be a consequence
of our main Theorem 2.2. Nevertheless, we note here that the dynamic
programming algorithm by Doyon et al. (2010) with the help of Theorem
2.1 permits us to solve Problem 2 with a lower complexity: Whenever
we encounter a polytomy w in its bottom-up approach, we store, for each
v € V(5), the minimum cost of a reconciliation associating v with v over
all binary resolutions of G,.

Observation 2.1. A solution for Problem 2 can be found by solving
polytomies one by one in a bottom-up approach, with a time complexity
of O(|S|? - |G| - (%(k‘ — 1)k=1), where k is the maximum number of
children of any node in G.

While Observation 2.1 already implies that Problem 2 is fixed-parameter
tractable with respect to the maximum out-degree in G, it remains
interesting to search for a single-exponential-time algorithm. The idea
for such an algorithm comes from the amalgamation principle.

2.3 Amalgamation of gene trees

A node u of a binary tree 7" is said to generate the clade C'(u) = L(Ty).
If w has distinct children u, and u;, we also say that w generates the


https://doi.org/10.1101/064675
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/064675; this version posted July 19, 2016. The copyright holder for this preprint (which was not certified by peer review) is the
author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.

“main” — 2016/7/19 — 16:48 — page 3 — #3

Non-binary gene tree DTL reconciliation

tripartition (C'(u), {C(u;), C(ur)}), otherwise, u generates the trivial
tripartition (C'(u), {@, @}). Herein, we call C(u) the domain of the
tripartition. A binary tree 7' generates a set of clades and tripartitions,
respectively denoted C(T") and I1(T"), which are the clades and tripartitions
generated by its nodes.

More generally, for a set of labels L, a clade is a subset of L and a
tripartition is a tuple (C, {C}-, C;}) such that the clades C'., C; partition
the clade C'. Let I1 be a set of tripartitions on L. We denote the set of clades
present in IT by C(IT). Further, II is said to be complete if it contains L
as the domain of some tripartition, and for each tripartition (A, {B, C'})
either B = C = @ or 11 contains tripartitions with B and C' as respective
domains. It is easy to see that the set of tripartitions generated by a binary
tree is always complete, and conversely, for any complete set of tripartitions
ITon L, there is at least one binary tree G with £(G) = L, which generates
a subset of II. The amalgamation problem is to generate one minimizing
the reconciliation cost with respect to a species tree:

Problem 3. Amalgamation under the DTL framework
Input: a complete set of tripartitions 11 on a set of labels L, a dated
binary species tree S, a labeling function s : L — L(S) and costs 6, T,
X\ respectively for D, T, L events
Output: a binary gene tree G minimizing cprr (G, S) over all binary
gene trees G' with L(G') = L and such that the set of tripartitions
generated by G' is a subset of T

This problem can be solved in O(|S|? - |II|) time (Scornavacca et al.,
2015). Given a non-binary tree (G, we can generate a complete set of
tripartitions containing all tripartitions of any binary resolution of G as
follows: for each node u of G with child set {uy, ..
I C {ui,...,us}, u generates a tripartition (A, {B,C}) such that
BUC = A C U;er C(u;) and none of B or C overlap any C(u;)
(overlapping means containing some elements but not all). The union of
all these tripartitions is the set of tripartitions of G, noted IT(G) as in the
binary case.

., u¢ }, and for each

Thus, the solution proposed in (Scornavacca et al., 2015) yields a novel
algorithm for the resolution of polytomies.

Theorem 2.2. Let G be a non-binary gene tree. An amalgamation
solution on I1(Q) is an optimal binary resolution of G.

The complexity of this algorithm is O(|S|? - [TI(G)|). We can bound
the size of ITI(G) using the following statement.

Lemma 2.3. For any gene tree G, |II(G)| = O(|G| - (3% — 2k+1Y)),
where k is the maximum out-degree of any node in G.

