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Abstract12

Our understanding of neural population coding has been limited by a lack of analysis methods13

to characterize spiking data from large populations. The biggest challenge comes from the fact14

that the number of possible network activity patterns scales exponentially with the number of15

neurons recorded (⇠ 2Neurons). Here we introduce a new statistical method for characterizing neural16

population activity that requires semi-independent fitting of only as many parameters as the square17

of the number of neurons, so requiring drastically smaller data sets and minimal computation time.18
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2 1 Introduction

The model works by matching the population rate (the number of neurons synchronously active)19

and the probability that each individual neuron fires given the population rate. We found that20

this model can accurately fit synthetic data from up to 1000 neurons. We also found that the21

model could rapidly decode visual stimuli from neural population data from macaque primary22

visual cortex, ⇠ 65 ms after stimulus onset. Finally, we used the model to estimate the entropy of23

neural population activity in developing mouse somatosensory cortex and surprisingly found that24

it first increases, then decreases during development. This statistical model opens new options for25

interrogating neural population data, and can bolster the use of modern large-scale in vivo Ca2+26

and voltage imaging tools.27

1 Introduction28

Brains encode and process information as electrical activity over populations of their neu-29

rons (Churchland and Sejnowski, 1994; Averbeck et al., 2006). Although understanding the30

structure of this neural code has long been a central goal of neuroscience, historical progress31

has been impeded by limitations in recording techniques. Traditional extracellular recording32

electrodes allowed isolation of only one or a few neurons at a time (Stevenson and Kording,33

2011). Given that the human brain has on the order of 1011 neurons, the contribution of34

such small groups of neurons to brain processing is likely minimal. To get a more complete35

picture we would instead like to simultaneously observe the activity of large populations of36

neurons. Although the ideal scenario — recording every neuron in the brain — is out of37

reach for now, recent developments in both electrical and optical recording technologies have38

increased the typical size of population recording so that many laboratories now routinely39

record from hundreds or even thousands of neurons (Stevenson and Kording, 2011). The40

advent of these big neural data has introduced a new problem: how to analyze them.41

The most commonly applied analysis to neural population data is to simply examine42

the activity properties of each neuron in turn, as if they were recorded in separate animals.43

However responses of nearby neurons to sensory stimuli are often significantly correlated,44
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implying that neurons do not process information independently (Perkel et al., 1967; Gerstein45

and Perkel, 1969, 1972; Singer, 1999; Cohen and Kohn, 2011). As a result, performing a cell-46

by-cell analysis amounts to throwing away potentially valuable information on the collective47

behavior of the recorded neurons. These correlations are important because they put strong48

functional constraints on neural coding (Zohary et al., 1994; Averbeck et al., 2006).49

If we consider each neuron to have two spiking activity states, ON or OFF, then a50

population of N neurons as a whole can have 2N possible ON/OFF patterns at any moment51

in time. The probability of seeing any particular one of these population activity patterns52

depends on the brain circuit examined, the stimuli the animal is subject to, and perhaps53

also the internal brain state of the animal. Neural correlations and sparse firing imply that54

the probability of some activity patterns are more likely than others. To help understand55

the neural code we would like to be able to estimate the probability distribution across56

all 2N patterns, Ptrue. For small N , the probability of each pattern can be estimated by57

simply counting each time it appears, then dividing by the total number of timepoints58

recorded. However, since the number of possible patterns increases exponentially withN , this59

histogram method is experimentally intractable for populations larger than ⇠ 10 neurons.60

For example, 20 neurons would require fitting 220 ⇡ 106 parameters, one for each possible61

activity pattern. To accurately fit this model by counting patterns alone would require data62

recorded for many weeks or months. The problem gets worse for larger numbers of neurons:63

each additional neuron recorded requires a doubling in the recording time to reach the same64

level of statistical accuracy. This explosive scaling implies that we can never know the true65

distribution of pattern probabilities for a large number of neurons in a real brain.66

This problem remained intractable until a seminal paper in 2006 demonstrated a possible67

solution: to fit a statistical model to the data that matches only some of the key low-order68

statistics, such as firing rates and pairwise correlations, and assume nothing else (Schneidman69

et al., 2006). The hope was that these basic statistics are su�cient for the model to capture70

the majority of structure present in the real data so that Pmodel ⇡ Ptrue. Indeed early71
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4 1 Introduction

studies showed that such pairwise maximum entropy models could accurately capture activity72

pattern probabilities from recordings of 10–15 neurons in retina and cortex (Schneidman73

et al., 2006; Shlens et al., 2006; Tang et al., 2008; Yu et al., 2008). Unfortunately however,74

later studies found that performance of these pairwise models was poor for larger populations75

and in di↵erent activity regimes (Ohiorhenuan et al., 2010; Ganmor et al., 2011; Yu et al.,76

2011; Yeh et al., 2010), as predicted by theoretical work (Roudi et al., 2009; Macke et al.,77

2011a). As a consequence, variants of the pairwise maximum entropy models have been78

proposed that include higher-order correlation terms (Ganmor et al., 2011; Tkacik et al.,79

2013, 2014), but these are di�cult to fit for large N and are not readily normalizable.80

Alternative approaches have also been developed that appear to provide better matches to81

data (Amari et al., 2003; Pillow et al., 2008; Macke et al., 2009, 2011b; Köster et al., 2014;82

Okun et al., 2012; Park et al., 2013; Okun et al., 2015; Schölvinck et al., 2015; Cui et al.,83

2016), but these su↵er from similar shortcomings (Table 1). We suggest the following criteria84

for an ideal statistical model for neural population data:85

1. It should accurately capture the structure in real neural population data.86

2. Its fitting procedure should scale well to large N , meaning that the model’s parameters87

can be fit to data from large neural populations with a reasonable amount of data and88

computational resources.89

3. Quantitative predictions can be made from the model after it is fit.90

No existing model meets all three of these demands (Table 1). Here we propose a novel,91

simple statistical method that does: the population tracking model. The model is specified92

by only N2 parameters: N to specify the distribution of number of neurons synchronously93

active, and a further N2 � N for the conditional probabilities that each individual neuron94

is ON given the population rate. Although no model with N2 parameters can ever fully95

capture all 2N pattern probabilities, we find that the population tracking model strikes96

a good balance between accuracy, tractability, and usefulness: by design it matches key97
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features of the data, its parameters can be easily fit for large N , it is normalizable allowing98

expression of pattern probabilities in closed form, and most surprisingly it allows estimation99

of measures of the entire probability distribution, as we demonstrate for neural populations100

as large as N = 1000.101

The results sections of this paper is structured as follows. In section 2.1 we introduce102

the basic mathematical form of the model, and fit it to spiking data from macaque visual103

cortex as an illustration. In sections 2.2 and 2.3 we cover how the model parameters can be104

estimated from data, and how to sample synthetic data from the fitted model. In section 2.4105

we show how a reduced 3N -parameter model of the entire 2N -dimensional pattern probability106

distribution can be derived from the model parameters, and how this reduced model can107

be used to estimate the population entropy, and the divergence between the model fits to108

two di↵erent datasets. In sections 2.5, 2.6 and 2.7 we show how the model’s estimates for109

entropy and pattern probabilities converge as a function of neuron number and time samples110

available. Finally, in sections 2.7 and 2.8 we show how the method can help give novel111

biological insights by applying it to two data sets: first we use the model to decode stimuli112

from the recorded electrophysiological spiking responses in macaque V1, and second, we113

analyze in vivo two-photon Ca2+ imaging data from mouse somatosensory cortex to explore114

how the entropy of neural population activity changes during development.115

2 Results116

2.1 Overview of the statistical model with example application to117

data.118

We consider parallel recordings of the electrical activity of a population of N neurons. If119

the recordings are made using electrophysiology, then spike sorting methods can be used to120

extract the times of action potentials emitted by each neuron from the raw voltage wave-121

forms (Quiroga, 2012). If the data are recorded using imaging methods, for example via122
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6 2 Results

Model References

Number

of param-

eters

Sampling

possible?

Fit for

large N?

Direct

estimates of

pattern

probabili-

ties?

Low-

dimensional

model of

entire dis-

tribution?

Pairwise

maximum

entropy

Schneidman

et al.

(2006);

Shlens

et al.

(2006)

⇠ N2 Yes Di�cult Di�cult No

K-pairwise

maximum

entropy

Tkacik

et al. (2013,

2014)

⇠ N2 Yes Di�cult Di�cult No

Spatiotemporal

maximum

entropy

Marre et al.

(2009);

Nasser

et al.

(2013)

⇠ RN2 Yes Di�cult Di�cult No

semi-Restricted

Boltzmann

Machine

Köster

et al.

(2014)

⇠ N2 Yes Di�cult Di�cult No

Reliable

interaction

model

Ganmor

et al.

(2011)

Data-

dependent
No Yes Approximate No

Generalized

Linear Models

Pillow

et al.

(2008)

⇠ DN2 Yes Di�cult No No

Dichotomized

Gaussian

Amari

et al.

(2003);

Macke

et al.

(2009)

⇠ N2 Yes Yes No No

Cascaded

Logistic

Park et al.

(2013)
⇠ N2 Yes Yes Yes No

Population

coupling

Okun et al.

