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Abstract

Our understanding of neural population coding has been limited by a lack of analysis methods
to characterize spiking data from large populations. The biggest challenge comes from the fact
that the number of possible network activity patterns scales exponentially with the number of
neurons recorded (~ 2N¢U°"s) - Here we introduce a new statistical method for characterizing neural
population activity that requires semi-independent fitting of only as many parameters as the square

of the number of neurons, so requiring drastically smaller data sets and minimal computation time.
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2 1 Introduction

19 The model works by matching the population rate (the number of neurons synchronously active)
20 and the probability that each individual neuron fires given the population rate. We found that
21 this model can accurately fit synthetic data from up to 1000 neurons. We also found that the
2 model could rapidly decode visual stimuli from neural population data from macaque primary
23 visual cortex, ~ 65 ms after stimulus onset. Finally, we used the model to estimate the entropy of
2 neural population activity in developing mouse somatosensory cortex and surprisingly found that
»s it first increases, then decreases during development. This statistical model opens new options for
2 interrogating neural population data, and can bolster the use of modern large-scale in vivo Ca?*t

27 and voltage imaging tools.

» 1 Introduction

2 Brains encode and process information as electrical activity over populations of their neu-
% rons (Churchland and Sejnowski, 1994; Averbeck et al., 2006). Although understanding the
a1 structure of this neural code has long been a central goal of neuroscience, historical progress
3 has been impeded by limitations in recording techniques. Traditional extracellular recording
1 electrodes allowed isolation of only one or a few neurons at a time (Stevenson and Kording,
2 2011). Given that the human brain has on the order of 10! neurons, the contribution of
55 such small groups of neurons to brain processing is likely minimal. To get a more complete
s picture we would instead like to simultaneously observe the activity of large populations of
;7 neurons. Although the ideal scenario — recording every neuron in the brain — is out of
s reach for now, recent developments in both electrical and optical recording technologies have
3 increased the typical size of population recording so that many laboratories now routinely
w0 record from hundreds or even thousands of neurons (Stevenson and Kording, 2011). The
s advent of these big neural data has introduced a new problem: how to analyze them.

a2 The most commonly applied analysis to neural population data is to simply examine
13 the activity properties of each neuron in turn, as if they were recorded in separate animals.

s However responses of nearby neurons to sensory stimuli are often significantly correlated,
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»s implying that neurons do not process information independently (Perkel et al., 1967; Gerstein
s and Perkel, 1969, 1972; Singer, 1999; Cohen and Kohn, 2011). As a result, performing a cell-
sz by-cell analysis amounts to throwing away potentially valuable information on the collective
ss  behavior of the recorded neurons. These correlations are important because they put strong

» functional constraints on neural coding (Zohary et al., 1994; Averbeck et al., 2006).

50 If we consider each neuron to have two spiking activity states, ON or OFF, then a
51 population of N neurons as a whole can have 2V possible ON/OFF patterns at any moment
s in time. The probability of seeing any particular one of these population activity patterns
53 depends on the brain circuit examined, the stimuli the animal is subject to, and perhaps
s« also the internal brain state of the animal. Neural correlations and sparse firing imply that
ss the probability of some activity patterns are more likely than others. To help understand
ss the neural code we would like to be able to estimate the probability distribution across
v all 2V patterns, P,.,.. For small N, the probability of each pattern can be estimated by
s simply counting each time it appears, then dividing by the total number of timepoints
so recorded. However, since the number of possible patterns increases exponentially with N, this
o histogram method is experimentally intractable for populations larger than ~ 10 neurons.
s For example, 20 neurons would require fitting 22° ~ 10° parameters, one for each possible
e activity pattern. To accurately fit this model by counting patterns alone would require data
&3 recorded for many weeks or months. The problem gets worse for larger numbers of neurons:
&« each additional neuron recorded requires a doubling in the recording time to reach the same
s level of statistical accuracy. This explosive scaling implies that we can never know the true

s distribution of pattern probabilities for a large number of neurons in a real brain.

67 This problem remained intractable until a seminal paper in 2006 demonstrated a possible
¢ solution: to fit a statistical model to the data that matches only some of the key low-order
s statistics, such as firing rates and pairwise correlations, and assume nothing else (Schneidman
w0 et al., 2006). The hope was that these basic statistics are sufficient for the model to capture

7 the majority of structure present in the real data so that Poget = Piue. Indeed early
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4 1 Introduction

22 studies showed that such pairwise mazimum entropy models could accurately capture activity
73 pattern probabilities from recordings of 10-15 neurons in retina and cortex (Schneidman
74 et al., 2006; Shlens et al., 2006; Tang et al., 2008; Yu et al., 2008). Unfortunately however,
s later studies found that performance of these pairwise models was poor for larger populations
7 and in different activity regimes (Ohiorhenuan et al., 2010; Ganmor et al., 2011; Yu et al.,
77 2011; Yeh et al., 2010), as predicted by theoretical work (Roudi et al., 2009; Macke et al.,
7z 2011a). As a consequence, variants of the pairwise maximum entropy models have been
79 proposed that include higher-order correlation terms (Ganmor et al., 2011; Tkacik et al.,
so 2013, 2014), but these are difficult to fit for large N and are not readily normalizable.
&1 Alternative approaches have also been developed that appear to provide better matches to
22 data (Amari et al., 2003; Pillow et al., 2008; Macke et al., 2009, 2011b; Koster et al., 2014;
es Okun et al., 2012; Park et al., 2013; Okun et al., 2015; Scholvinck et al., 2015; Cui et al.,
sa 2016), but these suffer from similar shortcomings (Table 1). We suggest the following criteria

&s for an ideal statistical model for neural population data:

86 1. It should accurately capture the structure in real neural population data.

87 2. Its fitting procedure should scale well to large IV, meaning that the model’s parameters
8 can be fit to data from large neural populations with a reasonable amount of data and
89 computational resources.

% 3. Quantitative predictions can be made from the model after it is fit.

o No existing model meets all three of these demands (Table 1). Here we propose a novel,
o simple statistical method that does: the population tracking model. The model is specified
s by only N? parameters: N to specify the distribution of number of neurons synchronously
w active, and a further N2 — N for the conditional probabilities that each individual neuron
s is ON given the population rate. Although no model with N? parameters can ever fully
o capture all 2V pattern probabilities, we find that the population tracking model strikes

o7 a good balance between accuracy, tractability, and usefulness: by design it matches key
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e features of the data, its parameters can be easily fit for large N, it is normalizable allowing
o expression of pattern probabilities in closed form, and most surprisingly it allows estimation
wo of measures of the entire probability distribution, as we demonstrate for neural populations
- as large as N = 1000.

102 The results sections of this paper is structured as follows. In section 2.1 we introduce
103 the basic mathematical form of the model, and fit it to spiking data from macaque visual
s cortex as an illustration. In sections 2.2 and 2.3 we cover how the model parameters can be
s estimated from data, and how to sample synthetic data from the fitted model. In section 2.4
106 we show how a reduced 3N-parameter model of the entire 2-dimensional pattern probability
w7 distribution can be derived from the model parameters, and how this reduced model can
s be used to estimate the population entropy, and the divergence between the model fits to
we two different datasets. In sections 2.5, 2.6 and 2.7 we show how the model’s estimates for
no entropy and pattern probabilities converge as a function of neuron number and time samples
w  available. Finally, in sections 2.7 and 2.8 we show how the method can help give novel
2 biological insights by applying it to two data sets: first we use the model to decode stimuli
us  from the recorded electrophysiological spiking responses in macaque V1, and second, we
s analyze in vivo two-photon Ca?* imaging data from mouse somatosensory cortex to explore

us  how the entropy of neural population activity changes during development.

116 2 Results

2.1  Overview of the statistical model with example application to

118 data.

no  We consider parallel recordings of the electrical activity of a population of N neurons. If
120 the recordings are made using electrophysiology, then spike sorting methods can be used to
2 extract the times of action potentials emitted by each neuron from the raw voltage wave-

122 forms (Quiroga, 2012). If the data are recorded using imaging methods, for example via
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6 2 Results
Direct Low-
Number . X estimates of dimensional
Sampling Fit for
Model References | of param- . pattern model of
possible? large N7 . . .
eters probabili- entire dis-
ties? tribution?
Schneidman
L et al.
Pairwise
. (2006); 9 . .
maximum ~ N Yes Difficult Difficult No
Shlens
entropy
et al.
(2006)
K-pairwise Tkacik
maximum et al. (2013, ~ N2 Yes Difficult Difficult No
entropy 2014)
Marre et al.
Spatiotemporal (2009);
maximum Nasser ~ RN? Yes Difficult Difficult No
entropy et al.
(2013)
semi-Restricted Koster
Boltzmann et al. ~ N? Yes Difficult Difficult No
Machine (2014)
Reliable Ganmor
. . Data- .
interaction et al. No Yes Approximate No
dependent
model (2011)
. Pillow
Generalized .
) et al. ~ DN? Yes Difficult No No
Linear Models
(2008)
Amari
et al.
Dichotomized (2003); 9
. ~ N Yes Yes No No
Gaussian Macke
et al.
(2009)
Cascaded Park et al.
o ~ N? Yes Yes Yes No
Logistic (2013)
. Okun et al.
Population
. (2012, 3N Yes Yes No No
coupling
2015)
Populati
opt a' on This study N? Yes Yes Yes Yes
tracking

Tab. 1: Comparison of properties of various statistical models of neural activity.
For the “Number of parameters” column’, N indicates the number neurons consid-
ered, ~ indicates “scales with”, D indicates the number of coefficients per interaction
term, and R indicates the number of timepoints across which temporal correlations
are considered.


https://doi.org/10.1101/064717
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/064717; this version posted August 23, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

2.1 Overview of the statistical model with example application to data. 7

123 a Ca®'-sensitive fluorophore, then electrical spike times or neural firing rates can often be
12+ approximately inferred (Pnevmatikakis et al., 2016; Rahmati et al., 2016). Regardless of the
125 way the in which the data are collected, at any particular timepoint in the recording some
126 subset of these neurons may be active (ON), and the rest inactive (OFF). In the case of
127 electrophysiologically recorded spike trains, the neurons considered ON might be those that
128 emitted one or more spikes within a particular time bin At. For fluorescence imaging data,
129 a suitable threshold in the AF(t)/F, signal may be chosen to split neurons into ON and
1o OFF groups, perhaps after also binning the data in time. Once we have binarized the neural
1 activity data in this way, each neuron’s activity across time is reduced to a binary sequence
12 of zeros and ones, where a zero represents silence and a one represents activity. For example,
133 the ith neuron’s activity in the population might be x; =0,1,0,0,0,1,1,0,1.... The length
134 of the sequence T is simply the total number of time bins recorded. The brain might encode

135 sensory information about the world in these patterns of neural population activity.