Proof. Let u be a node of G, and w1, . .., us its children. Recall that,
foreach I C {u1,...,ut}, u generates a tripartition (A, { B, C'}) such
that BUC = A C ;¢ C(u;) and none of B or C' overlap any C'(u;).
Any tripartition (A, { B, C'}) generated by u is isomorphic to a partition
of {C(u1),...,C(u¢)} into three sets, B, C, and | J; C(u;) \ A with
B # @ and C' # @. The number of partitions of ¢ elements into three
sets is 3% and 2 - 2¢ of them have B = @ or C' = @. Avoiding to count
the (unique) partition with B = C' = @ twice, we get 3t — 2tT1 4 1
such partitions. Finally, we can remove half of the remaining partitions by
symmetry of B and C and arrive at a count of 1/2(3% — 2¢+1 4 1). Thus,
there are 1/2(3t — 2t+1 4 1) such partitions and, hence, this is also an
upper bound on the number of tripartitions generated by «. Summing over
all vertices of G, the total number of tripartitions generated by G is then
bounded by |G| 1/2(3% — 28+1 4-1) where k is the maximum out-degree
inG.

This leads to the main theoretical result of the paper

Proposition 2.4. For any gene tree G, Problem 2 can be solved in
O(|S|? - |G| - (3% — 2FF1)) time for dated species trees, where k is
the maximum out-degree in G.

3 Practical issues

In order to turn the algorithmic principle described in the previous section
into a workable method for biological datasets, we have to handle three
issues: one is that the position of the root in the gene tree is usually
unknown; a second is that species trees are usually undated; the last
and most difficult one is the choice between multiple solutions. Indeed
in some cases the solution space of the problems defined in the previous
sections is huge and two different solutions can be far apart. But some
information from branch supports — encoded in the tripartitions to be used
in amalgamation algorithm — can be used to efficiently find a good solution.
‘We address this issue first.

3.1 Scoring tripartitions as a guide in the solution space

Given a multiset of tripartions II on L, the conditional probability
of a tripartition m = (Cq,{C2,Cs}) in II is defined as the ratio
Jr(m)/ fri(C1), where, for each clade and tripartition in IT, f17(-) denotes
its frequency in II (H6hna and Drummond, 2012). The conditional clade
probability of a binary tree G such that £L(G) = L, denoted by Pecp(G),
is defined as the product of the conditional probabilities of all tripartitions
inII(G).

We propose to output, among all solutions to the non-binary
reconciliation problem, one that maximizes the conditional clade
probability. For this we construct an artificial probability space, where
the conditional probability of a tripartition 7 = (C1, {C2,Cs}) is still
fu(7)/ fui(Ch), but where f is redefined using information from branch
supports (low or high) of the input tree. The rationale is that we use the
support of a branch to approximate the frequency of the corresponding
clade in an imaginary sample G of binary resolutions, while other branches
not present in the input tree are equiprobable. So we have to assign a
probability to each clade and, in the following, we explain precisely how.

Frequency of clades. Let GB be a rooted binary tree with supports on
its branches and let G be the multifurcated gene tree obtained from G
by contracting unsupported branches (according to a given threshold), we
define a support f(C1 ) foreachclade C generatedby G.IfCy € C(GB),
then f(Ch) is its support, i.e. the support of the branch leading to the
clade.! Otherwise, there is a clade in G that is incompatible with C;.
Among all such clades, let C be one that maximizes f(Cp). Then, we
use the knowledge of the frequency of Cy to infer the frequency of C7 in
our imaginary sample G by assuming that the ratio of trees generating C
to trees not generating C is the same in G as in BR(G). Thus, the support
of C1 is defined as f(C1) := (1 — f(Co)) - %, where g(C) is
the frequency of a clade C in in BR(G). To compute g(C), suppose C'
is generated by a vertex u of G with n(u) children, and that n(C') is the
number of children of v “contained" in C'. Then:

#T(n(C)) - #T(n(u) —n(C) +1)
#T(n(w))

9(C) =

where #7'(k) is the number of rooted binary trees with k leaves, i.e.
(2k —3)I.

For example, given the trees in Figure 1, the support of the clade
{C, D} is 0.5 (i.e. 50/100), while the support of {A, B,C} (which

! Note that supports have to be numbers between 0 and 1, and thus
bootstrap values should be divided by the size of the bootstrap sample.
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Fig. 1: A binary gene tree GZ (left) and a non-binary one (right) obtained
from G'B by suppressing edges with a bootstrap lower than 80.

conflicts with {C,D}) is 0.5 - i = é (note that g({C,D}) =
9({A,B,CY}) = ).