(2012,

2015)

3N Yes Yes No No

Population

tracking
This study N2 Yes Yes Yes Yes

Tab. 1: Comparison of properties of various statistical models of neural activity.
For the “Number of parameters” column’, N indicates the number neurons consid-
ered, ⇠ indicates “scales with”, D indicates the number of coe�cients per interaction
term, and R indicates the number of timepoints across which temporal correlations
are considered.
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2.1 Overview of the statistical model with example application to data. 7

a Ca2+-sensitive fluorophore, then electrical spike times or neural firing rates can often be123

approximately inferred (Pnevmatikakis et al., 2016; Rahmati et al., 2016). Regardless of the124

way the in which the data are collected, at any particular timepoint in the recording some125

subset of these neurons may be active (ON), and the rest inactive (OFF). In the case of126

electrophysiologically recorded spike trains, the neurons considered ON might be those that127

emitted one or more spikes within a particular time bin �t. For fluorescence imaging data,128

a suitable threshold in the �F (t)/F
0

signal may be chosen to split neurons into ON and129

OFF groups, perhaps after also binning the data in time. Once we have binarized the neural130

activity data in this way, each neuron’s activity across time is reduced to a binary sequence131

of zeros and ones, where a zero represents silence and a one represents activity. For example,132

the ith neuron’s activity in the population might be xi = 0, 1, 0, 0, 0, 1, 1, 0, 1 . . . . The length133

of the sequence T is simply the total number of time bins recorded. The brain might encode134

sensory information about the world in these patterns of neural population activity.135

Next we can next group the neural population data into a large N ⇥ T matrix M where136

each row from i = 1 : N corresponds to a di↵erent neuron and each column from j = 1 : T137

corresponds to a di↵erent time point. At any particular time point (the jth column of M ),138

we could in principle see any possible pattern of inactive and active neurons, written as139

a vector of zeros and ones {x}j = [x
1j, x2j . . . xNj]T . In general, there will be 2N possible140

patterns of population activity, or combinations of zeros and ones. In any given experiment,141

each particular pattern must have some ground-truth probability of appearing Ptrue({x}),142

depending on the stimulus, animal’s brain state, and so on. We would like to estimate this143

2N -dimensional probability distribution. However, since direct estimation is impossible, we144

instead fit the parameters of a simpler statistical model that implicitly specifies a di↵erent145

probability distribution over the patterns, Pmodel({x}). The hope is that for typical neural146

data, Pmodel({x}) ⇡ Ptrue({x}). In figure 1 we schematize the procedure for building and147

using such a model.148

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 23, 2016. ; https://doi.org/10.1101/064717doi: bioRxiv preprint 

https://doi.org/10.1101/064717
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 2 Results

Fig. 1: Schematic diagram of the model-building and utilization procedure. The neural cir-
cuit generates activity patterns sampled from some implicit distribution Ptrue, which
are recorded by an experimentalist as data. We estimate certain statistics of these
data to be used as parameters for the model. The model is a mathematical equa-
tion that specifies a probability distribution over all possible patterns Pmodel, whether
or not each pattern was ever observed in the recorded data. We can then use the
model for several applications: to sample synthetic activity patterns, to directly es-
timate pattern probabilities, or to build an even simpler model of the entire pattern
probability distribution to estimate quantities such as the entropy.

The statistical model we propose for neural population data contains two sets of param-149

eters that are fit in turn. The first set are the N free parameters needed to describe the150

population synchrony distribution: the probability distribution Pr(K = k) = p(k) for the151

number of neurons simultaneously active K, where K =
PN

i=1

xi. This distribution acts as152

a measure of the aggregate higher-order correlations in the population and so may contain153

information about the dynamical state of the network. For example, during network oscil-154

lations neurons may be mostly either all ON or all OFF together, whereas if the network is155

in an asynchronous mode, the population distribution will be narrowly centered around the156

mean neuron firing probabilities.157

The second set of free model parameters are the conditional probabilities that each indi-158
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2.1 Overview of the statistical model with example application to data. 9

vidual neuron is ON, given the total number of neurons active in the population, p(xi = 1|K).159

For shorthand we will write p(xi|K) instead of p(xi = 1|K) for the remainder of this paper.160

Since there are N + 1 possible values of K, and N neurons, there are N(N + 1) of these161

parameters. However, we know by definition that when K = 0 (all neurons are silent) and162

K = N (all neurons are active) then we must have p(x|K = 0) = 0 and p(x|K = N) = 1163

respectively. Hence we are left with only N(N � 1) free parameters. Di↵erent neurons164

tend to have di↵erent dependencies on the population count, because of their heterogeneity165

in average firing rates (Buzsáki and Mizuseki, 2014) and because some neurons tend to be166

closely coupled to the activity of their surrounding population while others act independently167

(Okun et al., 2015). These two types of neurons have previously been termed ‘choristers’168

and ‘soloists’, respectively.169

Once the N2 total free parameters have been estimated from data (we discuss how this170

can be done below), we can construct the model. It gives the probability of seeing any171

possible activity pattern — even for patterns we have never observed — as172

p({x}) = p(k)

ak

 
NY

i=1

p(xi|k)xi [1� p(xi|k)]1�x
i

!
where k =

NX

i=1

xi (1)

where ak is a normalizing constant defined as the sum of the probabilities of all
�
N
k

�
patterns in173

the set S(k) where
PN

i=1

xi = k under a hypothetical model where neurons are conditionally174

independent:175

ak =
X

{x}2S(k)

 
NY

i=1

p(xi|k)xi [1� p(xi|k)]1�x
i

!
(2)

The model can be interpreted as follows: given the estimated synchrony distribution p(k)176

and set of conditional probabilities p(xi|K), we imagine a family of N � 1 probability distri-177

butions qk({x}), k 2 [1 : N � 1] where pattern probabilities are specified by the conditional178

independence models qk({x}) =
QN

i=1

p(xi|k)xi [1�p(xi|k)]1�x
i . Now, using this family of dis-179

tributions we construct one single distribution p({x}) by rejecting all patterns in each qk({x})180

where
PN

i=1

xi 6= k, concatenating the remaining distributions (which cover mutually exclu-181
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10 2 Results

sive subsets of the pattern state space), and renormalizing so that the pattern probabilities182

sum to one. This implies that for any given activity pattern {x}, p({x}) / qk({x}).183

More intuitively, the model can be thought of as having two component ‘levels’: first, a184

high-level component that matches the distribution for the population rate. This component185

counts how many neurons are active, ignoring the neural identities and treating all neurons186

as homogeneous. The second, low-level component accounts for some of the heterogeneity187

between neurons. It asks, given a certain number of active neurons in the population, what188

is then the conditional probability that each individual neuron is active? This component189

captures two features of the data: the di↵erences in firing rates between neurons, which190

can vary over many orders of magnitude (Buzsáki and Mizuseki, 2014), and the relation-191

ship between a neuron’s activity and the aggregate activity of its neighbors (Okun et al.,192

2015). Both of these features can potentially have large e↵ects on the pattern probability193

distribution.194

In Figure 2, we fit this statistical model to electrophysiology spike data recorded from195

a population of 50 neurons in macaque V1 while the animal was presented with a drifting196

oriented grating visual stimulus. A section of the original spiking data during stimulus197

presentation are shown in Figure 2A, top, along with synthetically generated samples from198

the model fitted to these data, below it in red. By definition the model matches the original199

data’s population synchrony distribution and conditional probability that each neuron is200

active (Figure 2B). In Figure 2C we show the model’s prediction for statistics of the data201

that it was not fitted to.202

First (Figure 2C, left) the model almost exactly matches the average firing rate for each203

individual neuron. This is a direct consequence of the way the model is constructed and204

follows from the fits of the two sets of parameters. Hence the model can captures the205

heterogeneity in neural firing rates.206

Second, we compare the pairwise correlations between neurons from the original data207

with those from the data synthetically generated by sampling the model (Figure 2C, center).208
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2.1 Overview of the statistical model with example application to data. 11

Here we see only a partial match. Although the model captures the coarse features of the209

correlation matrix, it does not match the fine-scale structure on a pair-by-pair basis. For this210

example, the R2 value between the model and data pairwise correlations was 0.52 (Appendix211

Figure 1). In particular, the model accounts exactly for the population’s mean pairwise212

correlation, because this is entirely due to the fluctuations in the population activity. We213

can demonstrate this e↵ect directly by first subtracting away the covariance in the original214

data that can be accounted for by the model and then renormalizing to get a new correlation215

matrix (Appendix Figure 1). Indeed this new correlation matrix is zero mean, but retains216

much of the fine-scale structure between certain pairs of neurons. This implies that the217

model captures only coarse properties of the pairwise correlations.218

Finally, the model does not match at all the temporal correlations present in the original219

data (Figure 2C, right), since it assumes that each time bin is interchangeable. Note that220

this limitation is an ingredient of the model, not a failing per se. This property is shared with221

many other statistical methods commonly applied to neural population data (Schneidman222

et al., 2006; Macke et al., 2009; Cunningham and Yu, 2014; Okun et al., 2015).223

These results show which statistics of the data that the population tracking model does224

and does not account for. Although other statistical models may more accurately account225

for pairwise or temporal correlation structure in the data, they typically do not scale well226

to large N (Table 1). In the remainder of the paper we explore the model’s behavior on227

large N data, and show how we can take advantage of the particular form of the model to228

robustly estimate some high-level measures of the activity statistics, including the entropy229

of the data and the divergence between pairs of data sets. Since these measures are typically230

di�cult or impossible to estimate using other common statistical models in the field, the231

population tracking model may allow experimenters to ask neurobiological questions that232

would be otherwise intractable.233

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 23, 2016. ; https://doi.org/10.1101/064717doi: bioRxiv preprint 

https://doi.org/10.1101/064717
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 2 Results

Fig. 2: A: Original spiking data (top, black) and synthetic data generated from model (bot-
tom, red).
B: The model’s fitted parameters. First, the population synchrony distribution (top),
and second the conditional probability that each neuron is ON given the number of
neurons active. The conditional ON probabilities of only ten of the fifty neurons are
shown for clarity. The curves converge to a straight line for k ? 25 because those
values of k were not observed in the data, so the parameter estimates collapse to the
prior mean.
C: Comparison of other statistics of the data with the model’s predictions. The model
gives an exact match of the single neuron firing rates (left), a partial match with the
pairwise correlations (center), but does not match the data’s temporal correlations
(right).
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2.2 Fitting the model to data. 13

2.2 Fitting the model to data.234

We now outline a procedure for fitting the statistical model’s N2 free parameters to neural235

population data. We assume that the data have already been preprocessed as discussed236

above and are in the format of either a binary N ⇥T matrix M , or as a two-column integer237

list of active timepoints and their associated neuron IDs. We found that parameter fitting238

was fast; for example, fitting parameters to data from a one hour recording of 140 neurons239

was done on a standard desktop in ⇠ 1 minute.240

2.2.1 Fitting the population activity distribution241

The first set of parameters are the N values specifying the probability distribution for the242

number of neurons active p(k). In principle K can take on any of the N+1 values from 0 (the243

silent state) to N (the all ON state), but since we have the constraint that the probability244

distribution must normalize to one, one parameter can be calculated by default so we need245

only fit N free parameters to fully specify the distribution. The most straightforward way246

to do this is by histogramming, which gives the maximum likelihood parameter estimates.247

We simply count how many neurons are ON at each of the T timepoints to get [K(t =248

1), K(t = 2) . . . K(t = T )], then histogram this list and normalize to one so that our estimate249

p̂(k) = ck/T where ck is the count of the number of timepoints where k neurons were active.250

If the data statistics are su�ciently stationary relative to the timescale of recording, then251

the error on each parameter individually scales ⇠ 1/
p
T and independent of N . However, the252

relative error on each p̂(k) also scales ⇠
q

1�p(k)
p(k) , which implies large errors for rare values253

of K, when p(k) is small. Since neural activity is often sparse, we expect it to be quite254

common to observe small p(k) for large K, close to N (neurons are rarely all ON together).255