136 Next we can next group the neural population data into a large N x T" matrix M where
137 each row from ¢ = 1 : N corresponds to a different neuron and each column from j =1:T
133 corresponds to a different time point. At any particular time point (the jth column of M),
130 we could in principle see any possible pattern of inactive and active neurons, written as
w a vector of zeros and ones {r}; = [z1;,T2;...2n;]7. In general, there will be 2V possible
1 patterns of population activity, or combinations of zeros and ones. In any given experiment,
12 each particular pattern must have some ground-truth probability of appearing P...({z}),
13 depending on the stimulus, animal’s brain state, and so on. We would like to estimate this
s 2N-dimensional probability distribution. However, since direct estimation is impossible, we
us instead fit the parameters of a simpler statistical model that implicitly specifies a different
s probability distribution over the patterns, P,.qe({x}). The hope is that for typical neural
wr data, Proge({2}) = Puue({z}). In figure 1 we schematize the procedure for building and

us using such a model.
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8 2 Results

Neural circuit
(implicit Pyrye)

\

Data
(samples from Pye)

{

Statistics of data
(act as model parameters)

* + assumptions

Model
(specifies Pyogel)
Sample Reduced model of entire
activity patterns pattern probability distribution
Pattern *
probabilities Entropy

Fig. 1: Schematic diagram of the model-building and utilization procedure. The neural cir-
cuit generates activity patterns sampled from some implicit distribution Pj.., which
are recorded by an experimentalist as data. We estimate certain statistics of these
data to be used as parameters for the model. The model is a mathematical equa-
tion that specifies a probability distribution over all possible patterns P,,,4¢, whether
or not each pattern was ever observed in the recorded data. We can then use the
model for several applications: to sample synthetic activity patterns, to directly es-
timate pattern probabilities, or to build an even simpler model of the entire pattern
probability distribution to estimate quantities such as the entropy.

149 The statistical model we propose for neural population data contains two sets of param-
150 eters that are fit in turn. The first set are the N free parameters needed to describe the
151 population synchrony distribution: the probability distribution Pr(K = k) = p(k) for the
12 number of neurons simultaneously active K, where K = vazl x;. This distribution acts as
153 a measure of the aggregate higher-order correlations in the population and so may contain
15« information about the dynamical state of the network. For example, during network oscil-
155 lations neurons may be mostly either all ON or all OFF together, whereas if the network is
156 in an asynchronous mode, the population distribution will be narrowly centered around the
157 mean neuron firing probabilities.

158 The second set of free model parameters are the conditional probabilities that each indi-
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2.1 Overview of the statistical model with example application to data. 9

159 vidual neuron is ON, given the total number of neurons active in the population, p(z; = 1|K).
10 For shorthand we will write p(x;|K) instead of p(x; = 1|K) for the remainder of this paper.
161 Since there are NV + 1 possible values of K, and N neurons, there are N(N + 1) of these
12 parameters. However, we know by definition that when K = 0 (all neurons are silent) and
s K = N (all neurons are active) then we must have p(z|K = 0) = 0 and p(z|K = N) =1
160 respectively. Hence we are left with only N(N — 1) free parameters. Different neurons
s tend to have different dependencies on the population count, because of their heterogeneity
166 in average firing rates (Buzsdki and Mizuseki, 2014) and because some neurons tend to be
167 closely coupled to the activity of their surrounding population while others act independently
s (Okun et al., 2015). These two types of neurons have previously been termed ‘choristers’

1o and ‘soloists’, respectively.

170 Once the N? total free parameters have been estimated from data (we discuss how this
i can be done below), we can construct the model. It gives the probability of seeing any

12 possible activity pattern — even for patterns we have never observed — as

p({x}>:]$(pr)fiu—p(xz-m)]l—“) where k= 3", (1)

koo\i=t
13 where ay, is a normalizing constant defined as the sum of the probabilities of all (]Z ) patterns in
s the set S(k) where Efil x; = k under a hypothetical model where neurons are conditionally

175 independent:

ap = Z (Hp(m%)“[l—p(wz|k)]1‘”“> (2)

{z}esS(k) \i=1
w6 The model can be interpreted as follows: given the estimated synchrony distribution p(k)
177 and set of conditional probabilities p(x;|K'), we imagine a family of N — 1 probability distri-
s butions ¢x({z}),k € [1 : N — 1] where pattern probabilities are specified by the conditional
1o independence models gy ({x}) = [, p(zi|k)* [1 — p(x;]k)]*~*. Now, using this family of dis-
1wo tributions we construct one single distribution p({z}) by rejecting all patterns in each gy ()

111 where Zf\il x; # k, concatenating the remaining distributions (which cover mutually exclu-
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10 2 Results

182 sive subsets of the pattern state space), and renormalizing so that the pattern probabilities

183 sum to one. This implies that for any given activity pattern {z}, p({z}) = qx({z}).

184 More intuitively, the model can be thought of as having two component ‘levels’: first, a
155 high-level component that matches the distribution for the population rate. This component
18 counts how many neurons are active, ignoring the neural identities and treating all neurons
17 as homogeneous. The second, low-level component accounts for some of the heterogeneity
188 between neurons. It asks, given a certain number of active neurons in the population, what
19 is then the conditional probability that each individual neuron is active? This component
o captures two features of the data: the differences in firing rates between neurons, which
1 can vary over many orders of magnitude (Buzsédki and Mizuseki, 2014), and the relation-
102 ship between a neuron’s activity and the aggregate activity of its neighbors (Okun et al.,
w3 2015). Both of these features can potentially have large effects on the pattern probability

104 distribution.

195 In Figure 2, we fit this statistical model to electrophysiology spike data recorded from
s a population of 50 neurons in macaque V1 while the animal was presented with a drifting
17 oriented grating visual stimulus. A section of the original spiking data during stimulus
198 presentation are shown in Figure 2A, top, along with synthetically generated samples from
199 the model fitted to these data, below it in red. By definition the model matches the original
20 data’s population synchrony distribution and conditional probability that each neuron is
201 active (Figure 2B). In Figure 2C we show the model’s prediction for statistics of the data

202 that it was not fitted to.

203 First (Figure 2C, left) the model almost exactly matches the average firing rate for each
20 individual neuron. This is a direct consequence of the way the model is constructed and
205 follows from the fits of the two sets of parameters. Hence the model can captures the

206 heterogeneity in neural firing rates.

207 Second, we compare the pairwise correlations between neurons from the original data

208 with those from the data synthetically generated by sampling the model (Figure 2C, center).
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2.1 Overview of the statistical model with example application to data. 11

20 Here we see only a partial match. Although the model captures the coarse features of the
210 correlation matrix, it does not match the fine-scale structure on a pair-by-pair basis. For this
on example, the R? value between the model and data pairwise correlations was 0.52 (Appendix
22 Figure 1). In particular, the model accounts exactly for the population’s mean pairwise
213 correlation, because this is entirely due to the fluctuations in the population activity. We
2 can demonstrate this effect directly by first subtracting away the covariance in the original
215 data that can be accounted for by the model and then renormalizing to get a new correlation
26 matrix (Appendix Figure 1). Indeed this new correlation matrix is zero mean, but retains
27 much of the fine-scale structure between certain pairs of neurons. This implies that the

218 model captures only coarse properties of the pairwise correlations.

210 Finally, the model does not match at all the temporal correlations present in the original
20 data (Figure 2C, right), since it assumes that each time bin is interchangeable. Note that
21 this limitation is an ingredient of the model, not a failing per se. This property is shared with
2> many other statistical methods commonly applied to neural population data (Schneidman

23 et al., 2006; Macke et al., 2009; Cunningham and Yu, 2014; Okun et al., 2015).

224 These results show which statistics of the data that the population tracking model does
25 and does not account for. Although other statistical models may more accurately account
26 for pairwise or temporal correlation structure in the data, they typically do not scale well
27 to large N (Table 1). In the remainder of the paper we explore the model’s behavior on
28 large N data, and show how we can take advantage of the particular form of the model to
20 robustly estimate some high-level measures of the activity statistics, including the entropy
20 of the data and the divergence between pairs of data sets. Since these measures are typically
2 difficult or impossible to estimate using other common statistical models in the field, the
22 population tracking model may allow experimenters to ask neurobiological questions that

233 would be otherwise intractable.
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2 Results
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Fig. 2: A: Original spiking data (top, black) and synthetic data generated from model (bot-

tom, red).

B: The model’s fitted parameters. First, the population synchrony distribution (top),
and second the conditional probability that each neuron is ON given the number of
neurons active. The conditional ON probabilities of only ten of the fifty neurons are
shown for clarity. The curves converge to a straight line for £ > 25 because those
values of k£ were not observed in the data, so the parameter estimates collapse to the
prior mean.

C: Comparison of other statistics of the data with the model’s predictions. The model
gives an exact match of the single neuron firing rates (left), a partial match with the
pairwise correlations (center), but does not match the data’s temporal correlations
(right).
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2.2 Fitting the model to data. 13

» 2.2 Fitting the model to data.

x5 We now outline a procedure for fitting the statistical model’'s N? free parameters to neural
236 population data. We assume that the data have already been preprocessed as discussed
237 above and are in the format of either a binary N x T" matrix M, or as a two-column integer
238 list of active timepoints and their associated neuron IDs. We found that parameter fitting
230 was fast; for example, fitting parameters to data from a one hour recording of 140 neurons

20 was done on a standard desktop in ~ 1 minute.