Frequency of tripartitions. Let 1 = (C1,{C2,C3}) be a tripartition.
Let BR(G)1 be the set of binary resolutions of G that generate C
and let G1 = G N BR(G)1 be the part of our imaginary sample
whose trees generate C1. If 71 € II(GE), we define f(mw) :=
min(f(C1), f(C2), f(C3)). Otherwise, either GB generates Cy and
a tripartition 7’ on the same domain C; as 7, or GPB does not generate
C1.

In the first case, we use the knowledge of the frequency of 7’ and C;
to infer the frequency of 7 in our imaginary sample by assuming that the
ratio of trees generating 7 to trees not generating 7’ is the same in Gy as
in BR(G)1. Thus, f(r) = (f(C1) — () - 3(m)/(9(C1) — §(x"),
where g () is the frequency of w in BR(G). In the second case, we assume
that the frequency of trees generating 7 is the same in G1 as in BR(G)1.
Thus, f(7) := f(C1) - §(w)/g(C1), where §(m) is the frequency of 7
in BR(G).

The frequencies § can be computed as follows. If 7 = (C1, {C2, C3})
is generated by u, then we denote by n(C;) the number of children of u
whose clades are contained in C;. We define () as

#T(n(C2)) - #T(n(C3)) - #T'(n(u) — (n(C2) + n(C3)) + 1)
#T'(n(w)) '

For example, given the trees in Figure 1, we have the following:
I(({A, B,C,D},{{A,B},{C,D}})) =05,
f({A,B,C, D}, {{A,C},{B,D}})) =0.3-1/14 and
(A, B, C}{{B,C}, {A}}) = 1/8-1/3.

Finally, conditional clade probability and reconciliation cost can be
combined by weighting their ratio (see Scornavacca et al. (2015)).

Coint (G', S) = eprL(G', S) + caNa(G)

where G’ is a gene tree in BR(G) and the parameter c4 weights the
contribution of the “sequence contribution" N 4 (G) to the cost, defined as

Na(G") = —log (Pccp(G)))
We will use such a joint score in the applications.

3.2 Unrooted gene trees

Phylogenetic trees are always rooted, but often the position of the root is
unknown. The method in the previous section can be used on an unrooted
gene tree GG to account for the uncertainty on the position of the root,
without additional complexity as follows. First, we call G, the rooted

tree obtained by rooting G arbitrarily on an internal edge e, and GZ
the rooted version of G5, also rooted on e. Then we compute the set
I1(G+) of tripartitions as defined in Section 2.3. To obtain IT(G), we also
consider, for each non-trivial tripartition (C1, {C2,C3}) € II(G,), the
two other possible tripartitions on £(G) that are implied by a different
placement of the root, namely ((£(G) \ C1) U C2,{L(G) \ C1,C2})
and ((L(G) \ C1) U C3,{L(G) \ C1,C3}). To these tripartitions, we
add the set 11" := {(L(Q), {{1}, L(G) \ {I}})|l € L(G)} of all trivial
tripartitions.

Eachedge e = (u, v) of the rooted binary tree Gf induces two clades
Cw(e) and Cy (e), which correspond to the label sets of the leaves of the
two subtrees created by removing e. We say that C, (e) is generated by
u and Cy (e) by v, and we associate to them the support of e. Then, we
redefine the set C(G2) as the set of clades induced by all edges of G5.
Given the thusly defined set C(G2), the support of each clade of C(G)
is then computed as in the rooted case.

Finally, we describe how to give a support value to each tripartition of
G in the unrooted case: The support of each tripartition 7 € II(G) is
computed w.r.t. G2 as described in the previous section, and the support of
the two other possible tripartitions on £(G) that are implied by a different
placement of the root is the same as the support of 7. All tripartitions in
I’ have support equal to 1.

3.3 An undated variant

The method discussed by Scornavacca et al. (2015) has been conceived
for dated binary species trees, but can easily be adapted to undated ones,
while respecting all previously mentioned results, with a slight correction
concerning the complexity.

Indeed, reconciliations for undated species trees can be computed in
O(|S| - |G]) time with an algorithm described by Bansal ez al. (2012).
Adapting this algorithm to the amalgamation framework can be done by the
same technique used to adapt the O(]S|? - |G|)-time algorithm of Doyon
et al. (2010) for dated species trees reconciliation to the amalgamation
framework as done in (Jacox et al., 2016). Thus, our result translates to an
O(|S| - |G| - |T1|)-time algorithm — by Lemma 2.3, an O(|S| - |G| - (3% —
2k+1Y)-time algorithm — for undated species trees.