To avoid a case where we naively assign a probability of zero to a certain p(k) just because256

we never observe it in our finite data, we propose adding some form of regularization on the257

distribution p(k). A common method for regularization is to assume a prior distribution for258

p(k), then multiply it with the likelihood distribution from the data to compute the final259
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14 2 Results

posterior estimate for the parameters following Bayes rule. If for convenience we assume a260

Dirichlet prior (conjugate to the multinomial distribution), then the posterior mean estimate261

for each parameter simplifies to262

p̂(k,↵) =
ck + ↵

T +N↵

where ↵ is a small positive constant. Note that this procedure is equivalent to adding the263

same small artificial count ↵ to each empirical count ck. For the examples presented in this264

study, we set ↵ = 0.01.265

2.2.2 Fitting the conditional ON probabilities for each neuron266

The second step is to fit the N2 � N unconstrained conditional probabilities that each267

neuron is ON given the total number of active neurons in the population, p(x|K). The268

simplest method to fit these parameters is by histogramming, similar to the above case for269

fitting the population activity distribution. In this case we cycle through each value of K270

from 1 to N � 1, find the subset of timepoints at which there were exactly k neurons active,271

and count how many times each individual neuron was active at those timepoints, di,k. The272

maximum likelihood estimate for the conditional probability of the ith neuron being ON273

given k neurons in the population active is just p̂(xi|k) = di,k/Tk, where Tk is the total274

number of timepoints where k neurons were active.275

As before, given that some values of K are likely to be only rarely observed we should also276

add some form of regularization to our estimates for p(x|K). We want to avoid erroneously277

assigning p(xi|K) = 0, or any p(xi|K) = 1 just because we had few data points available.278

Since xi here is a Bernoulli variable, we regularize following standard Bayesian practice by279

setting a Beta prior distribution over each p(xi|K) because it is conjugate to the binomial280

distribution. Under this model the posterior mean estimate for the parameters are281

p̂(xi|k, �0

, �
1

) =
di,k + �

1

�
0

+ �
1

+ Tk
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2.2 Fitting the model to data. 15

Using the Beta prior comes at the cost of setting its two hyperparameters, �
1

and �
2

. We282

eliminate one of these free hyperparameters by constraining the prior’s mean to be equal to283

k/N . This will pull the final parameter estimates towards the values that they would take284

if all neurons were homogeneous. The other free hyperparameter is the variance or width285

of the prior. This dictates how much the final parameter estimate should reflect the data:286

the wider the prior is, the closer the posterior estimate will be to the naive empirical data287

estimate. We found in practice good results if the variance of this prior scaled with the288

variance of the Bernoulli variables, / µ(1 � µ) where µ = k/N . This guaranteed that the289

variance vanished as k became near 0 or N . For the examples presented in this study, we290

set the prior variance �2 = 0.5µ(1� µ), and �
1

= µ
�2 (µ� µ2 � �2) and �

2

= �
1

( 1µ � 1).291

An alternative method for fitting p(x|K) would be to perform logistic regression. Al-292

though in principle logistic regression should work well since we expect p(x|K) to typically293

be both monotonically increasing and correlated across neighboring values of k, we found294

in practice that as long as su�cient data were available it gave inferior fits compared with295

the histogram method discussed above. However for data sets with limited time samples296

logistic regression might indeed be preferable. The other benefit would be that since logistic297

regression requires fitting of only two parameters per regression, if employed it would reduce298

the total number of the model’s free parameters from N2 to only 3N .299

2.2.3 Calculating the normalization constants300

The above expression for pattern probabilities includes a set of N � 1 constants Ak =301

{a
1

, a
2

. . . aN�1

} that are necessary to ensure that the distribution sums to one. These302

constants are not fit directly from data but instead follow from the parameters.303

Each ak is calculated separately for each value of k. They can be calculated in at least304

four ways. The most intuitive method is via the brute force enumeration of the probabilities305

of all
�
N
k

�
possible patterns where k neurons are active, then summing the probabilities, as306

given by eq. 2. Although this method is exact, it is only computationally feasible if
�
N
k

�
307
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16 2 Results

is not too large, which can occur quite quickly when analyzing data from more than 20–30308

neurons. The second method to estimate ak is to draw N Bernoulli samples for many trials309

following the probabilities given by p(x|k), then count the fraction of trials in which the310

number of active neurons did in fact equal k. This method is approximate and inaccurate311

for large N because ak ! 0 as N ! 1.312

The third method is to estimate ak using importance sampling. We can rewrite eq. 2 as313

ak =

✓
N

k

◆P
{x}2S(k)

⇣QN
i=1

p(xi|k)xi [1� p(xi|k)]1�x
i

⌘

�
N
k

�

=

✓
N

k

◆
E['{x}]

where {x} is a sample from the uniform distribution on S(k), and '({x}) =
QN

i=1

p(xi|k)xi [1�314

p(xi|k)]1�x
i . If we have m such samples {x(1)}, {x(2)}, . . . , {x(m)}, then by the law of large315

numbers316

1

m

mX

j=1

'({x(j)}) ! E['({x})] = ak�
N
k

� ,

so by implication317

mX

j=1

'({x(j)}) ⇡ mE['({x})] = akm�
N
k

� .

If we fit a straight line in m to the partial sums ŷ =
Pm

j=1

'({x(j)}) by linear regression, say318

ŷ = c
1

m+ c
0

, we get319

c
1

m+ c
0

⇡
mX

j=1

'({x(j)}) ⇡ akm�
N
k

� .

Assuming that ŷ(m = 0) = 0, then the intercept c
0

= 0, so we are left with320

c
1

✓
N

k

◆
⇡ ak.

Finally, a fourth method follows from a procedure we present below, for estimating a low-321

dimensional model of the entire pattern probability distribution as a sum of log-normals.322
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2.3 Sampling from model given parameters 17

2.2.4 The implicit prior on the pattern probability distribution323

By assuming a prior distribution over all of our parameters, we are implicitly assuming a324

prior distribution over the model’s predicted pattern probabilities. What does that look325

like? For the population activity distribution we have chosen a uniform value of ↵ across all326

values of k, implying that our prior expects each level of population activity to be equally327

likely. The prior imposed on the second set of parameters, the p(x|K)’s, would assign each328

neuron an identical conditional ON probability of k/N . Although the second set of priors329

is maximal entropy given the first set, it is important to note that the uniform prior over330

population activity is not maximum entropy, since each value of k carries a di↵erent number331

of patterns. Hence for large N , the prior will be concentrated on patterns where few (k near332

zero) or many (k near N) neurons are active.333

A geometrical view of the e↵ect of the priors can be given as follows. Since our N2

334

parameters can each be written as a weighted linear sum of the 2N pattern probabilities, they335

specify N2 constraint hyperplanes for the solution in the 2N -dimensional space of pattern336

probabilities. There are also other constraint hyperplanes which follow from constraints337

inherent to the problem, such as the fact that the pattern probabilities must sum to one,338

and that p(x|K = 0) = 0, etc. Since N2 < 2N (for all N > 4) there are an infinite number339

of solutions that satisfy the constraints. Our final expression for the pattern probabilities340

is just a single point on the intersection of this set of hyperplanes. The e↵ect of including341

priors on the parameters is to shift the hyperplanes so that our final solution is closer to342

prior pattern probabilities than that directly predicted by the data. In doing so it ensures343

all patterns are assigned a non-zero probability of occurring, as any sensible model should.344

2.3 Sampling from model given parameters345

Given the fitted parameters, sampling is straightforward using the following procedure:346

1. Draw a sample for the integer number of neurons active ksample from the range {0, . . . , N}347
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18 2 Results

according to the discrete distribution p(k). This can be done by drawing a random348

number from the uniform distribution then mapping that value onto the inverse of the349

cumulative of p(k).350

2. Draw N independent Bernoulli samples x = {x
1

, x
2

. . . xN}, one for each neuron, with351

the probability for the ith neuron given by p(xi|ksample). This is a candidate sample.352

3. Count how many neurons are active in the candidate sample: k⇤
sample =

PN
i=1

xi. If353

k⇤
sample = ksample, accept the sample. If k⇤

sample 6= ksample, reject the sample and return354

to step 2.355

One benefit of this model is that since the sampling procedure is not iterative, sequential356

samples are completely uncorrelated.357

2.4 Estimating the full pattern probability distribution, entropy, and358

divergence.359

2.4.1 Low-dimensional approximation to pattern probability distribution360

So far we have shown how to fit the model’s parameters, calculate the probability of any361

specific population activity pattern, and sample from the model. Depending on the neu-362

robiological question an experimenter might also wish to use this model to calculate the363

probabilities of all possible activity patterns, either to examine the shape of the distribution364

or to compute some measure that is a function of the entire distribution. One such measure,365

for example, is the joint population entropy H used in information theoretic calculations,366

H = �
P

2

N

i=1

p({x}i) log
2

p({x}i).367

For small populations of neurons N > 20, the probabilities of all 2N possible activity368

patterns can be exhaustively enumerated. However, for larger populations this brute force369

enumeration is not feasible due to limitations on computer storage space. For example,370

storing 2100 ⇠ 1030 decimal numbers on a computer with 64-bit precision would require371
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2.4 Estimating the full pattern probability distribution, entropy, and divergence. 19

⇠ 1019 terabytes of storage space. Hence for most statistical models, such as classic pairwise372

maximum entropy models, this problem is either di�cult or intractable (Broderick et al.,373

2007; although see Schaub and Schultz, 2012). Fortunately, the particular form of the374

model we propose implies that the distribution of pattern probabilities it predicts will, for375

su�ciently large k and N , tend towards the sum of a set of log-normal distributions, one376

for each value of k (Figure 3B–C), as we explain below. Since the log-normal distribution is377

specified by only 2 parameters, we can fit this approximate model with only 3N parameters378

total, which can be readily stored for any reasonable value of N .379

We derive the sum-of-lognormals distribution model as follows. First we take the log of380

both sides of eq.1 to get:381

log p({x}) = log p(k) +
NX

i

log
⇥
p(xi|k)xi(1� p(xi|k))(1�x

i

)

⇤
� log ak (3)

= log p(k) +
kX

i

log p(xi|k) +
N�kX

j

log(1� p(xj|k))� log ak

where the second and third terms correspond to sums over the k active and (N �k) inactive382

neurons in {x} respectively. Note that this equation is only valid for the cases where k �383