. 2.2.1  Fitting the population activity distribution

22 The first set of parameters are the N values specifying the probability distribution for the
23 number of neurons active p(k). In principle K can take on any of the N +1 values from 0 (the
24 silent state) to N (the all ON state), but since we have the constraint that the probability
25 distribution must normalize to one, one parameter can be calculated by default so we need
us only fit N free parameters to fully specify the distribution. The most straightforward way
27 to do this is by histogramming, which gives the maximum likelihood parameter estimates.
28 We simply count how many neurons are ON at each of the T timepoints to get [K(t =
20 1), K(t =2)...K(t=T)], then histogram this list and normalize to one so that our estimate
20 pP(k) = cx/T where ¢ is the count of the number of timepoints where k& neurons were active.
251 If the data statistics are sufficiently stationary relative to the timescale of recording, then

22 the error on each parameter individually scales ~ 1/ VT and independent of N. However, the

1—p(k)
p(k)

¢ of K, when p(k) is small. Since neural activity is often sparse, we expect it to be quite

253 relative error on each p(k) also scales ~ which implies large errors for rare values
255 common to observe small p(k) for large K, close to N (neurons are rarely all ON together).
6 Lo avoid a case where we naively assign a probability of zero to a certain p(k) just because
57 we never observe it in our finite data, we propose adding some form of regularization on the
2 distribution p(k). A common method for regularization is to assume a prior distribution for

20 p(k), then multiply it with the likelihood distribution from the data to compute the final
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14 2 Results

x%0 posterior estimate for the parameters following Bayes rule. If for convenience we assume a
21 Dirichlet prior (conjugate to the multinomial distribution), then the posterior mean estimate

x2 for each parameter simplifies to

R Ccr + «
k,a) = ——

Pk, @) T+ Na

%3 where « is a small positive constant. Note that this procedure is equivalent to adding the

s same small artificial count « to each empirical count ¢,. For the examples presented in this

x5 study, we set a = 0.01.

w6 2.2.2 Fitting the conditional ON probabilities for each neuron

7 The second step is to fit the N2 — N unconstrained conditional probabilities that each
s neuron is ON given the total number of active neurons in the population, p(z|K). The
x0  simplest method to fit these parameters is by histogramming, similar to the above case for
o0 fitting the population activity distribution. In this case we cycle through each value of K
on from 1 to N — 1, find the subset of timepoints at which there were exactly k£ neurons active,
22 and count how many times each individual neuron was active at those timepoints, d; ;. The
o3 maximum likelihood estimate for the conditional probability of the ith neuron being ON
2 given k neurons in the population active is just p(x;|k) = d;r/Tk, where T} is the total

;s number of timepoints where k neurons were active.

276 As before, given that some values of K are likely to be only rarely observed we should also
o7 add some form of regularization to our estimates for p(z|K). We want to avoid erroneously
2 assigning p(z;|K) = 0, or any p(x;|K) = 1 just because we had few data points available.
279 Since x; here is a Bernoulli variable, we regularize following standard Bayesian practice by
20 setting a Beta prior distribution over each p(x;|K) because it is conjugate to the binomial

1 distribution. Under this model the posterior mean estimate for the parameters are

. di +
pailk, Bo, f1) = leﬂ
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2.2 Fitting the model to data. 15

282 Using the Beta prior comes at the cost of setting its two hyperparameters, g; and 3. We
283 eliminate one of these free hyperparameters by constraining the prior’s mean to be equal to
28« k/N. This will pull the final parameter estimates towards the values that they would take
25 if all neurons were homogeneous. The other free hyperparameter is the variance or width
26 of the prior. This dictates how much the final parameter estimate should reflect the data:
257 the wider the prior is, the closer the posterior estimate will be to the naive empirical data
s estimate. We found in practice good results if the variance of this prior scaled with the
20 variance of the Bernoulli variables, o (1 — ) where g = k/N. This guaranteed that the
200 variance vanished as k became near 0 or N. For the examples presented in this study, we
2 set the prior variance 0® = 0.5u(1 — ), and By = L (u — p? — 0?) and By = (5, — 1).

202 An alternative method for fitting p(z|K) would be to perform logistic regression. Al-
203 though in principle logistic regression should work well since we expect p(z|K) to typically
24 be both monotonically increasing and correlated across neighboring values of k, we found
205 in practice that as long as sufficient data were available it gave inferior fits compared with
206 the histogram method discussed above. However for data sets with limited time samples
207 logistic regression might indeed be preferable. The other benefit would be that since logistic
208 Tegression requires fitting of only two parameters per regression, if employed it would reduce

20 the total number of the model’s free parameters from N? to only 3.

s0 2.2.3 Calculating the normalization constants

s The above expression for pattern probabilities includes a set of N — 1 constants A, =
32 {aj,as...ay_1} that are necessary to ensure that the distribution sums to one. These
33 constants are not fit directly from data but instead follow from the parameters.

304 Each a;, is calculated separately for each value of k. They can be calculated in at least
35 four ways. The most intuitive method is via the brute force enumeration of the probabilities
306 Of all (]IX ) possible patterns where k neurons are active, then summing the probabilities, as

7 given by eq. 2. Although this method is exact, it is only computationally feasible if (JZ )
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16 2 Results

38 18 not too large, which can occur quite quickly when analyzing data from more than 20-30
50 neurons. The second method to estimate ay is to draw N Bernoulli samples for many trials
a0 following the probabilities given by p(z|k), then count the fraction of trials in which the
s number of active neurons did in fact equal k. This method is approximate and inaccurate

sz for large N because a;, — 0 as N — oo.

313 The third method is to estimate a; using importance sampling. We can rewrite eq. 2 as

() Seresio (T plai)™ (1 = plasli)) =)
= () W
= ()it

su where {z} is a sample from the uniform distribution on S(k), and ({z}) = []~, p(z:|k)* [1—
a5 p(x|k)]' . If we have m such samples {zM}, {z@}, ... {z(™}, then by the law of large
sie numbers
1 i : ag
— > o({z"}) = Elp({z})] = &
pa (x)
si7 - 8o by implication
i : arpm
Y e{z}) = mElp({z})] = 757
J=1 (k)

ss If we fit a straight line in m to the partial sums g = > 7" | ©({xU)}) by linear regression, say

30 Y = 1M+ ¢, we get
m

am—+cy = ng({x(j)}) R~
j=1

20 Assuming that y(m = 0) = 0, then the intercept ¢y = 0, so we are left with

N ~
C1 k ~ Adg.

321 Finally, a fourth method follows from a procedure we present below, for estimating a low-

1 dimensional model of the entire pattern probability distribution as a sum of log-normals.
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2.3 Sampling from model given parameters 17

123 2.2.4 The implicit prior on the pattern probability distribution

;24 By assuming a prior distribution over all of our parameters, we are implicitly assuming a
w5 prior distribution over the model’s predicted pattern probabilities. What does that look
26 like? For the population activity distribution we have chosen a uniform value of « across all
27 values of k, implying that our prior expects each level of population activity to be equally
2g likely. The prior imposed on the second set of parameters, the p(xz|K)’s, would assign each
20 mneuron an identical conditional ON probability of k/N. Although the second set of priors
10 18 maximal entropy given the first set, it is important to note that the uniform prior over
s population activity is not maximum entropy, since each value of k carries a different number
;2 of patterns. Hence for large NV, the prior will be concentrated on patterns where few (k near
13 zero) or many (k near N) neurons are active.

334 A geometrical view of the effect of the priors can be given as follows. Since our N?
15 parameters can each be written as a weighted linear sum of the 2V pattern probabilities, they
13 specify N? constraint hyperplanes for the solution in the 2V-dimensional space of pattern
;37 probabilities. There are also other constraint hyperplanes which follow from constraints
;s inherent to the problem, such as the fact that the pattern probabilities must sum to one,
5 and that p(z| K = 0) = 0, etc. Since N2 < 2V (for all N > 4) there are an infinite number
a0 of solutions that satisfy the constraints. Our final expression for the pattern probabilities
s is just a single point on the intersection of this set of hyperplanes. The effect of including
sz priors on the parameters is to shift the hyperplanes so that our final solution is closer to
us  prior pattern probabilities than that directly predicted by the data. In doing so it ensures

sa - all patterns are assigned a non-zero probability of occurring, as any sensible model should.

s 2.3 Sampling from model given parameters

us  Given the fitted parameters, sampling is straightforward using the following procedure:

347 1. Draw a sample for the integer number of neurons active kygpmpie from the range {0, ..., N}
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18 2 Results
348 according to the discrete distribution p(k). This can be done by drawing a random
349 number from the uniform distribution then mapping that value onto the inverse of the
350 cumulative of p(k).
351 2. Draw N independent Bernoulli samples @ = {z1,25... 25}, one for each neuron, with
352 the probability for the ith neuron given by p(z;|ksampie). This is a candidate sample.
353 3. Count how many neurons are active in the candidate sample: k... = Zfil x;. If
354 ample = Ksample, accept the sample. If £, . # Ksampie, T€ject the sample and return
355 to step 2.

6 One benefit of this model is that since the sampling procedure is not iterative, sequential

7 samples are completely uncorrelated.

s 2.4 Estimating the full pattern probability distribution, entropy, and

350 divergence.
w0 2.4.1 Low-dimensional approximation to pattern probability distribution

ss1 50 far we have shown how to fit the model’s parameters, calculate the probability of any
w2 specific population activity pattern, and sample from the model. Depending on the neu-
33 robiological question an experimenter might also wish to use this model to calculate the
s probabilities of all possible activity patterns, either to examine the shape of the distribution
35 Or to compute some measure that is a function of the entire distribution. One such measure,
w6 for example, is the joint population entropy H used in information theoretic calculations,
o H o= =0 p({x}i) log, p({z}).

368 For small populations of neurons N < 20, the probabilities of all 2V possible activity
w0  patterns can be exhaustively enumerated. However, for larger populations this brute force
s enumeration is not feasible due to limitations on computer storage space. For example,

s storing 219 ~ 10%° decimal numbers on a computer with 64-bit precision would require
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2.4 Estimating the full pattern probability distribution, entropy, and divergence. 19

s~ 10' terabytes of storage space. Hence for most statistical models, such as classic pairwise
w» maximum entropy models, this problem is either difficult or intractable (Broderick et al.,
s 2007; although see Schaub and Schultz, 2012). Fortunately, the particular form of the
;5 model we propose implies that the distribution of pattern probabilities it predicts will, for
s sufficiently large k£ and N, tend towards the sum of a set of log-normal distributions, one
w7 for each value of k£ (Figure 3B—C), as we explain below. Since the log-normal distribution is
s specified by only 2 parameters, we can fit this approximate model with only 3N parameters

a9 total, which can be readily stored for any reasonable value of V.