3.4 Adaptive compromise between the amount of
correction and the computational complexity

The threshold for deciding if a branch is well-supported or not is, in
principle, user-defined. However, in the experiments, we required that,
in the multifurcated tree resulting from the contraction of unsupported
branches, an internal node has at most 12 children. This is to avoid the
combinatorial explosion and to keep the method fast. So we adopted a
strategy of increasing the threshold by 0.02 steps until the 12 maximum
children property was satisfied.

4 Application on simulated and biological data

In this section, we use three different data sets, two simulated and one from
microbial genomes, to compare the performance of our algorithm (called
ecceTERA in the following) with six different gene tree reconstruction
methods: TERA (Scornavacca et al., 2015), ALE (Szoll6si et al., 2013),
TreeFix-DTL (Bansal et al., 2014), MowgliNNI (Nguyen et al., 2013),
JPrIME-DLTRS (Sjostrand et al., 2014) and PhyML (Guindon et al.,
2010). The five first use information from the sequences and the species
tree, while the last uses only information from the sequences.
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Fig. 2: Accuracy of several methods on the simulated proteobacteria data
set: we measure the Robinson-Foulds distance of the reconstructed tree to
the true tree for all 1000 gene trees, for 7 methods. Computing times —
except for the computation of the RAXML trees — are given in the boxes
(s=seconds, m=minutes). In terms of quality, TreeFix-DTL achieves the
best accuracy but is relatively slow. ecceTERA is comparable with the
second best methods, both in accuracy and computing time.

4.1 Simulated Proteobacteria Data Set

The proteobacteria data set is the one constructed to test MowgliNNI and
made available by Nguyen et al. (2013). Starting with a dated phylogeny
of 37 proteobacteria (David and Alm, 2011):

e 1000 evolutionary histories comprising I, T, and L events were
simulated along the species tree according to a birth and death process;

e sequences were simulated along these true gene trees under the GTR
model using Seq-Gen (Rambaut and Grass, 1997);

e RaxML (Stamatakis, 2014) was used to estimate gene trees (along with
100 bootstrap trees) from these sequences under the GTR model.

We refer to the section “Simulated gene trees and evolutionary histories”
of Nguyen et al. (2013) for more details on how the data set was composed.
Some of the test results are taken from the same procedure proposed by
Scornavacca et al. (2015).

We ran TreeFix-DTL with default parameters, GTR with a gamma
distribution as models of evolution, and as a starting tree the RaxML
tree. The RaxML tree (with bootstrap values) was also the input given to
MowgliNNI and ecceTERA that were run with a threshold for weak edges
equal to 70. As in Scornavacca et al. (2015), JPrIME-DLTRS was run on
the sequence alignments with JTT with a gamma distribution as model of
evolution, 100 000 iterations, a thinning factor of 10 and a time out of 10h.
Finally, TERA and ALE were run on the set of bootstrap trees with default
parameters, except for the weight of amalgamation cA, fixed to 0.1 for
TERA as for ecceTERA.

The accuracy — defined as normalized Robinson-Foulds distance to the
true tree — of TERA, ecceTERA and ALE is comparable and higher than
the one of JPrIME-DLTRS and RaxML (see Figure 2). The method that
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Fig. 3: Accuracy of several methods on the simulated cyanobacteria data
set: ecceTERA with a threshold of 0.8 achieves better accuracy than all
other methods.

outperforms the others in this case is TreeFix-DTL. This is probably due
to the fact that the data set was simulated with the same model used to
estimate the gene trees with TreeFix-DTL. Note also that TreeFix-DTL is
slower than ecceTERA, with an average runtime of 37 minutes versus 15
seconds.

4.2 Cyanobacteria Data sets

The biological and simulated cyanobacteria data sets used here have been
made public by SzollGsi ef al. (2013) at http://datadryad.org/
resource/doi:10.5061/dryad.pv6df.

Their construction consisted in selecting 1099 gene families from
36 cyanobacteria species, related by a known dated species tree. These
families were retrieved from HOGENOM (Penel et al., 2009), and were
selected for their reasonable size and representativity. To obtain the
biological data set, multiple-alignments on these families were computed
with Muscle (Edgar, 2004).