1. For clarity in what follows, we will temporarily represent p({x}) = ✓ and p({x}|k) =384

✓k. Now let us consider the set Lk of the log-probabilities for all
�
N
k

�
patterns for for a385

given level of population activity k, Lk = {log(p({x})}k = {log(✓)}k where
PN

i=1

xi =386

k. Since the population tracking model assumes that neurons are (pseudo) conditionally387

independent, then for su�ciently large N , according to the central limit theorem the second388

and third terms in the sum in eq. 3 will be normally distributed with some mean µ(k) and389

variance �2(k), no matter what the actual distribution of p(xi|K)’s is. Hence, if we were390

to histogram the log-probabilities {log(✓)}k of all patterns for a given k, their distribution391

could be approximated by the sum of two Gaussians and two constants:392
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20 2 Results

p(log(✓))k ⇡ log p(k) +N (µON(k), �
2

ON(k)) +N (µOFF (k), �
2

OFF (k))� log ak. (4)

Note that this is a distribution over log–pattern probabilities: it specifies the fraction of all393

neural population activity patterns that share a particular log–probability of being observed.394

The two normal distribution means are given by395

µON(k) = khlog p(x|k)i

µOFF (k) = (N � k)hlog (1� p(x|k))i

and the variances are396

�2

ON(k) = k

✓
N � k � 1

N � 1

◆
var[log p(x|k)]

�2

OFF (k) = (N � k)

✓
k � 1

N � 1

◆
var[log(1� p(x|k))]

where the fractional terms in the variance equations are corrections because we are drawing397

without replacement from a finite population. Finally since we are adding two random398

variables (the second and third terms in 4), we also need to account for their covariance.399

Unfortunately, the value of this covariance depends on the data, and unlike the means and400

variances we could find no simple formula to predict it directly from the parameters p(x|k).401

Hence it should be estimated empirically by drawing random samples from the coupled402

distributions N (µON(k), �2

ON(k)) and N (µOFF (k), �2

OFF (k)), and computing the covariance403

of the samples.404

Although the lognormal approximation is valid when both K and N are large, the ap-405

proximation will become worse when K is near 0 and N , no matter how large N is. This406

is problematic because neural data is often sparse, so small values of K are expected to be407

common and hence important to accurately model. Indeed we found empirically that the408
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2.4 Estimating the full pattern probability distribution, entropy, and divergence. 21

distribution of log-pattern probabilities at small K can become substantially skewed, or, if409

the data come from neurons that include distinct subpopulations with di↵erent firing rates,410

even multimodal. We suggest that the experimenter examines the shape of the distribution411

by histogramming the probabilities of a large number of randomly chosen patterns to assess412

the appropriateness of the lognormal fit. The validity of the log-normal approximation can413

be formally assessed using, for example, the Lilliefors or Anderson-Darling tests. If the dis-414

tribution is indeed non-lognormal for certain values of K, we suggest application of either or415

both of the following two ad hoc alternatives. First, for very small values of K (say k > 3),416

then the number of patterns at this level of population synchrony
�
N
k

�
= N !

k!(N�k)! should also417

be small enough to permit brute force enumeration of all such pattern probabilities. Sec-418

ond, for slightly larger values of K (3 > k > 10), the distribution can be empirically fit by419

alternative low-dimensional parametric models, for example a mixture-of-gaussians (MoG),420

which should be su�ciently flexible to capture any multimodality or skewness. In practice421

we found that MoG model fits are typically improved by initializing the parameters with422

standard clustering algorithms, such as K-means.423

One important precaution to take when fitting any parametric model to the pattern424

probability distributions (be it lognormal, MoG, or otherwise) is to make sure that the425

resulting distributions are properly normalized so that the product of the integral of the426

approximated distribution of pattern probabilities for a given k, p(✓)k, with the total number427

of possible patterns at that k,
�
N
k

�
, does indeed equal the p(k) previously estimated from428

data:429 ✓
N

k

◆ˆ
1

0

p(✓)kd✓ = p(k)

Although in principle this normalization should be automatic as part of the fitting procedure,430

even small errors in the distribution fit due to finite sampling can lead to appreciable errors431

in the normalization, due to the exponential sensitivity of the pattern probability sum on432

the fit in log co-ordinates. The natural place to absorb this correction is in the constant433

ak, which in any case has to be estimated empirically so it will carry some error. Hence434
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22 2 Results

we suggest that when performing this procedure, estimation of ak should be left as the final435

step, when it can be calculated computationally as whatever value is necessary to satisfy the436

above normalization.437

2.4.2 Calculating population entropy438

Given the above reduced model of the pattern probability distribution we could compute439

any desired function of the pattern probabilities, for example the mean or median pattern440

probability, the standard deviation, etc. One example measure that is relevant for informa-441

tion theory calculations is Shannon’s entropy, H = �
P

i pi log2 pi, measured in bits. This442

can be calculated by first decomposing the total entropy as443

H = Hk +H(p({x}|k)) = Hk +H(✓)k

where Hk = �
PN

k=0

p(k) log
2

p(k) is the entropy of the population synchrony distribution444

and H(✓)k =
PN

k=0

p(k)H(✓k) is the conditional entropy of the pattern probability distri-445

bution given K. Given the sum-of-lognormals reduced model of the pattern probability446

distribution, the total entropy (in bits) of all patterns for a given k is447

H(✓k) =

✓
N

k

◆ˆ
1

0

p(✓)k ⇥ [✓k log
2

✓k] d✓

This can be calculated by standard numerical integration methods separately for each pos-448

sible value of K.449

In the homogeneous case where all neurons are identical, all
�
N
k

�
patterns for a given K450

will have equal probability of occurring, p({x}|K = k) = p(k)/
�
N
k

�
. This situation maximizes451

the second term in the entropy expression, and simplifies it to Hpop =
PN

k=0

p(k) log
2

(N
k

)
p(k) .452

To demonstrate these methods we calculated the probability distribution across all 250 ⇡453

1015 possible population activity patterns, and the population entropy, for an example spiking454

data set recorded from fifty neurons in macaque primary visual cortex. The presentation of455
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2.4 Estimating the full pattern probability distribution, entropy, and divergence. 23

Fig. 3: Calculating the distribution of population pattern probabilities and entropy for spik-
ing data from macaque visual cortex.
A: Example raster plots of spiking data from 50 neurons in macaque V1 in response
to static oriented bar stimulus (left) and a blank screen (right).
B: The distribution of pattern probabilities for varying numbers of neurons is esti-
mated for various values of the numbers of neurons active, k.
C: Summed total distribution of pattern probabilites for data recorded during stim-
ulus (top, light blue) and blank screen (bottom, dark blue) conditions. The small
bumps on top of the distributions are due to values of k which were unobserved in
the data. Since the model assumes all patterns at these values are equally probable,
they lead to the introduction of several sharp delta peaks to the pattern probability
distribution.
D: The cumulative probability as a function of the cumulative number of patterns
considered. Note that many-fold fewer activity patterns account for the bulk of the
probability mass in the blank screen condition compared to during the stimulus.
E: Entropy per neuron of the pattern probability distribution for both conditions.
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a visual stimulus increases the firing rates of most neurons as compared to a blank screen456

(Figure 3A). We found that this increase in firing rates lead to a shift in the distribution457

of pattern probabilities (Figure 3C–D) and an increase in population entropy (Figure 3E).458

Notably, a tiny fraction of all possible patterns account for almost all the probability mass.459

For the visually evoked data, around 107 patterns accounted for 90% of the total probability,460

which implies that only ⇠ 10

7

10

15 = 0.000001% of all possible patterns are routinely used.461

Although this result might not seem surprising given that neurons fire sparsely, any model462

that assumed independent neurons would likely overestimate this fraction because such a463

model would also overestimate the neural population’s entropy (see below). These results464

demonstrate that the population tracking model can detect aspects of neural population465

firing that may be di�cult to uncover with other methods.466

2.4.3 Calculating the divergence between model fits to two data sets467

Many experiments in neuroscience involve comparisons between neural responses under dif-468

ferent conditions: for example the firing rates of a neural population before and after applica-469

tion of a drug, or the response to a sensory stimulus in the presence or absence of optogenetic470

stimulation. Therefore it would be desirable to have a method for quantifying the di↵er-471

ences in neural population pattern probabilities between two conditions. Commonly used472

measures for di↵erences of this type are the Kullback-Leibler divergence, and the related473

Jensen-Shannon divergence (Cover and Thomas, 2006; Berkes et al., 2011). Calculation of474

either divergence involves a point-by-point comparison of the probabilities of each specific475

pattern under the two conditions. For small populations, this can be done by enumerating476

the probabilities of all possible patterns, but how would it work for large populations? On477

the face of it, the above approximate method for entropy calculation cannot help here, be-478

cause that involved summarizing the distribution of pattern probabilities while losing the479

identities of individual patterns along the way. Fortunately the form of the statistical model480

we propose does allow for an approximate calculation of the divergence between two pattern481
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2.4 Estimating the full pattern probability distribution, entropy, and divergence. 25

probability distributions, as follows.482

The Kullback-Leibler divergence from one probability distribution p(i) to another prob-483

ability distribution q(i) is defined as484

DKL(p||q) =
X

i

p(i) log
2

p(i)

q(i)
(5)

We can decompose this sum into N + 1 separate sums over the subsets of patterns with K485

neurons active:486

DKL(p||q) =
NX

k=0

DKL(p||q)k

Hence we just need a method to compute DKL(p||q)k for any particular value of k. Notably,487

the term to be summed over in equation 5 can be seen as the product of two components:488

p(i) and log
2

p(i)
q(i) . In the preceding section we showed that for su�ciently large k and N ,489

the distribution of pattern probabilities at a fixed K is approximately log-normal because490

of our assumption of conditional independence between neurons. Hence the first component491

p(i) can be thought of as a continuous random variable that we will denote X
1

, drawn from492

the log-normal distribution f(x
1

). Because p(i) represents pattern probabilities, the range of493

f(x
1

) is [0, 1]. The second component, log
2

p(i)
q(i) , in contrast, can be thought of as a continuous494

random variable that we will denote X
2

, that is drawn from the normal distribution g(x
2

),495

because by the same argument p(i)
q(i) is approximately log-normally distributed, so its logarithm496

is normally distributed. Since this term is the logarithm of the ratio of two positive numbers,497

the range of g(x
2

) is [�1,1]. Now the term to be summed over can be thought of as498

the product of two continuous and dependent random variables Y = X
1

X
2

, with some499

distribution h(y).500

Our estimate for the KL divergence ˆDKL for a given k is then just the number of patterns501

at that value of k times the expected value of Y :502

ˆDKL(p||q)k = E[DKL(p||q)k] =

✓
N

k

◆ˆ 1

�1
yh(y)dy
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=

✓
N

k

◆
E[Y ]