380 We derive the sum-of-lognormals distribution model as follows. First we take the log of

ss1 both sides of eq.1 to get:

logp({z}) = logp(k +Zlog (2l k) (1 = plail k)" 7] —log ay (3)

N—k
= logp(k +Zlogp x;|k) —|—Zlog 1 —p(xj|k)) — log ay

J

32 where the second and third terms correspond to sums over the k active and (N — k) inactive
33 neurons in {x} respectively. Note that this equation is only valid for the cases where k >
s« 1. For clarity in what follows, we will temporarily represent p({z}) = 6 and p({z}k) =
s 0. Now let us consider the set L of the log-probabilities for all ( ) patterns for for a
@ given level of population activity k, Ly = {log(p({z})}x = {log(8)}r where SN a; =
37 k. Since the population tracking model assumes that neurons are (pseudo) conditionally
ss independent, then for sufficiently large N, according to the central limit theorem the second
30 and third terms in the sum in eq. 3 will be normally distributed with some mean p(k) and
w0 variance o2(k), no matter what the actual distribution of p(x;|K)’s is. Hence, if we were
31 to histogram the log-probabilities {log(#)}, of all patterns for a given k, their distribution

;2 could be approximated by the sum of two Gaussians and two constants:
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20 2 Results

p(10g(8))x = log p(k) + N (ox (k), 0By (k) + N (orr (k) 05pp (k) —logar.  (4)

33 Note that this is a distribution over log—pattern probabilities: it specifies the fraction of all

s neural population activity patterns that share a particular log—probability of being observed.

305 The two normal distribution means are given by

pon(k) = k{logp(x|k))

porr(k) = (N —k)(log (1 — p(z|k)))

396 and the variances are

k) = k(T ) varlogp(ulh)
rell) = (V=) (=7 ) vallon(t ~ plalb)

;7 where the fractional terms in the variance equations are corrections because we are drawing
38 without replacement from a finite population. Finally since we are adding two random
10 variables (the second and third terms in 4), we also need to account for their covariance.
w0 Unfortunately, the value of this covariance depends on the data, and unlike the means and
w1 variances we could find no simple formula to predict it directly from the parameters p(z|k).
w2 Hence it should be estimated empirically by drawing random samples from the coupled
w3 distributions N (pon (k), 0 5 (k)) and N (porr(k), 03 pr(k)), and computing the covariance
wa  of the samples.

405 Although the lognormal approximation is valid when both K and N are large, the ap-
ws proximation will become worse when K is near 0 and /N, no matter how large N is. This
w7 18 problematic because neural data is often sparse, so small values of K are expected to be

ws common and hence important to accurately model. Indeed we found empirically that the
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2.4 Estimating the full pattern probability distribution, entropy, and divergence. 21

w0 distribution of log-pattern probabilities at small K can become substantially skewed, or, if
a0 the data come from neurons that include distinct subpopulations with different firing rates,
an  even multimodal. We suggest that the experimenter examines the shape of the distribution
a2 by histogramming the probabilities of a large number of randomly chosen patterns to assess
a3 the appropriateness of the lognormal fit. The validity of the log-normal approximation can
s be formally assessed using, for example, the Lilliefors or Anderson-Darling tests. If the dis-
a5 tribution is indeed non-lognormal for certain values of K, we suggest application of either or
a6 both of the following two ad hoc alternatives. First, for very small values of K (say k < 3),

a7 then the number of patterns at this level of population synchrony (]Z ) = M Bl should also

VR
sis be small enough to permit brute force enumeration of all such pattern probabilities. Sec-
a9 ond, for slightly larger values of K (3 < k < 10), the distribution can be empirically fit by
«20 alternative low-dimensional parametric models, for example a mixture-of-gaussians (MoG),
a1 which should be sufficiently flexible to capture any multimodality or skewness. In practice

22 we found that MoG model fits are typically improved by initializing the parameters with

w23 standard clustering algorithms, such as K-means.

a2 One important precaution to take when fitting any parametric model to the pattern
w5 probability distributions (be it lognormal, MoG, or otherwise) is to make sure that the
w6 resulting distributions are properly normalized so that the product of the integral of the
w2 approximated distribution of pattern probabilities for a given k, p(0), with the total number

w8 of possible patterns at that k, (]IX ), does indeed equal the p(k) previously estimated from

() [ s =i

a0 Although in principle this normalization should be automatic as part of the fitting procedure,

20  data:

a1 even small errors in the distribution fit due to finite sampling can lead to appreciable errors
.2 in the normalization, due to the exponential sensitivity of the pattern probability sum on
s the fit in log co-ordinates. The natural place to absorb this correction is in the constant

s ay, which in any case has to be estimated empirically so it will carry some error. Hence
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22 2 Results

a5 we suggest that when performing this procedure, estimation of a; should be left as the final
a6 step, when it can be calculated computationally as whatever value is necessary to satisfy the

57 above normalization.

s 2.4.2 Calculating population entropy

a0 Given the above reduced model of the pattern probability distribution we could compute
mo any desired function of the pattern probabilities, for example the mean or median pattern
s probability, the standard deviation, etc. One example measure that is relevant for informa-
a2 tion theory calculations is Shannon’s entropy, H = — . p; log, p;, measured in bits. This

w3 can be calculated by first decomposing the total entropy as
H = Hy + H(p({z}|k)) = Hy, + H(O)x

ws where Hy = — Effzo p(k)log, p(k) is the entropy of the population synchrony distribution
ws and H(0), = Z/ivzo p(k)H (6x) is the conditional entropy of the pattern probability distri-
us bution given K. Given the sum-of-lognormals reduced model of the pattern probability

w7 distribution, the total entropy (in bits) of all patterns for a given k is

N 1
H(0)) = (k) / P(B)e % [0 1og, 6] d6
0

ms  This can be calculated by standard numerical integration methods separately for each pos-
uo  sible value of K.

450 In the homogeneous case where all neurons are identical, all (]]Z ) patterns for a given K
ss1 will have equal probability of occurring, p({z}|K = k) = p(k)/ (]]X ). This situation maximizes

N

2 the second term in the entropy expression, and simplifies it to Hp,, = fozo p(k)log, 1%'
453 To demonstrate these methods we calculated the probability distribution across all 2°° ~

e 1015 possible population activity patterns, and the population entropy, for an example spiking

»s5  data set recorded from fifty neurons in macaque primary visual cortex. The presentation of
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Fig. 3: Calculating the distribution of population pattern probabilities and entropy for spik-
ing data from macaque visual cortex.
A: Example raster plots of spiking data from 50 neurons in macaque V1 in response
to static oriented bar stimulus (left) and a blank screen (right).
B: The distribution of pattern probabilities for varying numbers of neurons is esti-
mated for various values of the numbers of neurons active, k.
C: Summed total distribution of pattern probabilites for data recorded during stim-
ulus (top, light blue) and blank screen (bottom, dark blue) conditions. The small
bumps on top of the distributions are due to values of k& which were unobserved in
the data. Since the model assumes all patterns at these values are equally probable,
they lead to the introduction of several sharp delta peaks to the pattern probability
distribution.
D: The cumulative probability as a function of the cumulative number of patterns
considered. Note that many-fold fewer activity patterns account for the bulk of the
probability mass in the blank screen condition compared to during the stimulus.
E: Entropy per neuron of the pattern probability distribution for both conditions.
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24 2 Results

w6 a visual stimulus increases the firing rates of most neurons as compared to a blank screen
s7 (Figure 3A). We found that this increase in firing rates lead to a shift in the distribution
sss of pattern probabilities (Figure 3C-D) and an increase in population entropy (Figure 3E).
w0 Notably, a tiny fraction of all possible patterns account for almost all the probability mass.

w0 For the visually evoked data, around 107 patterns accounted for 90% of the total probability,

107

7or5 = 0.000001% of all possible patterns are routinely used.

w1 which implies that only ~
w2 Although this result might not seem surprising given that neurons fire sparsely, any model
w3 that assumed independent neurons would likely overestimate this fraction because such a
w4 model would also overestimate the neural population’s entropy (see below). These results

ws demonstrate that the population tracking model can detect aspects of neural population

w6 firing that may be difficult to uncover with other methods.

w7 2.4.3 Calculating the divergence between model fits to two data sets

w8 Many experiments in neuroscience involve comparisons between neural responses under dif-
w0 ferent conditions: for example the firing rates of a neural population before and after applica-
a0 tion of a drug, or the response to a sensory stimulus in the presence or absence of optogenetic
an  stimulation. Therefore it would be desirable to have a method for quantifying the differ-
a2 ences in neural population pattern probabilities between two conditions. Commonly used
a3 measures for differences of this type are the Kullback-Leibler divergence, and the related
wa  Jensen-Shannon divergence (Cover and Thomas, 2006; Berkes et al., 2011). Calculation of
a5 either divergence involves a point-by-point comparison of the probabilities of each specific
a6 pattern under the two conditions. For small populations, this can be done by enumerating
an the probabilities of all possible patterns, but how would it work for large populations? On
as the face of it, the above approximate method for entropy calculation cannot help here, be-
a9 cause that involved summarizing the distribution of pattern probabilities while losing the
w0 identities of individual patterns along the way. Fortunately the form of the statistical model

w1 we propose does allow for an approximate calculation of the divergence between two pattern
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2.4 Estimating the full pattern probability distribution, entropy, and divergence. 25

«2  probability distributions, as follows.

483 The Kullback-Leibler divergence from one probability distribution p(i) to another prob-

ss¢  ability distribution ¢(7) is defined as

p(i)

o )

Dr1(pllg) = Zp ) log, 2%

s We can decompose this sum into N + 1 separate sums over the subsets of patterns with K

46 neurons active:

Dkr(pllg) = ZDKL (pllg)x

w7 Hence we just need a method to compute Dy (p||q)x for any particular value of k. Notably,
a8 the term to be summed over in equation 5 can be seen as the product of two components:
w0 p(i) and log, 8 In the preceding section we showed that for sufficiently large k and NV,
w0 the distribution of pattern probabilities at a fixed K is approximately log-normal because
a1 of our assumption of conditional independence between neurons. Hence the first component
w2 p(i) can be thought of as a continuous random variable that we will denote X3, drawn from
493 the log-normal distribution f(z;). Because p(i) represents pattern probabilities, the range of
swe  f(21) is [0, 1]. The second component, log, E g in contrast, can be thought of as a continuous
w5 random variable that we will denote X5, that is drawn from the normal distribution g(zs),
w6 because by the same argument 2 E ; is approximately log-normally distributed, so its logarithm
a7 is normally distributed. Since this term is the logarithm of the ratio of two positive numbers,
ws the range of g(xq) is [—00,00]. Now the term to be summed over can be thought of as
a9 the product of two continuous and dependent random variables ¥ = X;X5, with some

so distribution A(y).