To obtain the simulated data set, from each multiple-alignment of
the real data set, a sample of 1000 trees was computed with Phylobayes
(Lartillot et al., 2009), and an amalgamated tree was reconstructed with
ALE (Szoll6si et al., 2013). This tree was used to simulate multiple-
alignments of artificial sequences evolved along this tree under an LG
model with a gamma distribution. This multiple-alignment is the input of
our simulated data set. See (SzollGsi et al., 2013) for more detail on how
the data sets were generated.

Tests on the simulated data set. A tree was computed for each simulated
multiple-alignment using PhyML (Guindon et al., 2010),
LG+I"4+1 model and SH branch supports.

For this data set, the accuracy of TERA, ALE, TreeFix-DTL,
MowgliNNI, JPrIME-DLTRS and PhyML were compared in (Scornavacca
et al., 2015, Figure 2(a)), see Section 2.5 of the same paper for more

with an

details on the input/parameters used to generate the results. In Figure 3,
we compare these results with those of ecceTERA, again on unrooted
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Fig. 4: Number of genes for extant species (right), or ancestral species
(left and middle boxes), reconstructed with reconciled trees from PhyML
(left) and ecceTERA (middle). Better trees yield more plausible genome
histories.

gene trees and dated species tree, for three different thresholds of weakly
supported edges (0.8, 0.7 and 0.6). We report the results of ALE and
PhyML from Scornavacca et al. (2015), plus the results for MowgliNNI
for the same thresholds used for ecce TERA. Both ecceTERA and Mowgli
were given the “simulated” PhyML trees with SH branch supports. Finally,
we report the accuracy of ALE when using as input 100 sample trees (ALE
100 in Figure 3) among the 10k trees provided, mimicking the information
contained in a set of bootstrap trees.

Figure 3 shows that ecce TERA with a threshold of 0.8 achieves a better
accuracy than all other methods. Moreover, the accuracy of ecceTERA
increases with the threshold for weak edges, while this is not the case for
MowgliNNI. It is also worth noting that the accuracy of ALE decreases
considerably when used on small samples of trees. These results are even
more interesting when considering that ecceTERA is the fastest method
of the bundle (see Table 1 and Figure 2(a) of (Scornavacca et al., 2015)).
Although ecceTERA has similar running times as TERA, it requires much
less time to construct the input (as its input is the PhyML tree with SH
branch supports). Thus, the ecceTERA strategy is the fastest (considering
computation + input preparation time) among all compared strategies.

Tests on the biological data set. From each multiple alignment, a
maximum-likelihood tree was computed with PhyML (Guindon et al.,
2010) with SH branch supports. These PhyML trees were corrected using
ecceTERA with a threshold for weak edges equal to 0.8. The weight of
amalgamation cA was estimated, with starting value 1. Gene trees were
considered as unrooted and the species tree as dated.

We measured the quality of the corrected trees compared to that of the
maximum-likelihood trees in two ways. First, we compared the likelihoods
according to the multiple-alignments. Of course, the PhyML trees always
have a better likelihood because they are optimized with respect to this
criterion. But it is interesting to note that for 80% of the trees, an
Approximate Unbiased (AU) test performed with Consel (Shimodaira and
Hasegawa, 2001) did not reject the ecceTERA tree. So, in a vast majority of
the cases, the ecceTERA and PhyML trees are equivalent regarding their

sequence likelihoods. Second, we compared the two sets of trees with
respect to their implications for the evolutionary dynamics of genomes:
we counted the number of genes present in ancestral species according to
reconciled gene trees, and compared it with the number of genes present
in extant species (in our data set which contains a subset of gene families).
Ancestral genes were inferred from reconciliations. The results are shown
in Figure 4.

We see that the genome histories are much more stable according
to ecceTERA trees. According to PhyML trees, ancestral genomes were
much smaller than extant genomes, which is not a plausible hypothesis.
Indeed there is no argument for why PhyML trees would capture a
biological signal that more sophisticated methods constructing statistically
equivalent trees from the sequence point of view, would miss. This result
argues for the correction step, quickly achieved by ecceTERA, for every
evolutionary study.

5 Conclusions

Gene trees are a precious resource for biologists. They allow us to annotate
genomes, to define species taxonomies, and to understand the evolution
of traits, adaptation, and modes of genome evolution. They are also used
to reconstruct ancestral genomes and understand the history of relations
between organisms and their environment on a long time scale. Thus,
reliable gene trees are crucial for many biological results (see for example
Groussin et al. (2015)).