=

✓
N

k

◆
E[X

1

X
2

]

=

✓
N

k

◆
(E[X

2

]E[X
2

] + Cov[X
1

, X
2

])

The three new terms in the last expression, E[X
1

], E[X
2

], and Cov[X
1

, X
2

], can be estimated503

empirically by sampling a set of matched values of p({x}i) and q({x}i) from a large randomly504

chosen subset of the
�
N
k

�
patterns corresponding to a given value of k.505

2.5 Model fit convergence for large numbers of neurons506

To test how the model scales with numbers of neurons and time samples, we fit it to syn-507

thetic neural population data from a di↵erent established statistical model, the Dichotomized508

Gaussian (DG) (Macke et al., 2009). The DG model generates samples by thresholding a509

multivariate Gaussian random variable in such a way that the resulting binary values matches510

desired target mean ON probabilities and pairwise correlations. The DG is a particularly511

suitable model for neural data, because has been shown that the higher-order correlations512

between ‘neurons’ in this model reproduce many of the properties of high-order correlations513

seen in real neural populations recorded in vivo (Macke et al., 2011b). This match may514

come from the fact that thresholding behavior of the DG model mimics the spike threshold515

operation of real neurons.516

For this section we used the DG to simulate the activity of two equally sized populations517

of neurons, N
1

= N
2

= N/2, one population with a low firing rate of r
1

= 0.05 and the518

other with a higher firing rate of r
2

= 0.15. The correlations between all pairs of neurons519

were set at ⇢ = 0.1. We first estimated ground truth pattern probability distributions by520

histogramming samples. Although there are 2N possible patterns, the built-in symmetries in521

our chosen parameters meant that all patterns with the same number of neurons active from522

each group k
1

and k
2

share identical probabilities. Hence the task amounted to estimating523
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2.5 Model fit convergence for large numbers of neurons 27

only the joint probabilities p(k
1

, k
2

) of the (N+1)2 configurations of having k
1

and k
2

neurons524

active. We generated as many time samples as was needed for this probability distribution525

to converge (T > 109) for varying numbers of neurons ranging from N = 10 to N = 1000.526

We then fit both our proposed model and several alternatives to further sets of samples527

from the DG, varying T from 100 to 1,000,000. Finally, we repeated the fitting procedure528

on many sets of fresh samples from the DG to examine variability in model fits across trials.529

To assess the quality of the fits we use the population entropy as a summary statistic. We530

compared the entropy estimates of the population tracking model with five alternatives:531

1. Independent neuron model: neurons are independent, with individually fit mean firing532

rates estimated from the data. This model has N parameters.533

2. Homogeneous population model: neurons are identical but not independent. The534

model is constrained only by the population synchrony distribution p(k), as estimated535

from data. This model has N + 1 parameters.536

3. Histogram. The probability of each population pattern is estimated by the counting537

the number of times it appears and normalizing by T . This model has 2N parameters.538

4. Singleton entropy estimator (Berry II et al., 2013): this model uses the histogram539

method to estimate the probabilities of observed patterns in combination with an540

independent neuron model for the unobserved patterns. We implemented this method541

using our own MATLAB code.542

5. Archer-Park-Pillow (APP) method (Archer et al., 2013): a Bayesian entropy estimator543

that combines the histogram method for observed patterns with a Dirichlet prior con-544

strained by the population synchrony distribution. We implemented this method using545

the authors’ publicly available MATLAB code (http://github.com/pillowlab/CDMentropy).546

We chose these models for comparison because they are tractable to implement. Although547

it is possible that other statistical approaches such as the maximum entropy model family548
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28 2 Results

would more accurately approximate the true data distribution, it is di�cult to estimate the549

joint entropy from these models for data from ? 20 neurons (Table 1).550

In Figure 4 we plot the mean and standard deviation of the entropy/neuron estimates551

for this set of models as a function of the number of neurons (panels B and C) and number552

of time samples (panels D and E) analyzed. The key observation is that across most values553

of N and T , the majority of methods predict entropy values di↵erent from the true value554

(dashed line in all plots). These errors in the entropy estimates come from three sources:555

the finite sample variance, the finite sample bias and the asymptotic bias.556

The finite sample variance is the variability in parameter estimates across trials from557

limited data, shown in Figure 4C and E as the standard deviation in entropy estimates.558

Notably, the finite sample variance decreases to near zero for all models within 105–106559

time samples, and is approximately independent of the number of neurons analyzed for the560

population tracking method (Figure 4C and E).561

The second error, the finite sample bias, arises from the fact that entropy is concave562

function of p({x}). This bias is downward in the sense that the mean entropy estimate563

across finite-data trials will always be less than the true entropy: E[H(p̂{x})]  H(p({x})).564

Intuitively, any noise in the parameter estimates will tend to make the predicted pattern565

probability distribution more lumpy than the true distribution, so reducing the entropy566

estimate. Although this error becomes negligible for all models within a reasonable number567

of time samples for small numbers of neurons (N ⇡ 10) (Figure 4B and D), it introduces large568

errors for the histogram, singleton and APP methods for larger populations. In contrast to569

the finite sample variance, the finite sample bias depends strongly on the number of neurons570

analyzed for all models, typically becoming worse for larger populations.571

The third error, the asymptotic bias, is the error in entropy estimate that would persist572

even if infinite time samples were available. It is due to a mismatch between the form of573

the statistical model used to describe the data and the true underlying structures in the574

data. In Figure 4, this error is present for all models that do not include a histogram575
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2.5 Model fit convergence for large numbers of neurons 29

component: the independent, homogeneous population and population tracking models.576

Because the independent and homogeneous population models are maximum entropy given577

their parameters, their asymptotic bias in entropy will always be ‘upward’, meaning that578

these models will always overestimate the true entropy, given enough data. They are too579

simple to capture all of the structure in the data. Although population tracking method may580

have either an upward or downward asymptotic bias, depending on the structure of the true581

pattern probability distribution, for the example cases we examined this error was small in582

magnitude.583

The independent, homogeneous population, and population tracking models converged584

to their asymptotic values within 104–105 time samples (Figure 4D–E). The histogram,585

singleton and APP methods, in contrast, performed well for small populations of neurons,586

N < 20, but strongly underestimated the entropy for larger populations (Figure 4B, D),587

even for T = 106 samples.588

The independent, homogeneous population and population tracking models consistently589

predicted di↵erent values for the entropy. In order from greatest entropy to least entropy,590

they were: independent model, homogeneous population model, and population tracking.591

Elements of this ordering are expected from the form of the models. The independent592

model matches the firing rate of each neurons but assumes that they are uncorrelated,593

implying a high entropy estimate. Next, we found that the homogeneous population model594

had lower entropy than the independent model. However this ordering will depend on the595

statistics of the data so may vary from experiment to experiment. The model we propose, the596

population tracking model, matches the data statistics of both the independent model and597

the homogeneous population model. Hence its predicted entropy must be less than or equal598

to both of these two previous models. One important note is that the relative accuracies of599

the various models should not be taken as fixed, but will depend both on the statistics of600

the data and on the choices of the priors.601

In summary, of the six models we tested on synthetic data, the population tracking model602
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30 2 Results

consistently performed best. It converged on entropy estimates close to the true value even603

for data from populations as large as 1000 neurons.604
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2.5 Model fit convergence for large numbers of neurons 31

Fig. 4: Convergence of entropy estimate as a function of the number of neurons and time
samples analyzed.
A: Example spiking data from the DG model with two subpopulations, a low firing
rate group (filled black circles) and a higher firing rate group (open circles).
B–C: Mean (B) and standard deviation (C) of estimated entropy per neuron as a
function of the number of neurons analyzed, for each of the various models.
D–E: The mean (D) and standard deviation (E) of estimated entropy per neuron as
a function of the number of timesteps considered, for data from varying numbers of
neurons (left to right).
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32 2 Results

2.6 Population tracking model accurately predicts probabilities for605

both seen and unseen patterns606

The above analysis involved estimating a single summary statistic, the entropy, for the entire607

2N -dimensional pattern probability distribution. But how well do the models do at predicting608

the probability of individual population activity patterns? To test this we fit four of the six609

models to the same DG-generated data as the previous section, with N = 100 and T = 106.610

As seen in Figure 4D–E, for data of this size the entropy predictions of the three statistical611

models had converged, but the histogram method’s estimate had not. We then drew 100612

new samples from the same DG model, calculated all four models’ predictions of pattern613

probability for each sample, and compared the predictions with the known true probabilities614

(Figure 5).615

The independent model’s predictions deviated systematically from the true pattern prob-616

abilities. In particular, it tended to underestimate both high-probability and low-probability617

patterns, while overestimating intermediate probability patterns. It is important to note that618

the data in Figure 5 are presented on a log scale. Hence these deviations correspond to many619

orders of magnitude error in pattern probability estimates. The homogeneous population620

model did not show any systematic biases in probability estimates but did show substantial621

scatter around the identity line, again implying large errors. This is to be expected since this622

model assumes that all patterns for a given k have equal probability. In contrast to these two623

models, the population tracking model that we propose accurately estimated pattern proba-624

bilities across the entire observed range. Finally, the histogram method failed dramatically.625

Although it predicted well the probabilities for the most likely patterns, it quickly deviated626

from the true values for more rare patterns. And worst of all, it predicts a probability of627

zero for patterns that it has not seen before, as evidenced by the large number of missing628

points in the right plot in Figure 5.629

One final important point is that of the 100 test samples drawn from the DG model, 63630

were not part of the training set (light colored circles in Figure 5). However, the population631
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2.7 Model performance for populations with heterogeneous firing rates and correlations 33

tracking model showed no di↵erence in accuracy for these unobserved patterns compared632

with the 37 patterns previously seen during training (dark circles in Figure 5). Together,633

these results show that the population tracking model can accurately estimate probabilities634

of both seen and unseen patterns, for data from large numbers of neurons.635

Fig. 5: Predicted pattern probabilities as a function of true pattern probabilities for a pop-
ulation of 100 neurons sampled from the same DG model as Figure 4. From left to
right: independent model (blue), homogeneous population model (green), population
tracking model (red) and histogram method (amber). In each plot the darker colored
symbols correspond to patterns seen during model training and so were used in fitting
the model parameters, and lighter colored symbols correspond to new patterns that
appeared only in the test set. The histogram plot (right) shows only data for the
subset of patterns seen in both the training and test sets. Dashed diagonal line in
each plot indicates identity.