501 Our estimate for the KL divergence Dy for a given k is then just the number of patterns

sz at that value of k times the expected value of Y:

Dice(pllon = EDwslld = (7)) [~ sty

oo
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E[Y

g
g
6

The three new terms in the last expression, E[X], E[X3], and Cov[X, X3], can be estimated

2 2 F 3

X2 + COV[Xl, XQ])

)
)E [ X Xo]
)i

empirically by sampling a set of matched values of p({z};) and ¢({z};) from a large randomly

chosen subset of the (]]Z ) patterns corresponding to a given value of k.

2.5 Model fit convergence for large numbers of neurons

To test how the model scales with numbers of neurons and time samples, we fit it to syn-
thetic neural population data from a different established statistical model, the Dichotomized
Gaussian (DG) (Macke et al., 2009). The DG model generates samples by thresholding a
multivariate Gaussian random variable in such a way that the resulting binary values matches
desired target mean ON probabilities and pairwise correlations. The DG is a particularly
suitable model for neural data, because has been shown that the higher-order correlations
between ‘neurons’ in this model reproduce many of the properties of high-order correlations
seen in real neural populations recorded in vivo (Macke et al., 2011b). This match may
come from the fact that thresholding behavior of the DG model mimics the spike threshold
operation of real neurons.

For this section we used the DG to simulate the activity of two equally sized populations
of neurons, N; = Ny = N/2, one population with a low firing rate of r; = 0.05 and the
other with a higher firing rate of ro = 0.15. The correlations between all pairs of neurons
were set at p = 0.1. We first estimated ground truth pattern probability distributions by
histogramming samples. Although there are 2V possible patterns, the built-in symmetries in
our chosen parameters meant that all patterns with the same number of neurons active from

each group k; and ks share identical probabilities. Hence the task amounted to estimating
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2.5 Model fit convergence for large numbers of neurons 27

only the joint probabilities p(k1, ko) of the (IN+1)? configurations of having k; and ks neurons
active. We generated as many time samples as was needed for this probability distribution
to converge (T > 10?) for varying numbers of neurons ranging from N = 10 to N = 1000.
We then fit both our proposed model and several alternatives to further sets of samples
from the DG, varying T" from 100 to 1,000,000. Finally, we repeated the fitting procedure
on many sets of fresh samples from the DG to examine variability in model fits across trials.
To assess the quality of the fits we use the population entropy as a summary statistic. We

compared the entropy estimates of the population tracking model with five alternatives:

1. Independent neuron model: neurons are independent, with individually fit mean firing

rates estimated from the data. This model has N parameters.

2. Homogeneous population model: neurons are identical but not independent. The
model is constrained only by the population synchrony distribution p(k), as estimated

from data. This model has N + 1 parameters.

3. Histogram. The probability of each population pattern is estimated by the counting

the number of times it appears and normalizing by 7. This model has 2V parameters.

4. Singleton entropy estimator (Berry II et al., 2013): this model uses the histogram
method to estimate the probabilities of observed patterns in combination with an
independent neuron model for the unobserved patterns. We implemented this method

using our own MATLAB code.

5. Archer-Park-Pillow (APP) method (Archer et al., 2013): a Bayesian entropy estimator
that combines the histogram method for observed patterns with a Dirichlet prior con-

strained by the population synchrony distribution. We implemented this method using
the authors’ publicly available MATLAB code (http://github.com/pillowlab/CDMentropy).

We chose these models for comparison because they are tractable to implement. Although

it is possible that other statistical approaches such as the maximum entropy model family
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28 2 Results

ss0  would more accurately approximate the true data distribution, it is difficult to estimate the

ss0 joint entropy from these models for data from > 20 neurons (Table 1).

551 In Figure 4 we plot the mean and standard deviation of the entropy/neuron estimates
s» for this set of models as a function of the number of neurons (panels B and C) and number
ss3 of time samples (panels D and E) analyzed. The key observation is that across most values
ssa of N and T, the majority of methods predict entropy values different from the true value
sss  (dashed line in all plots). These errors in the entropy estimates come from three sources:

ss6  the finite sample variance, the finite sample bias and the asymptotic bias.

557 The finite sample variance is the variability in parameter estimates across trials from
58 limited data, shown in Figure 4C and E as the standard deviation in entropy estimates.
sso. Notably, the finite sample variance decreases to near zero for all models within 10°-10°
ss0 time samples, and is approximately independent of the number of neurons analyzed for the

ss. - population tracking method (Figure 4C and E).

562 The second error, the finite sample bias, arises from the fact that entropy is concave
ses function of p({z}). This bias is downward in the sense that the mean entropy estimate
see  across finite-data trials will always be less than the true entropy: E[H (p{z})] < H(p({z})).
ses Intuitively, any noise in the parameter estimates will tend to make the predicted pattern
sss  probability distribution more lumpy than the true distribution, so reducing the entropy
se7 estimate. Although this error becomes negligible for all models within a reasonable number
ses  Of time samples for small numbers of neurons (N = 10) (Figure 4B and D), it introduces large
seo errors for the histogram, singleton and APP methods for larger populations. In contrast to
st the finite sample variance, the finite sample bias depends strongly on the number of neurons

snn - analyzed for all models, typically becoming worse for larger populations.

572 The third error, the asymptotic bias, is the error in entropy estimate that would persist
s3 even if infinite time samples were available. It is due to a mismatch between the form of
s the statistical model used to describe the data and the true underlying structures in the

si5 data. In Figure 4, this error is present for all models that do not include a histogram
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2.5 Model fit convergence for large numbers of neurons 29

s component: the independent, homogeneous population and population tracking models.
sz Because the independent and homogeneous population models are maximum entropy given
s.s  their parameters, their asymptotic bias in entropy will always be ‘upward’, meaning that
so these models will always overestimate the true entropy, given enough data. They are too
ss0  simple to capture all of the structure in the data. Although population tracking method may
ss1  have either an upward or downward asymptotic bias, depending on the structure of the true
se2  pattern probability distribution, for the example cases we examined this error was small in

ss3  magnitude.

584 The independent, homogeneous population, and population tracking models converged
s to their asymptotic values within 10%-10° time samples (Figure 4D-E). The histogram,
6 singleton and APP methods, in contrast, performed well for small populations of neurons,
ss7 N < 20, but strongly underestimated the entropy for larger populations (Figure 4B, D),

s even for 7' = 10° samples.

589 The independent, homogeneous population and population tracking models consistently
so0 predicted different values for the entropy. In order from greatest entropy to least entropy,
s they were: independent model, homogeneous population model, and population tracking.
s Elements of this ordering are expected from the form of the models. The independent
s model matches the firing rate of each neurons but assumes that they are uncorrelated,
se implying a high entropy estimate. Next, we found that the homogeneous population model
ss  had lower entropy than the independent model. However this ordering will depend on the
so6 statistics of the data so may vary from experiment to experiment. The model we propose, the
so7 population tracking model, matches the data statistics of both the independent model and
se¢ the homogeneous population model. Hence its predicted entropy must be less than or equal
se0 10 both of these two previous models. One important note is that the relative accuracies of
s0 the various models should not be taken as fixed, but will depend both on the statistics of

sr the data and on the choices of the priors.

602 In summary, of the six models we tested on synthetic data, the population tracking model
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s03 consistently performed best. It converged on entropy estimates close to the true value even

s0a for data from populations as large as 1000 neurons.
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Fig. 4. Convergence of entropy estimate as a function of the number of neurons and time
samples analyzed.
A: Example spiking data from the DG model with two subpopulations, a low firing
rate group (filled black circles) and a higher firing rate group (open circles).
B—C: Mean (B) and standard deviation (C) of estimated entropy per neuron as a
function of the number of neurons analyzed, for each of the various models.
D-E: The mean (D) and standard deviation (E) of estimated entropy per neuron as
a function of the number of timesteps considered, for data from varying numbers of
neurons (left to right).
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32 2 Results

«s 2.0 Population tracking model accurately predicts probabilities for

606 both seen and unseen patterns

sor The above analysis involved estimating a single summary statistic, the entropy, for the entire
ss  2V-dimensional pattern probability distribution. But how well do the models do at predicting
s00 the probability of individual population activity patterns? To test this we fit four of the six
s10 models to the same DG-generated data as the previous section, with N = 100 and 7" = 106.
s As seen in Figure 4D-E, for data of this size the entropy predictions of the three statistical
sz models had converged, but the histogram method’s estimate had not. We then drew 100
s13 new samples from the same DG model, calculated all four models’ predictions of pattern
s1a  probability for each sample, and compared the predictions with the known true probabilities
s (Figure 5).

616 The independent model’s predictions deviated systematically from the true pattern prob-
17 abilities. In particular, it tended to underestimate both high-probability and low-probability
s1s  patterns, while overestimating intermediate probability patterns. It is important to note that
s1o  the data in Figure 5 are presented on a log scale. Hence these deviations correspond to many
s20 orders of magnitude error in pattern probability estimates. The homogeneous population
s21 model did not show any systematic biases in probability estimates but did show substantial
22 scatter around the identity line, again implying large errors. This is to be expected since this
23 model assumes that all patterns for a given k have equal probability. In contrast to these two
s« Mmodels, the population tracking model that we propose accurately estimated pattern proba-
e2s bilities across the entire observed range. Finally, the histogram method failed dramatically.
s2s  Although it predicted well the probabilities for the most likely patterns, it quickly deviated
sz from the true values for more rare patterns. And worst of all, it predicts a probability of
s zero for patterns that it has not seen before, as evidenced by the large number of missing
20 points in the right plot in Figure 5.

630 One final important point is that of the 100 test samples drawn from the DG model, 63

sn1 were not part of the training set (light colored circles in Figure 5). However, the population
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2.7 Model performance for populations with heterogeneous firing rates and correlations 33

sz tracking model showed no difference in accuracy for these unobserved patterns compared
s with the 37 patterns previously seen during training (dark circles in Figure 5). Together,
3 these results show that the population tracking model can accurately estimate probabilities

35 of both seen and unseen patterns, for data from large numbers of neurons.