Standard software constructing gene trees from multiple sequence
alignments are widely used. Although they provide better quality gene
trees, it is less the case for species tree aware methods. First because
a species tree is not always available, and second because of the
computational investment most methods require to output a gene tree.

We propose here a method that can be easily used by biologists
to quickly correct the output of a gene tree computed from a multiple
sequence alignment, provided that branch supports and a species tree are
available. The software is built on an FPT algorithm which is derived from
recent advances in gene tree amalgamation principles. Its complexity is
an exponential function of the maximum degree of the input tree, which
reduces to the number of connected branches with low support. What
a low support is depends on a threshold chosen by the user. Thus, a
compromise between the extent of the correction and the computing time
is easily achieved. On all of our data sets, on several dozens of species
and several thousand of genes, we arrived quickly at a result that is always
significantly better than methods based on multiple sequence alignments
only, and whose quality is equivalent to the computationally more intensive
integrated methods.
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1 Appendix

Given a binary gene tree G and an undated, respectively dated, species
tree .S such that £L(G) C L£(S), an undated, respectively dated, DTL
reconciliation « is a function that maps each node u of G onto an
ordered sequence of nodes of S, respectively of the subdivision S’,
denoted a(u) = (a1(u),2(u),...,ar(u)). Seven basic events are
considered by the DTIL model: speciation (S), duplication (D), transfer (T),
contemporary (C), transfer+loss (TL) and speciation+loss (SL) events,
plus the additional no event (&). S,ID and T events are self-explanatory.
A @ event denotes that a gene crosses a time boundary, with no other
event happening. A contemporary event C associates a leaf u of G with a
leaf = of S’ such that s(u) = s(z). A duplication followed immediately
by a loss, i.e. a DL event, can occur an arbitrary number of times in a
reconciliation, making the solution space infinite. To prevent this, loss
events are never considered alone but are always coupled with either a
speciation or a transfer event. Thus, an SL event is a speciation where
the gene is lost in one of the two derived species, while a TLL event is a
T event where the transferred gene is not kept in the descendants of the
donor species. Consecutive TILL events are not allowed in order to prevent
the solution space from being infinite. Note that DIL events and consecutive
TL cannot happen in parsimonious reconciliations.

More formally, for each pair of nodes u of G and c; (w) of S (denoting
a;(u) by z below), « is said to be an undated reconciliation between G
and S if and only if exactly one of the following events occurs for each
pair of nodes u of G and «; (u) of S (denoting c; (u) by x below):

a) if  is the last node of a(u), one of the cases below is true:

1. uw€ L(G),z € L(S) and L(Sz) = s(L(Gw)); (C leaf)
2. {ai(w), a1 (ur)} = {xg, 20 }; (S event)
3. a1(uy) =xand a1 (ur) = x; (D event)
4. aj(u;) = z,and a1 (ur) is any species node that is a not a descendant

or ancestor of x;
or a1 (ur) = z,and a1 (u;) is any species node thatis a not a descendant

or ancestor of x; (T event)
b) otherwise, one of the cases below is true:
5. ait1(u) € {zg, zr }; (SL event)

6. ;41 (u) is any node that is a not a descendant or ancestor of x; (TL
event)

The function « is said to be a dated reconciliation between G and S
if and only if exactly one of the following events occurs for each couple
of nodes u of G and a; (u) of S’ (denoting a; (u) by =’ below):

a) if ' is the last node of a(u), one of the cases below is true:

1. ue L(G),x" € L(S") and L(S!,) = s(L(Gw)) (C event)

2. {a1(u),a1(ur)} = {z],z;.}; (S event)

3. ai(w) =2 and oy (ur) = 2’ (D event)

4. a1(u;) = 2/, and a1 (uy) is any node other than x’ having height
h(z")

or ai(ur) = 2/, and o (w;) is any node other than z’ having height
h(z'); (T event)

b) otherwise, one of the cases below is true:

5. &’ is an artificial node and av; 41 (w) is its only child; (@event)

6. ' is not artificial and cv;y1(u) € {z],z;.}; (SL event)

7. ai41(uw) is any node other than ' having height h(z’). (TL event)


https://doi.org/10.1101/064675
http://creativecommons.org/licenses/by-nc-nd/4.0/