2.7 Model performance for populations with heterogeneous firing636

rates and correlations637

In order to calculate the ground truth pattern probabilities and entropy for large N for638

the above analysis, we assumed homogeneous firing rates and correlations to ensure symme-639

tries in the pattern probability distributions. However, since the population tracking model640

also implicitly assumes some shared correlations across neurons due to their shared depen-641

dence on the population rate variable K, this situation may also bias the results in favor642

of the population tracking model in the sense that this may be the regime where Pmodel643

best matches Ptrue. Since in vivo neural correlations typically appear to have significant644
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34 2 Results

structure (Figure 1C), we also examined the behavior of the model for a scenario with more645

heterogeneous firing rates and correlations. We repeated the above analysis using samples646

from the DG neuron model with N = 10, but with individual neuron firing rates drawn from647

a normal distribution µ = 0.1, � = 0.02, and pairwise correlations drawn from a normal648

distribution with µ = 0.05, � = 0.03 (Figure 6A). We numerically calculated the 210 = 1024649

ground truth pattern probabilities by exhaustively sampling from the DG model. We again650

varied the number of time samples from 100 to 1,000,000 and fit the population tracking651

model and several comparison models: the independent neuron model, the homogeneous652

population model, the histogram method, and also the pairwise maximum entropy model653

(Schneidman et al., 2006). We computed the Jensen-Shannon (JS) divergence, which is a654

measure of the di↵erence between the true and model pattern probability distributions (Fig-655

ure 6B), entropy/neuron (Figure 6C), and all 1024 individual pattern probabilities (Figure656

6D). Although the population tracking model outperformed the independent and homoge-657

neous population models as before, it was outperformed by the pairwise maximum entropy658

model on this task. The JS divergence of the population tracking model saturated at a659

higher non-zero floor than the pairwise maximum entropy models in Figure 6B. However,660

on the other hand the asymptotic error in the population tracking’s estimate of entropy was661

minimal at +0.0015 bits, or 0.3% (Figure 6C). It is di�cult to ascertain whether the pairwise662

maximum entropy model would also outperform the population tracking model for large N ,663

and requires further study.664
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2.8 Decoding neural population electrophysiological data from monkey visual cortex 35

Fig. 6: Performance of various models for data from 10 neurons with heterogeneous firing
rates and correlations.
A: Example spiking data from the DG model (top left), with heterogeneous correla-
tions and firing rates (bottom).
B–C: Jensen-Shannon divergence of each model’s predicted pattern probability dis-
tribution with the true distribution (B) and entropy per neuron (C) as a function of
the number of time samples.
D: Predicted pattern probabilities versus true pattern probabilities for each of the
tested models (left to right), for 1,000,000 time samples.

2.8 Decoding neural population electrophysiological data from665

monkey visual cortex666

We next tested the ability of the population tracking model to decode neural population667

responses to stimuli. We analyzed electrode array data recorded from anesthetized macaque668

primary visual cortex in response to visual stimuli (Figure 7A, see Experimental Procedures669

and Zandvakili and Kohn, 2015 for details). Spike sorting algorithms were applied to the670

raw voltage waveforms to extract the times of action potentials from multi-units. Altogether671

131 di↵erent multi-units were recorded from a single animal. The animal was shown drifting672
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oriented sinusoidal gratings chosen from eight orientations in a pseudorandom order. Each673

1.28 s stimulus presentation was interleaved with a 1.5 s blank screen, and all eight possible674

stimulus orientations were presented 300 times each.675

Our decoding analysis proceeded as follows. We first rebinned the data into 10 ms in-676

tervals. If a unit spiked one or more times in a time bin, it was labeled as ON, otherwise677

it was labelled OFF. Second, we chose a random subset of N units from the 131 total, and678

excluded data from the rest. Then for a given stimulus orientation, we randomly split the679

data from the 300 trials into a 200 trial training set, and 100 trial test set. We concatenated680

the data from the 200 training trials and fit the population tracking model to this dataset,681

along with two control statistical models: the independent model and the homogeneous682

population model. We repeated this procedure separately for the eight di↵erent stimulus683

orientations, so were left with eight di↵erent sets of fitted parameters, one for each orienta-684

tion. We then applied maximum likelihood decoding separately on neural responses to 100685

randomly chosen stimuli from the test dataset. Finally, we repeated the entire analysis 100686

times for di↵erent random subsets of N neurons and training/test data set partitions, and687

took a grand average of decoding performance.688

We plot the decoding performance of the various statistical models as a function of time689

since the stimulus onset in Figure 7B. For all models, decoding was initially at chance level690

(1/8 = 0.125), then began to increase around 50 ms after stimulus onset, corresponding to691

the delay in spiking response in visual cortex (Figure 7A). Decoding performance generally692

improved monotonically both with the number of neurons and number of timepoints ana-693

lyzed, for all models. However, decoding performance was much higher for the independent694

and population tracking models, which saturated at almost 100% correct, compared with695

⇠ 25% correct for the homogeneous population model. Hence for these data it appears that696

the majority of information about the stimulus is encoded in the identities of which neurons697

are active, and not in the total numbers of neurons active.698

Although both the independent and population tracking models saturated to almost 100%699
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2.8 Decoding neural population electrophysiological data from monkey visual cortex 37

decoding performance at long times, we found that for larger sets of neurons, the population700

tracking model’s performance rose earlier in time than the independent neuron model (Figure701

7B–C). For 10 neurons, the independent model and population tracking model reached 50%702

accuracy at similar times after stimulus onset (146 ms with 95% c.i. [136.4 : 156] ms for703

population tracking model and 142.5 ms with 95% c.i. [133.2 : 152.3] ms for independent704

model). However given spiking data from 100 neurons, the population tracking model reached705

50% correct decoding performance at 66.1 ms after stimulus onset (95% c.i. [64.2 : 68] ms),706

whereas the independent model reached the same level later, at 76.2 ms after stimulus onset707

(95% c.i. [74.2 : 78] ms). Although superficially this may appear to be a modest di↵erence in708

decoding speed, it is important to note that the baseline time for decoding above chance was709

not until 52.3 and 56.8 ms after stimulus onset for the population tracking and independent710

models, respectively (see Experimental Procedures for details). The reason for this late711

rise in decoding accuracy is the documented ⇠ 50 ms lag in spiking response in macaque V1712

relative to stimulus onset (Chen et al., 2006, 2008) (see Figure 7A). Given that we discretized713

the data into timebins of 10 ms, this implies that the population tracking model could decode714

stimuli mostly correctly given data from less 2 time frames on average. In summary, these715

results show that the population tracking model can perform rapid stimulus decoding.716
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38 2 Results

Fig. 7: Decoding neural population spiking data from macaque primary visual cortex in re-
sponse to oriented bar visual stimuli.
A: Example spiking data from fifty neurons during a single presentation of an ori-
ented bar stimulus. Time zero indicates onset of stimulus.
B: Decoding performance as a function of time since stimulus onset for three di↵er-
ent decoding models (di↵erent colored curves) and varying numbers of neurons (plots
from left to right). Chance decoding level in all cases was 1/8 = 0.125.
C: The mean time since stimulus onset to reach 50% decoding accuracy for the in-
dependent (blue) and population tracking (red) models, as a function of the number
of neurons analyzed. The dashed curves indicate the time at which decoding ac-
curacy first statistically exceeded noise levels. Time bin size fixed at 10 ms. The
homogeneous population model is not shown because it never reached 50% decoding
accuracy.
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2.9 Entropy estimation from two-photon Ca2+ imaging population data from mouse somatosensory cortex 39

2.9 Entropy estimation from two-photon Ca2+ imaging population717

data from mouse somatosensory cortex718

As a second test case neurobiological problem, we set out to quantify the typical number719

of activity patterns and entropy of populations of neurons in mouse neocortex, across de-720

velopment. We applied our analysis method to spontaneous activity in neural populations721

from data previously recorded (Gonçalves et al., 2013) by in vivo two-photon Ca2+ imag-722

ing in layer 2/3 primary somatosensory cortex of unanesthetized wild-type mice with the723

fluorescent indicator Oregon green BAPTA-1 (see Experimental Procedures for further de-724

tails). The original data were recorded at ⇠ 4 Hz (256 ms timeframes), but for this analysis725

we resampled the data into 1 s timebins because we found that it optimized a tradeo↵ be-726

tween catching more neurons in the active state versus maintaining a su�cient number of727

timeframes for robust analysis.728

To compare neural activity across development we used the Shannon entropy/neuron, h729

(Figure 8H–I). Shannon entropy is a concept adopted from information theory that quantifies730

the uniformity of a probability distribution. If all patterns were equally probable then h = 1731

bit. At the opposite extreme, if only one pattern were possible then h = 0 bits. It also has732

a functional interpretation as the upper limit on the amount of information the circuit can733

code (Cover and Thomas, 2006).734

We performed the analysis on data from mice at three developmental age points: P9–11735

(n=13), P14–16 (n=8) and P30–40 (n=7). These correspond to timepoints just before (P9–736

P11) and after (P14–P16) the critical period for cortical plasticity, and mature stage post-737

weaning (P30–P40). Entropy is determined by two main properties of the neural population738

activity: the activity levels of the neurons and their correlations. We found than mean ON739

probability increased between ages P9–P11 and P14–16 (p=0.0016), then decreased again at740

age P30–40 (p=0.0024). As previously observed (Rochefort et al., 2009; Golshani et al., 2009;741

Gonçalves et al., 2013), mean pairwise correlations decreased across development (p<0.001,742

P9–P11 vs P14–P16) (Figure 8D) so that as animals aged there were fewer synchronous743

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 23, 2016. ; https://doi.org/10.1101/064717doi: bioRxiv preprint 

https://doi.org/10.1101/064717
http://creativecommons.org/licenses/by-nc-nd/4.0/


40 2 Results

events when many neurons were active together (Figure 8A,C).744

What do these statistics predict for the distribution of activity patterns exhibited by745

neural circuits? Interestingly, activity levels and correlations are expected to have opposite746

e↵ects on entropy: in the sparse firing regime, any increase ON probability should increase747

the entropy by increasing the typical number of activity patterns due to combinatorics, while748

an increase in correlations should decrease the entropy because groups of neurons will tend749

to be either all ON or all OFF together.750

When we quantified the entropy of the pattern probability distributions, we found a751

non-monotonic trajectory across development (Figure 8F–G). For 100-neuron populations,752

in young animals at P9–P11 we found a low group mean entropy of ⇠ 0.38 bits/neuron (c.i.753

[0.347 : 0.406]), followed by an increase at P14–P16 (p<0.001) to ⇠ 0.49 bits/neuron (c.i.754