0.1 Independent .- "] Homogeneous  .* 7] Population " 7] Histogram
0] A _| population “-” _| tracking .,,n""
510 -
K]
g 20
S10° - | |
109" o - "
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10%° 102 107 0.1 10 192 107 0.1 153 1920 4570 0.1 10%° 102° 1070 0.1
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Fig. 5: Predicted pattern probabilities as a function of true pattern probabilities for a pop-
ulation of 100 neurons sampled from the same DG model as Figure 4. From left to
right: independent model (blue), homogeneous population model (green), population
tracking model (red) and histogram method (amber). In each plot the darker colored
symbols correspond to patterns seen during model training and so were used in fitting
the model parameters, and lighter colored symbols correspond to new patterns that
appeared only in the test set. The histogram plot (right) shows only data for the
subset of patterns seen in both the training and test sets. Dashed diagonal line in
each plot indicates identity.

s 2.1 Model performance for populations with heterogeneous firing

637 rates and correlations

s3s In order to calculate the ground truth pattern probabilities and entropy for large N for
30 the above analysis, we assumed homogeneous firing rates and correlations to ensure symme-
ss0 tries in the pattern probability distributions. However, since the population tracking model
sa1 also implicitly assumes some shared correlations across neurons due to their shared depen-
sz dence on the population rate variable K, this situation may also bias the results in favor
3 of the population tracking model in the sense that this may be the regime where P,,q¢

saa best matches Py.... Since in vivo neural correlations typically appear to have significant
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34 2 Results

o5 structure (Figure 1C), we also examined the behavior of the model for a scenario with more
s heterogeneous firing rates and correlations. We repeated the above analysis using samples
a7 from the DG neuron model with N = 10, but with individual neuron firing rates drawn from
ss  a normal distribution p = 0.1, ¢ = 0.02, and pairwise correlations drawn from a normal
s distribution with g = 0.05, ¢ = 0.03 (Figure 6A). We numerically calculated the 20 = 1024
0 ground truth pattern probabilities by exhaustively sampling from the DG model. We again
51 varied the number of time samples from 100 to 1,000,000 and fit the population tracking
ss2 model and several comparison models: the independent neuron model, the homogeneous
3 population model, the histogram method, and also the pairwise maximum entropy model
ss¢  (Schneidman et al., 2006). We computed the Jensen-Shannon (JS) divergence, which is a
ess measure of the difference between the true and model pattern probability distributions (Fig-
ess ure 6B), entropy/neuron (Figure 6C), and all 1024 individual pattern probabilities (Figure
7 6D). Although the population tracking model outperformed the independent and homoge-
s neous population models as before, it was outperformed by the pairwise maximum entropy
50 model on this task. The JS divergence of the population tracking model saturated at a
0 higher non-zero floor than the pairwise maximum entropy models in Figure 6B. However,
s1 on the other hand the asymptotic error in the population tracking’s estimate of entropy was
2 minimal at +0.0015 bits, or 0.3% (Figure 6C). It is difficult to ascertain whether the pairwise
63 maximum entropy model would also outperform the population tracking model for large V,

s and requires further study.
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Fig. 6: Performance of various models for data from 10 neurons with heterogeneous firing
rates and correlations.
A: Example spiking data from the DG model (top left), with heterogeneous correla-
tions and firing rates (bottom).
B—C: Jensen-Shannon divergence of each model’s predicted pattern probability dis-
tribution with the true distribution (B) and entropy per neuron (C) as a function of
the number of time samples.
D: Predicted pattern probabilities versus true pattern probabilities for each of the
tested models (left to right), for 1,000,000 time samples.

« 2.8 Decoding neural population electrophysiological data from

666 monkey visual cortex

s7  We next tested the ability of the population tracking model to decode neural population
s responses to stimuli. We analyzed electrode array data recorded from anesthetized macaque
s60 primary visual cortex in response to visual stimuli (Figure 7A, see Experimental Procedures
eo and Zandvakili and Kohn, 2015 for details). Spike sorting algorithms were applied to the
e raw voltage waveforms to extract the times of action potentials from multi-units. Altogether

o2 131 different multi-units were recorded from a single animal. The animal was shown drifting
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36 2 Results

ez oriented sinusoidal gratings chosen from eight orientations in a pseudorandom order. Each
era  1.28 s stimulus presentation was interleaved with a 1.5 s blank screen, and all eight possible

s stimulus orientations were presented 300 times each.

676 Our decoding analysis proceeded as follows. We first rebinned the data into 10 ms in-
ez tervals. If a unit spiked one or more times in a time bin, it was labeled as ON, otherwise
es it was labelled OFF. Second, we chose a random subset of N units from the 131 total, and
so excluded data from the rest. Then for a given stimulus orientation, we randomly split the
ss0 data from the 300 trials into a 200 trial training set, and 100 trial test set. We concatenated
1 the data from the 200 training trials and fit the population tracking model to this dataset,
2 along with two control statistical models: the independent model and the homogeneous
3 population model. We repeated this procedure separately for the eight different stimulus
sea orientations, so were left with eight different sets of fitted parameters, one for each orienta-
s tion. We then applied maximum likelihood decoding separately on neural responses to 100
s randomly chosen stimuli from the test dataset. Finally, we repeated the entire analysis 100
se7 times for different random subsets of N neurons and training/test data set partitions, and

s took a grand average of decoding performance.

689 We plot the decoding performance of the various statistical models as a function of time
0 since the stimulus onset in Figure 7B. For all models, decoding was initially at chance level
o1 (1/8 = 0.125), then began to increase around 50 ms after stimulus onset, corresponding to
s> the delay in spiking response in visual cortex (Figure 7A). Decoding performance generally
03 improved monotonically both with the number of neurons and number of timepoints ana-
soa lyzed, for all models. However, decoding performance was much higher for the independent
ss and population tracking models, which saturated at almost 100% correct, compared with
06~ 25% correct for the homogeneous population model. Hence for these data it appears that
so7 the majority of information about the stimulus is encoded in the identities of which neurons

ss are active, and not in the total numbers of neurons active.

699 Although both the independent and population tracking models saturated to almost 100%
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2.8 Decoding neural population electrophysiological data from monkey visual cortex 37

70 decoding performance at long times, we found that for larger sets of neurons, the population
1 tracking model’s performance rose earlier in time than the independent neuron model (Figure
72 7TB-C). For 10 neurons, the independent model and population tracking model reached 50%
w3 accuracy at similar times after stimulus onset (146 ms with 95% c.i. [136.4 : 156] ms for
74 population tracking model and 142.5 ms with 95% c.i. [133.2 : 152.3] ms for independent
705 model). However given spiking data from 100 neurons, the population tracking model reached
s 50% correct decoding performance at 66.1 ms after stimulus onset (95% c.i. [64.2 : 68] ms),
707 whereas the independent model reached the same level later, at 76.2 ms after stimulus onset
08 (95% c.i. [74.2 : 78] ms). Although superficially this may appear to be a modest difference in
700 decoding speed, it is important to note that the baseline time for decoding above chance was
70 not until 52.3 and 56.8 ms after stimulus onset for the population tracking and independent
1 models, respectively (see Experimental Procedures for details). The reason for this late
712 rise in decoding accuracy is the documented ~ 50 ms lag in spiking response in macaque V1
73 relative to stimulus onset (Chen et al., 2006, 2008) (see Figure 7A). Given that we discretized
7 the data into timebins of 10 ms, this implies that the population tracking model could decode
75 stimuli mostly correctly given data from less 2 time frames on average. In summary, these

76 results show that the population tracking model can perform rapid stimulus decoding.
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Fig. 7. Decoding neural population spiking data from macaque primary visual cortex in re-

sponse to oriented bar visual stimuli.

A: Example spiking data from fifty neurons during a single presentation of an ori-
ented bar stimulus. Time zero indicates onset of stimulus.

B: Decoding performance as a function of time since stimulus onset for three differ-
ent decoding models (different colored curves) and varying numbers of neurons (plots
from left to right). Chance decoding level in all cases was 1/8 = 0.125.

C: The mean time since stimulus onset to reach 50% decoding accuracy for the in-
dependent (blue) and population tracking (red) models, as a function of the number

of neurons analyzed. The dashed curves indicate

the time at which decoding ac-

curacy first statistically exceeded noise levels. Time bin size fixed at 10 ms. The
homogeneous population model is not shown because it never reached 50% decoding

accuracy.
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2.9 Entropy estimation from two-photon Ca?' imaging population

718 data from mouse somatosensory cortex

79 As a second test case neurobiological problem, we set out to quantify the typical number
70 of activity patterns and entropy of populations of neurons in mouse neocortex, across de-
721 velopment. We applied our analysis method to spontaneous activity in neural populations
7 from data previously recorded (Gongalves et al., 2013) by in vivo two-photon Ca*" imag-
73 ing in layer 2/3 primary somatosensory cortex of unanesthetized wild-type mice with the
724 fluorescent indicator Oregon green BAPTA-1 (see Experimental Procedures for further de-
75 tails). The original data were recorded at ~ 4 Hz (256 ms timeframes), but for this analysis
726 we resampled the data into 1 s timebins because we found that it optimized a tradeoff be-
727 tween catching more neurons in the active state versus maintaining a sufficient number of
728 timeframes for robust analysis.

729 To compare neural activity across development we used the Shannon entropy/neuron, h
720 (Figure 8H-I). Shannon entropy is a concept adopted from information theory that quantifies
731 the uniformity of a probability distribution. If all patterns were equally probable then A =1
722 bit. At the opposite extreme, if only one pattern were possible then h = 0 bits. It also has
733 a functional interpretation as the upper limit on the amount of information the circuit can
7 code (Cover and Thomas, 2006).

735 We performed the analysis on data from mice at three developmental age points: P9-11
76 (n=13), P14-16 (n=8) and P30-40 (n=7). These correspond to timepoints just before (P9-
77 P11) and after (P14-P16) the critical period for cortical plasticity, and mature stage post-
78 weaning (P30-P40). Entropy is determined by two main properties of the neural population
739 activity: the activity levels of the neurons and their correlations. We found than mean ON
720 probability increased between ages P9-P11 and P14-16 (p=0.0016), then decreased again at
w1 age P30—40 (p=0.0024). As previously observed (Rochefort et al., 2009; Golshani et al., 2009;
72 Gongalves et al., 2013), mean pairwise correlations decreased across development (p<0.001,

73 P9-P11 vs P14-P16) (Figure 8D) so that as animals aged there were fewer synchronous
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724 events when many neurons were active together (Figure 8A,C).

745 What do these statistics predict for the distribution of activity patterns exhibited by
s mneural circuits? Interestingly, activity levels and correlations are expected to have opposite
7 effects on entropy: in the sparse firing regime, any increase ON probability should increase
s the entropy by increasing the typical number of activity patterns due to combinatorics, while
729 an increase in correlations should decrease the entropy because groups of neurons will tend

70 to be either all ON or all OFF together.

751 When we quantified the entropy of the pattern probability distributions, we found a
72 non-monotonic trajectory across development (Figure 8F-G). For 100-neuron populations,
753 in young animals at P9—P11 we found a low group mean entropy of ~ 0.38 bits/neuron (c.i.
75 [0.347 : 0.406]), followed by an increase at P14-P16 (p<0.001) to ~ 0.49 bits/neuron (c.i.
755 [0.478 : 0.517]), and then a decrease in adulthood P30-P40 (p=0.036) to ~ 0.45 bits/neuron
756 (c.i. [0.418 : 0.476]). Although these shifts in dimensionality were subtle as estimated by
77 entropy, they correspond to exponentially large shifts in pattern number. For example,
75 100-neuron populations in P14-P16 animals showed an average of 5.6 x 10'Y patterns while
75 100-neuron populations in P30-P40 animals showed an 8-fold fewer number of ~ 7.1 x 10°
60 typical patterns (data not shown). One interpretation of these findings is that young animals
761 compress their neural representations of stimuli into a small ‘dictionary’ of activity patterns,
72 then expand their representations into a larger dictionary at P14-P16, before again reducing

73 the coding space again in adulthood, P30-P40.
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Mouse somatosensory cortex Ca2+ imaging data
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Fig. 8: Entropy of neural populations in mouse somatosensory cortex increases then decreases

during development.

A: Example Ca*" imaging movie from mice ages P9-11 (left), P14-16 (center), and
P30-40 (right).

B: Mean ON probability of neurons by group. Each circle corresponds to the mean
across all neurons recorded in a single animal, bars represent group means.

C: Probability density of the fraction of active neurons, for sets of 50 neurons. Light
gray traces are distributions from single animals, heavy black traces are group means.
D: Mean pairwise correlation between neurons in each group.

E: Cumulative distribution of pattern probabilities for each group, for sets of 50
neurons. Note log scale on x-axes.

F: Entropy per neuron as a function of the number of neurons analyzed.
G: Estimate of mean entropy per neuron for 100 neurons.

Is the shift in cortical neural population entropy across development due to changes in

firing rates, correlations, or both? We assessed this by fitting two control models to the

same Ca’" imaging data: the independent neuron model and the homogeneous population

model (Figure 9). The independent neuron model captures changes in neural firing rates

across development, including the heterogeneity in firing rates across the population, but
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42 2 Results

7o inherently assumes that all correlations are fixed at zero. Although the independent model
70 predicted a significant decrease in entropy between P14-16 and P30-40 (p=0.014) similar
7 to the population tracking model, it did not detect an increase in entropy from P9-11 to

7 P14-16 (p:0.13) (Figure 9B, left).

773 The homogeneous population model captures a different set of statistics. By matching
722 the population synchrony distribution, it fits both the mean neuron firing rates and mean
75 pairwise correlations. However, it also assumes that all neurons have identical firing rates
776 and identical correlations, hence it does not capture any of the population heterogeneity that
777 the independent neuron model does. In contrast to the independent model, the homogeneous
7z population model did predict the increase in entropy from P9-11 to P14-16 (p=0.002), but

70 did not detect a decrease in entropy from P14-16 to P30-40 (p=0.24).

780 Importantly, the independent and homogeneous population models always estimate greater
71 entropy values than the population tracking model. This is to be expected since the popula-
72 tion tracking model matches the key statistics of both control models together, and so cannot
73 have a greater entropy than either. Together, these results demonstrate that the population
78 tracking model can detect shifts in population entropy that could not be detected from either

75 independent or homogeneous population models alone.
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Fig. 9: Mouse somatosensory cortex entropy trajectories are not captured by either the in-

dependent or homogeneous population models.

A': Entropy per neuron estimated from the independent (blue circles) or homogeneous
population (green) models against the same quantity estimated from the population
tracking model, for data from mice of three age groups (left, center and right plots).
Each circle indicates the joint entropy estimated for 100 neuron population recording
from a single animal. Note that the independent and homogeneous population mod-
els always estimate greater entropy values than the population tracking model.

B: Same data as panel A, plotted to compare to previous Figure 8G. Note that nei-
ther the independent (blue, left) nor homogeneous population (green, right) models
predict the inverted-U shaped trajectory uncovered by the population tracking model
(Figure 8G).

3 Discussion

Here we introduced a novel statistical model for neural population data. The model works

by matching two features of the data: first, the probability distribution for the number of

neurons synchronously active, and second, the conditional probability that each individual

neuron is ON given the total number of active neurons in the population. The former set
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71 of parameters are informative about the general statistics of the population activity: the
72 average firing rates and the level of synchrony. The latter set of parameters tell us more
793 about the heterogeneity within the population: some neurons tend to follow the activity of
70a  their neighbors, while others tend to act independently. These two types of cells recently

795 have been called ‘choristers” and ‘soloists’, respectively (Okun et al., 2015).

796 Compared to existing alternatives (Table 1), the model we propose has several strengths:
o7 1) it is rich enough to accurately predict pattern probabilities, even for large neural pop-
98 ulations; 2) its parameters are computationally cheap to fit for large N; 3) the parameter
790 estimates converge within an experimentally reasonable number of data timepoints, 4) sam-
so pling from the model is straightforward, with no correlation between consecutive samples; 5)
s it is readily normalizable to directly obtain pattern probabilities; 6) the model’s form permits
g2 a computationally tractable low-parameter approximation of the entire pattern probability

s03  distribution.

804 These strengths make the model appealing for certain neurobiological problems. However,
sos since a pattern probability distribution can only be fully specified by 2V numbers — so
sos including correlation at all orders — whereas our model has only N? parameters, it must
sov naturally also have some shortcomings. The main weaknesses are: 1) since the population
g8 synchrony distribution becomes more informative with greater N, our model will in most
s00 cases be outperformed by alternatives for small N; 2) although our model captures the mean
g0 pairwise correlation across the population, it does not account for the full pairwise correlation
su  structure (Figure 2C, center); 3) since the model considers only spatial correlations, temporal
sz correlations are unaccounted for (Figure 2C, right); 4) The model parameters are not readily
s13 interpretable in a biological sense, unlike the pairwise couplings of the maximum entropy
s models (Schneidman et al., 2006), or the stimulus filters in Generalized Linear Models (Pillow
a5 et al., 2008); 5) unlike classic maximum entropy models, ours carries no notion of an energy
s landscape and so does not imply a natural dynamics across the state space (Tkacik et al.,

a7 2014).
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818 We demonstrated the utility of the population tracking model by applying it to two
s19  neurobiological problems. First, we found that the population tracking model allowed fast
20 prediction of visual stimuli by decoding neural population data from macaque primary visual
e cortex (Figure 7). A simple but widely used alternative model that assumes independent
22 mneurons achieved 50% decoding accuracy around 20 ms after performance rose above chance
23 levels. In contrast,. the population tracking model reached 50% accuracy only ~ 14 ms
g0 after exceeding chance levels. Since we binned time in 10 ms intervals, this implies that
s the population tracking model was correct more often than not given neural population
26 data from less than two timepoints, on average. What does this finding imply for brain
sz function? The actual decoding algorithm we used for this task, Maximum Likelihood, is not
g8 neurobiologically plausible. However, the fact that the population tracking model worked
20 S0 well implies two things about cortical visual processing. First, sufficient information is
20 present in the spiking patterns of these neural populations to perform stimulus discrimination
sa1 very quickly after the stimulus response onset. Previous studies found that good decoding
g2 performance for similar tasks was typically achieved at least 80-100 ms following stimulus
s13 onset (Chen et al., 2008; Berens et al., 2012), whereas the population tracking model took
ssa  only ~ 65 ms. However, direct comparisons with these previous studies are problematic: for
s33 example, on the one hand Berens et al. (2012) examined only 20 units while we considered
35 groups up to N = 100, but on the other hand Berens et al. (2012) considered only a binary
s37  classification task whereas we considered the more difficult task of decoding a single stimulus
sss  orientation from all eight possibilities. Further work is needed to resolve these issues. Second,
g0 the improved performance of the population tracking model over the independent model
sa0 implies that it may be beneficial for the brain to explicitly represent the number of neurons
s simultaneously active in the local circuit. Indeed this seems like a natural computation for
sz single neurons to perform as they sum the synaptic inputs from their neighboring neurons.
g3 Our finding implies that this summed value itself carries additional information about the

saa  stimulus beyond that present in the list of identities of active neurons. Whether and how
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46 3 Discussion

a5 the brain uses this information remain questions for future study.

846 Our second application of the population tracking model was to look for changes in
g7 the distribution of neural pattern probabilities in mouse somatosensory cortex across devel-
s1s opment (Figure 8). We found a surprising non-monotonic trajectory across development.
sao Initially at P9-11 the entropy of population activity is low, due to large synchronous events
o in the population. The correlations decrease dramatically at around P12 (Golshani et al.,
s 2009; Rochefort et al., 2009), so that at P14-16 activity is relatively desynchronized, leading
g2 tO an increase in population entropy. However, we then found a reduction in firing rates
ss3 from P14-16 to P30-40 that corresponded to a decrease in entropy, despite no large change
ssa in correlations. These findings uncover a subtle and unexplained developmental trajectory
sss  for mouse somatosensory cortex that warrants detailed further study. Importantly, this non-
sss  monotonic development curve would not have been detectable by examining either firing

es7 rates or correlations in isolation (Figure 9).

858 The population tracking model we propose is similar in spirit to a recently proposed
g0 alternative, the population coupling model (Okun et al., 2012, 2015; Schélvinck et al., 2015).
so ' These authors developed a model of neural population data with 3N parameters: N speci-
g1 Tying the firing rates of each neuron, another NV specifying the population rate distribution,
g2 and a final N specifying the linear coupling of each individual neuron with the population
g3 rate. Okun et al. (2015) fit this model to data from mouse, rat, and primate cortex and
ss found that neighboring neurons showed diverse couplings to the population rate, that this
ss coupling was invariant to stimulus conditions, and that the degree of a neuron’s popula-
ss tion coupling was reflected in the number of synaptic inputs it received from its neighbors.
g7 ' These results show that the population rate contains valuable statistical information that
ss can help constrain models of neural population dynamics. Despite these notable advances,
g0 the population coupling model of Okun et al. also suffers from several shortcomings that our
sro - model does not: first, it offers no way to write down either the probability of a single neural

er1  activity pattern or the relative probabilities of two activity patterns in terms of the model’s
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sz parameters. Second, for large neural populations there is no way to estimate functions of the
g3 entire pattern probability distribution, such as the Shannon entropy or the Kullback-Leibler
sra  divergence. Third, generating samples from the model involves a computationally expen-
s sive iterative procedure, and the probability distribution across possible samples is not fully
srs  determined by the model parameters, but depends also on the experimenter’s choice of sam-
sr7 pling algorithm. Finally, the model assumes a linear relationship between each individual
grs neuron’s firing rate and the population rate. Although parsimonious, this linear model may
sro  be insufficiently flexible to capture the true relationship. Also a linear model must break
ss0 down at some point: a neuron cannot fire at rates less than zero Hertz or at rates higher
ss1 than its maximal firing frequency. For all of these reasons, we suggest that the model we
sz  propose may be applicable to a wider range of neurobiological problems than the population

ez  coupling model.