[0.478 : 0.517]), and then a decrease in adulthood P30-P40 (p=0.036) to ⇠ 0.45 bits/neuron755

(c.i. [0.418 : 0.476]). Although these shifts in dimensionality were subtle as estimated by756

entropy, they correspond to exponentially large shifts in pattern number. For example,757

100-neuron populations in P14–P16 animals showed an average of 5.6⇥ 1010 patterns while758

100-neuron populations in P30–P40 animals showed an 8-fold fewer number of ⇠ 7.1 ⇥ 109759

typical patterns (data not shown). One interpretation of these findings is that young animals760

compress their neural representations of stimuli into a small ‘dictionary’ of activity patterns,761

then expand their representations into a larger dictionary at P14–P16, before again reducing762

the coding space again in adulthood, P30–P40.763
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2.9 Entropy estimation from two-photon Ca2+ imaging population data from mouse somatosensory cortex 41

Fig. 8: Entropy of neural populations in mouse somatosensory cortex increases then decreases
during development.
A: Example Ca2+ imaging movie from mice ages P9–11 (left), P14–16 (center), and
P30–40 (right).
B: Mean ON probability of neurons by group. Each circle corresponds to the mean
across all neurons recorded in a single animal, bars represent group means.
C: Probability density of the fraction of active neurons, for sets of 50 neurons. Light
gray traces are distributions from single animals, heavy black traces are group means.
D: Mean pairwise correlation between neurons in each group.
E: Cumulative distribution of pattern probabilities for each group, for sets of 50
neurons. Note log scale on x-axes.
F: Entropy per neuron as a function of the number of neurons analyzed.
G: Estimate of mean entropy per neuron for 100 neurons.

Is the shift in cortical neural population entropy across development due to changes in764

firing rates, correlations, or both? We assessed this by fitting two control models to the765

same Ca2+ imaging data: the independent neuron model and the homogeneous population766

model (Figure 9). The independent neuron model captures changes in neural firing rates767

across development, including the heterogeneity in firing rates across the population, but768
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42 2 Results

inherently assumes that all correlations are fixed at zero. Although the independent model769

predicted a significant decrease in entropy between P14–16 and P30–40 (p=0.014) similar770

to the population tracking model, it did not detect an increase in entropy from P9–11 to771

P14–16 (p=0.13) (Figure 9B, left).772

The homogeneous population model captures a di↵erent set of statistics. By matching773

the population synchrony distribution, it fits both the mean neuron firing rates and mean774

pairwise correlations. However, it also assumes that all neurons have identical firing rates775

and identical correlations, hence it does not capture any of the population heterogeneity that776

the independent neuron model does. In contrast to the independent model, the homogeneous777

population model did predict the increase in entropy from P9–11 to P14–16 (p=0.002), but778

did not detect a decrease in entropy from P14–16 to P30–40 (p=0.24).779

Importantly, the independent and homogeneous population models always estimate greater780

entropy values than the population tracking model. This is to be expected since the popula-781

tion tracking model matches the key statistics of both control models together, and so cannot782

have a greater entropy than either. Together, these results demonstrate that the population783

tracking model can detect shifts in population entropy that could not be detected from either784

independent or homogeneous population models alone.785
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Fig. 9: Mouse somatosensory cortex entropy trajectories are not captured by either the in-
dependent or homogeneous population models.
A: Entropy per neuron estimated from the independent (blue circles) or homogeneous
population (green) models against the same quantity estimated from the population
tracking model, for data from mice of three age groups (left, center and right plots).
Each circle indicates the joint entropy estimated for 100 neuron population recording
from a single animal. Note that the independent and homogeneous population mod-
els always estimate greater entropy values than the population tracking model.
B: Same data as panel A, plotted to compare to previous Figure 8G. Note that nei-
ther the independent (blue, left) nor homogeneous population (green, right) models
predict the inverted-U shaped trajectory uncovered by the population tracking model
(Figure 8G).

3 Discussion786

Here we introduced a novel statistical model for neural population data. The model works787

by matching two features of the data: first, the probability distribution for the number of788

neurons synchronously active, and second, the conditional probability that each individual789

neuron is ON given the total number of active neurons in the population. The former set790
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of parameters are informative about the general statistics of the population activity: the791

average firing rates and the level of synchrony. The latter set of parameters tell us more792

about the heterogeneity within the population: some neurons tend to follow the activity of793

their neighbors, while others tend to act independently. These two types of cells recently794

have been called ‘choristers’ and ‘soloists’, respectively (Okun et al., 2015).795

Compared to existing alternatives (Table 1), the model we propose has several strengths:796

1) it is rich enough to accurately predict pattern probabilities, even for large neural pop-797

ulations; 2) its parameters are computationally cheap to fit for large N ; 3) the parameter798

estimates converge within an experimentally reasonable number of data timepoints, 4) sam-799

pling from the model is straightforward, with no correlation between consecutive samples; 5)800

it is readily normalizable to directly obtain pattern probabilities; 6) the model’s form permits801

a computationally tractable low-parameter approximation of the entire pattern probability802

distribution.803

These strengths make the model appealing for certain neurobiological problems. However,804

since a pattern probability distribution can only be fully specified by 2N numbers — so805

including correlation at all orders — whereas our model has only N2 parameters, it must806

naturally also have some shortcomings. The main weaknesses are: 1) since the population807

synchrony distribution becomes more informative with greater N , our model will in most808

cases be outperformed by alternatives for small N ; 2) although our model captures the mean809

pairwise correlation across the population, it does not account for the full pairwise correlation810

structure (Figure 2C, center); 3) since the model considers only spatial correlations, temporal811

correlations are unaccounted for (Figure 2C, right); 4) The model parameters are not readily812

interpretable in a biological sense, unlike the pairwise couplings of the maximum entropy813

models (Schneidman et al., 2006), or the stimulus filters in Generalized Linear Models (Pillow814

et al., 2008); 5) unlike classic maximum entropy models, ours carries no notion of an energy815

landscape and so does not imply a natural dynamics across the state space (Tkacik et al.,816

2014).817
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We demonstrated the utility of the population tracking model by applying it to two818

neurobiological problems. First, we found that the population tracking model allowed fast819

prediction of visual stimuli by decoding neural population data from macaque primary visual820

cortex (Figure 7). A simple but widely used alternative model that assumes independent821

neurons achieved 50% decoding accuracy around 20 ms after performance rose above chance822

levels. In contrast,. the population tracking model reached 50% accuracy only ⇠ 14 ms823

after exceeding chance levels. Since we binned time in 10 ms intervals, this implies that824

the population tracking model was correct more often than not given neural population825

data from less than two timepoints, on average. What does this finding imply for brain826

function? The actual decoding algorithm we used for this task, Maximum Likelihood, is not827

neurobiologically plausible. However, the fact that the population tracking model worked828

so well implies two things about cortical visual processing. First, su�cient information is829

present in the spiking patterns of these neural populations to perform stimulus discrimination830

very quickly after the stimulus response onset. Previous studies found that good decoding831

performance for similar tasks was typically achieved at least 80–100 ms following stimulus832

onset (Chen et al., 2008; Berens et al., 2012), whereas the population tracking model took833

only ⇠ 65 ms. However, direct comparisons with these previous studies are problematic: for834

example, on the one hand Berens et al. (2012) examined only 20 units while we considered835

groups up to N = 100, but on the other hand Berens et al. (2012) considered only a binary836

classification task whereas we considered the more di�cult task of decoding a single stimulus837

orientation from all eight possibilities. Further work is needed to resolve these issues. Second,838

the improved performance of the population tracking model over the independent model839

implies that it may be beneficial for the brain to explicitly represent the number of neurons840

simultaneously active in the local circuit. Indeed this seems like a natural computation for841

single neurons to perform as they sum the synaptic inputs from their neighboring neurons.842

Our finding implies that this summed value itself carries additional information about the843

stimulus beyond that present in the list of identities of active neurons. Whether and how844
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46 3 Discussion

the brain uses this information remain questions for future study.845

Our second application of the population tracking model was to look for changes in846

the distribution of neural pattern probabilities in mouse somatosensory cortex across devel-847

opment (Figure 8). We found a surprising non-monotonic trajectory across development.848

Initially at P9–11 the entropy of population activity is low, due to large synchronous events849

in the population. The correlations decrease dramatically at around P12 (Golshani et al.,850

2009; Rochefort et al., 2009), so that at P14–16 activity is relatively desynchronized, leading851

to an increase in population entropy. However, we then found a reduction in firing rates852

from P14–16 to P30–40 that corresponded to a decrease in entropy, despite no large change853

in correlations. These findings uncover a subtle and unexplained developmental trajectory854

for mouse somatosensory cortex that warrants detailed further study. Importantly, this non-855

monotonic development curve would not have been detectable by examining either firing856

rates or correlations in isolation (Figure 9).857

The population tracking model we propose is similar in spirit to a recently proposed858

alternative, the population coupling model (Okun et al., 2012, 2015; Schölvinck et al., 2015).859

These authors developed a model of neural population data with 3N parameters: N speci-860

fying the firing rates of each neuron, another N specifying the population rate distribution,861

and a final N specifying the linear coupling of each individual neuron with the population862

rate. Okun et al. (2015) fit this model to data from mouse, rat, and primate cortex and863

found that neighboring neurons showed diverse couplings to the population rate, that this864

coupling was invariant to stimulus conditions, and that the degree of a neuron’s popula-865

tion coupling was reflected in the number of synaptic inputs it received from its neighbors.866

These results show that the population rate contains valuable statistical information that867

can help constrain models of neural population dynamics. Despite these notable advances,868

the population coupling model of Okun et al. also su↵ers from several shortcomings that our869

model does not: first, it o↵ers no way to write down either the probability of a single neural870

activity pattern or the relative probabilities of two activity patterns in terms of the model’s871
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parameters. Second, for large neural populations there is no way to estimate functions of the872

entire pattern probability distribution, such as the Shannon entropy or the Kullback-Leibler873

divergence. Third, generating samples from the model involves a computationally expen-874

sive iterative procedure, and the probability distribution across possible samples is not fully875

determined by the model parameters, but depends also on the experimenter’s choice of sam-876

pling algorithm. Finally, the model assumes a linear relationship between each individual877

neuron’s firing rate and the population rate. Although parsimonious, this linear model may878

be insu�ciently flexible to capture the true relationship. Also a linear model must break879

down at some point: a neuron cannot fire at rates less than zero Hertz or at rates higher880

than its maximal firing frequency. For all of these reasons, we suggest that the model we881

propose may be applicable to a wider range of neurobiological problems than the population882

coupling model.883

In what scenarios will the population tracking model do best and worst in? Intuitively, the884

model will do best when the true pattern probability distribution, which in principle could885

take any arbitrary shape in its 2N -dimensional space, is nearby to the family of probability886

distributions that are attainable from the population tracking model, which has only N2

887

degrees of freedom. A rigorous mathematical understanding of the neural activity regimes888

that could be well-matched by the population tracking model remains a goal for future889

studies. Nevertheless, we can hazard an answer to this question based on the form of the890

model. Given that the population tracking model assumes that all individual neurons are891

coupled only via a single global population rate variable K, it will be unlikely that the892

model can well capture any correlations within or between any specific subgroups present in893

the data. Presumably the degree of error that this introduces will increase with increasing894

heterogeneity in correlation structure, especially if the neural population is highly modular.895

Indeed we found that the entropy estimated for heterogeneous DG model samples was less896

accurate than the case where DG model parameters were more homogeneous (compare Figure897

4D, left with Figure 6C). We do note however that the population tracking model can capture898

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 23, 2016. ; https://doi.org/10.1101/064717doi: bioRxiv preprint 

https://doi.org/10.1101/064717
http://creativecommons.org/licenses/by-nc-nd/4.0/


48 3 Discussion

some of the pairwise correlation structure beyond the means, as observed in Figure 2C and899

Appendix Figure 1. This may be due to the fact that the model captures the heterogeneity900

in firing rates, which can a↵ect pairwise correlations (de la Rocha et al., 2007). Overall, we901

suggest that the primary benefit of the population tracking model may not be that it is the902

most accurate of all available models, but that it preserves its accuracy and tractability for903

large N datasets.904

What type of new neurobiological research questions can we ask with the population905

tracking model? We introduced a method for calculating the divergence between the model906

fits to two sets of neural population activity data. This measure should be useful for ex-907

periments where the same neurons are recorded in two or more di↵erent conditions, such as908

comparing the statistics of spontaneous activity with that evoked by stimuli (Figure 5), or909

the e↵ects of an acute pharmacological or optogenetic stimulation on neural circuit activ-910

ity. In contrast, if experiments involve comparing neural population activity from di↵erent911

animals, such as genetically distinct animals or at di↵erent timepoints in development, one912

can still perform quantitative comparisons of the activity statistics at a grouped population913

level (Figure 8).914

The most direct usage of our model may however be to provide limits and constraints on915

future theoretical models of neural population coding. The Shannon entropy is a particularly916

useful measure because it provides an upper bound on the information that the neural917

population can represent. We conjecture, but have not proven, that our model is maximum918

entropy given the parameters. Adding temporal correlations, which real neurons show but919

are not included in the population tracking model, can only further reduce the population920

entropy. Hence, assuming that enough data are available for the model parameter fits to921

converge, the entropy estimate from the population tracking model gives a hard upper bound922

on the coding capacity of a circuit. Any feasible model for neural processing in a given brain923

region must obey these limits.924
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Appendix931

Macaque electrophysiological recording932

All macaque electrophysiology data were previously published (Zandvakili and Kohn, 2015)933

and kindly shared by A. Kohn. Full details of experimental procedures and raw data pro-934

cessing steps are available in Zandvakili and Kohn (2015).935

Mouse in vivo calcium imaging recording936

All Ca2+ imaging data were previously published (Gonçalves et al., 2013). Briefly, data937

were collected from male and female C57Bl/6 wild-type mice at P9–40. Mice were anes-938

thetized with isoflurane, and a cranial window was fitted over primary somatosensory cortex939

by stereotaxic coordinates. Mice were then transferred to a two-photon microscope and940

headfixed to the stage while still under isoflurane anesthesia. 2–4 injections of the Ca2+ sen-941

sitive Oregon-Green BAPTA-1 (OGB) dye and sulforhodamine-101 (to visualize astrocytes)942

were injected 200 µm below the dura. Calcium imaging was performed using a Ti-Sapphire943

Chameleon Ultra II laser (Coherent) tuned to 800 nm. Imaging in unanesthetized mice944

began within 30-60 mins of stopping the flow of isoflurane after the last OGB injection. Im-945

ages were acquired using ScanImage software (Pologruto et al., 2003) written in MATLAB946

(MathWorks). Whole-field images were collected using a 20× 0.95 NA objective (Olympus)947
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50 3 Discussion

at an acquisition speed of 3.9 Hz (512 × 128 pixels).948

Several 3-minute movies were concatenated and brief segments of motion artifacts were949

removed (always <10 s total). Data were corrected for x-y drift. Cell contours were auto-950

matically detected and the average �F/F signal of each cell body was calculated at each951

time point. Each �F/F trace was low-pass filtered using a Butterworth filter (coe�cient of952

0.16) and deconvolved with a 2 s single-exponential kernel (Yaksi and Friedrich, 2006). To953

remove baseline noise, the standard deviation of all points below zero in each deconvolved954

trace was calculated, multiplied by two, and set as the positive threshold level below which955

all points in the deconvolved trace were set to zero. Estimated firing rates of the neurons,956

ri(t), were then obtained by multiplying the deconvolved trace by a factor of 78.4, which was957

previously derived empirically from cell-attached recordings in vivo (Golshani et al., 2009).958

Data analysis methods959

All data analysis and calculations were done using MATLAB (The Mathworks).960

Statistical tests961

To avoid parametric assumptions, all statistical tests were done using standard bootstrapping962

methods with custom-written MATLAB scripts. For example when assessing the observed963

di↵erence between two group means �µobs we performed the following procedure to calculate964

a p-value. First we pool the data points from the two groups to create a null set Snull. We965

then construct two hypothetical groups of samples S
1

and S
2

from this by randomly drawing966

n
1

and n
2

samples with replacement from Snull, where n
1

and n
2

are the number of data967

points in the original groups 1 and 2 respectively. We take the mean of both hypothetical968

sets µ
1

and µ
2

and calculate their di↵erence �µnull = µ
1

� µ
2

. We then repeat the entire969

procedure 107 times to build up a histogram of �µnull. This distribution is always centered970

at zero. After normalizing, this can be interpreted as the probability distribution Pr(�µnull)971

for observing a group mean di↵erence of �µnull purely by chance if the data were actually972

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 23, 2016. ; https://doi.org/10.1101/064717doi: bioRxiv preprint 

https://doi.org/10.1101/064717
http://creativecommons.org/licenses/by-nc-nd/4.0/


51

sampled from the same null distribution. Then the final p-value for the probability of finding973

a group di↵erence of at least �µobs in either direction is given by974

p =

ˆ ��µ
obs

�1
Pr(�µnull)d�µnull +

ˆ 1

�µ
obs

Pr(�µnull)d�µnull

Any data that varied over multiple orders of magnitude (e.g. the number of patterns975

observed) was log-transformed before comparing group means.976

Conversion from firing rate to ON/OFF probabilities for Ca2+ imaging data977

For the Ca2+ imaging data, we began with estimated firing rate time series ri(t) for each978

neuron i recorded as part of a population of N neurons. For later parts of the analysis we979

needed to convert these firing rates to binary ON/OFF values. This conversion involves980

a choice. One option would be to simply threshold the data, but this would throw away981

information about the magnitude of the firing rate. We instead take a probabilistic approach982

where rather than deciding definitively whether a given neuron was ON or OFF in a given983

time bin, we calculate the probability that the neuron was ON or OFF by assuming that984

neurons fire action potentials according to an inhomogeneous Poisson process with rate ri(t).985

The mean number of spikes �i(t) expected in a time bin of width �t is �i(t) = ri(t)⇥�t. We986

choose�t = 1 second. Under the Poisson model the actual number of spikesm in a particular987

time bin is a random variable that follows the Poisson distribution P (m = k) = �ke��

k! . We988

will consider a neuron active (ON) if it is firing one or more spikes in a given time bin. Hence989

the probability that a neuron is ON is pon(t) = 1� P (m = 0) = 1� e�. This approach has990

two advantages over thresholding: 1) it preserves some information about the magnitude of991

firing rates, and 2) it acts to regularize the probability distribution for the number of neurons992

active by essentially smoothing nearby values together.993

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 23, 2016. ; https://doi.org/10.1101/064717doi: bioRxiv preprint 

https://doi.org/10.1101/064717
http://creativecommons.org/licenses/by-nc-nd/4.0/


52 3 Discussion

Entropy estimation for large numbers of neurons for Ca2+ imaging data994

The entropy/neuron generally decreased slightly with the number of neurons considered as995

result of the population correlations (see Figure 8F in main text), so we needed to control for996

neural population size when comparing data from di↵erent experimental groups. On the one997

hand we would like to study as large a number of neurons as possible, because we expect the998

e↵ects of collective network dynamics to be stronger for large population sizes and this may999

be the regime where di↵erences between the groups emerge. On the other hand our recording1000

methods allowed us to sample only typically around ⇠ 100 neurons at a time, and as few as1001

40 neurons in some animals. Hence we proceeded by first estimating the entropy/neuron in1002

each animal by calculating the entropy of random subsets of neurons of varying size from 101003

to 100 (if possible) in steps of 10. For each population size we sampled a large number of1004

independent subsets, calculated the entropy of each. Finally for each dataset we fit a simple1005

decaying exponential function to the entropy/neuron as a function of the number of neurons:1006

H(N)

N = Ae�bN + c, and used this fit to estimate H/N for 100 neurons.1007

1008
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Appendix Figure 1.1009

Appendix Figure 1: The population tracking model partially recapitulates the pairwise
correlation structure of the original data. Left column are the pairwise correlation matrices
from the example data shown in Figure 2 (top), for samples drawn from the population track-
ing model fit to these data (center), and the residual pairwise correlations in the data after
subtracting the covariance accounted for by the population tracking model and renormaliz-
ing (bottom). Center column are histograms of the pairwise correlations from each matrix
in the left column. The scatter plots in the right column show the individual pairwise cor-
relations of the model (red) and the data minus the model (purple) against the pairwise
correlations in the original data. Note that the model almost exactly captures the mean
pairwise correlation of the original data, and part of the remaining structure (R2 = 0.52).
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Gonçalves, J. T., Anstey, J. E., Golshani, P., and Portera-Cailliau, C. (2013). Circuit level1054

defects in the developing neocortex of Fragile X mice. Nature neuroscience.1055

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 23, 2016. ; https://doi.org/10.1101/064717doi: bioRxiv preprint 

https://doi.org/10.1101/064717
http://creativecommons.org/licenses/by-nc-nd/4.0/


56 REFERENCES
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