884 In what scenarios will the population tracking model do best and worst in? Intuitively, the
sss model will do best when the true pattern probability distribution, which in principle could
sss take any arbitrary shape in its 2¥-dimensional space, is nearby to the family of probability
ss7 distributions that are attainable from the population tracking model, which has only N2
s degrees of freedom. A rigorous mathematical understanding of the neural activity regimes
sso that could be well-matched by the population tracking model remains a goal for future
g0 studies. Nevertheless, we can hazard an answer to this question based on the form of the
g1 model. Given that the population tracking model assumes that all individual neurons are
g2 coupled only via a single global population rate variable K, it will be unlikely that the
g3 model can well capture any correlations within or between any specific subgroups present in
sa the data. Presumably the degree of error that this introduces will increase with increasing
s heterogeneity in correlation structure, especially if the neural population is highly modular.
sos Indeed we found that the entropy estimated for heterogeneous DG model samples was less
sor accurate than the case where DG model parameters were more homogeneous (compare Figure

sos 4D, left with Figure 6C). We do note however that the population tracking model can capture
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48 3 Discussion

soo  some of the pairwise correlation structure beyond the means, as observed in Figure 2C and
wo Appendix Figure 1. This may be due to the fact that the model captures the heterogeneity
o1 in firing rates, which can affect pairwise correlations (de la Rocha et al., 2007). Overall, we
w2 suggest that the primary benefit of the population tracking model may not be that it is the
w3 most accurate of all available models, but that it preserves its accuracy and tractability for

wa large N datasets.

905 What type of new neurobiological research questions can we ask with the population
ws tracking model? We introduced a method for calculating the divergence between the model
w7 fits to two sets of neural population activity data. This measure should be useful for ex-
ws periments where the same neurons are recorded in two or more different conditions, such as
w0 comparing the statistics of spontaneous activity with that evoked by stimuli (Figure 5), or
a0 the effects of an acute pharmacological or optogenetic stimulation on neural circuit activ-
o ity. In contrast, if experiments involve comparing neural population activity from different
o1z animals, such as genetically distinct animals or at different timepoints in development, one
a3 can still perform quantitative comparisons of the activity statistics at a grouped population

as level (Figure 8).

015 The most direct usage of our model may however be to provide limits and constraints on
aie future theoretical models of neural population coding. The Shannon entropy is a particularly
a7 useful measure because it provides an upper bound on the information that the neural
a3 population can represent. We conjecture, but have not proven, that our model is maximum
a9 entropy given the parameters. Adding temporal correlations, which real neurons show but
o0 are not included in the population tracking model, can only further reduce the population
o1 entropy. Hence, assuming that enough data are available for the model parameter fits to
w2 converge, the entropy estimate from the population tracking model gives a hard upper bound
o3 on the coding capacity of a circuit. Any feasible model for neural processing in a given brain

o4 Tegion must obey these limits.
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a1 Appendix

> Macaque electrophysiological recording

a3 All macaque electrophysiology data were previously published (Zandvakili and Kohn, 2015)
s« and kindly shared by A. Kohn. Full details of experimental procedures and raw data pro-

o5 cessing steps are available in Zandvakili and Kohn (2015).

s Mouse in vivo calcium imaging recording

o7 All Ca?' imaging data were previously published (Gongalves et al., 2013). Briefly, data
s were collected from male and female C57B1/6 wild-type mice at P9-40. Mice were anes-
a0 thetized with isoflurane, and a cranial window was fitted over primary somatosensory cortex
wo by stereotaxic coordinates. Mice were then transferred to a two-photon microscope and
o1 headfixed to the stage while still under isoflurane anesthesia. 2-4 injections of the Ca* sen-
o2 sitive Oregon-Green BAPTA-1 (OGB) dye and sulforhodamine-101 (to visualize astrocytes)
w3 were injected 200 pm below the dura. Calcium imaging was performed using a Ti-Sapphire
sa  Chameleon Ultra II laser (Coherent) tuned to 800 nm. Imaging in unanesthetized mice
ws  began within 30-60 mins of stopping the flow of isoflurane after the last OGB injection. Im-
us ages were acquired using Scanlmage software (Pologruto et al., 2003) written in MATLAB
ar  (MathWorks). Whole-field images were collected using a 20x 0.95 NA objective (Olympus)
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50 3 Discussion

sz at an acquisition speed of 3.9 Hz (512 x 128 pixels).

949 Several 3-minute movies were concatenated and brief segments of motion artifacts were
ss0 removed (always <10 s total). Data were corrected for z-y drift. Cell contours were auto-
o1 matically detected and the average AF'/F signal of each cell body was calculated at each
2 time point. Each AF/F trace was low-pass filtered using a Butterworth filter (coefficient of
953 0.16) and deconvolved with a 2 s single-exponential kernel (Yaksi and Friedrich, 2006). To
sss Temove baseline noise, the standard deviation of all points below zero in each deconvolved
ss5 trace was calculated, multiplied by two, and set as the positive threshold level below which
s all points in the deconvolved trace were set to zero. Estimated firing rates of the neurons,
o7 7;(t), were then obtained by multiplying the deconvolved trace by a factor of 78.4, which was

s previously derived empirically from cell-attached recordings in vivo (Golshani et al., 2009).

s Data analysis methods

w0 All data analysis and calculations were done using MATLAB (The Mathworks).

w1 Statistical tests

w2 10 avoid parametric assumptions, all statistical tests were done using standard bootstrapping
a3 methods with custom-written MATLAB scripts. For example when assessing the observed
ws difference between two group means Apps we performed the following procedure to calculate
ws a p-value. First we pool the data points from the two groups to create a null set S,,,;;. We
ss then construct two hypothetical groups of samples S; and S, from this by randomly drawing
o7 n1 and ny samples with replacement from S,,,;, where n; and ny are the number of data
ss points in the original groups 1 and 2 respectively. We take the mean of both hypothetical
wo sets py and po and calculate their difference Apy = 1 — pe. We then repeat the entire
o0 procedure 107 times to build up a histogram of Aji,,;. This distribution is always centered
on at zero. After normalizing, this can be interpreted as the probability distribution Pr(Ap,.u)

o for observing a group mean difference of A, purely by chance if the data were actually


https://doi.org/10.1101/064717
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/064717; this version posted August 23, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

o1

o3 sampled from the same null distribution. Then the final p-value for the probability of finding

9

<

+ a group difference of at least Ay, in either direction is given by

7Alu‘0b\5 oo
D :/ Pr<A/JJnull)dA/JJnull +/ Pr<Aﬂnull)dAﬂnull
—00 AMobs
o75 Any data that varied over multiple orders of magnitude (e.g. the number of patterns

os  observed) was log-transformed before comparing group means.

o7 Conversion from firing rate to ON/OFF probabilities for Ca?" imaging data

os  For the Ca’" imaging data, we began with estimated firing rate time series r;(t) for each
aro  neuron ¢ recorded as part of a population of N neurons. For later parts of the analysis we
0 needed to convert these firing rates to binary ON/OFF values. This conversion involves
se1 a choice. One option would be to simply threshold the data, but this would throw away
sz information about the magnitude of the firing rate. We instead take a probabilistic approach
se3 where rather than deciding definitively whether a given neuron was ON or OFF in a given
ses time bin, we calculate the probability that the neuron was ON or OFF by assuming that
s neurons fire action potentials according to an inhomogeneous Poisson process with rate r;(t).
s 'The mean number of spikes \;(t) expected in a time bin of width At is A\;(t) = r;(t) x At. We

o7 choose At = 1 second. Under the Poisson model the actual number of spikes m in a particular

s time bin is a random variable that follows the Poisson distribution P(m = k) = )‘k;f > We
90 will consider a neuron active (ON) if it is firing one or more spikes in a given time bin. Hence
o0 the probability that a neuron is ON is py,(t) = 1 — P(m = 0) = 1 — ¢*. This approach has
w1 two advantages over thresholding: 1) it preserves some information about the magnitude of

o> firing rates, and 2) it acts to regularize the probability distribution for the number of neurons

w3 active by essentially smoothing nearby values together.
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52 3 Discussion

s Entropy estimation for large numbers of neurons for Ca?" imaging data

05 The entropy/neuron generally decreased slightly with the number of neurons considered as
s result of the population correlations (see Figure 8F in main text), so we needed to control for
o7 neural population size when comparing data from different experimental groups. On the one
ws hand we would like to study as large a number of neurons as possible, because we expect the
wo effects of collective network dynamics to be stronger for large population sizes and this may
w0 be the regime where differences between the groups emerge. On the other hand our recording
wan  methods allowed us to sample only typically around ~ 100 neurons at a time, and as few as
w2 40 neurons in some animals. Hence we proceeded by first estimating the entropy/neuron in
w03 each animal by calculating the entropy of random subsets of neurons of varying size from 10
s to 100 (if possible) in steps of 10. For each population size we sampled a large number of
wos independent subsets, calculated the entropy of each. Finally for each dataset we fit a simple
s decaying exponential function to the entropy/neuron as a function of the number of neurons:
wr HWY) — Ae=N 4 ¢ and used this fit to estimate H /N for 100 neurons.

N

1008
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wo  Appendix Figure 1.
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Appendix Figure 1: The population tracking model partially recapitulates the pairwise
correlation structure of the original data. Left column are the pairwise correlation matrices
from the example data shown in Figure 2 (top), for samples drawn from the population track-
ing model fit to these data (center), and the residual pairwise correlations in the data after
subtracting the covariance accounted for by the population tracking model and renormaliz-
ing (bottom). Center column are histograms of the pairwise correlations from each matrix
in the left column. The scatter plots in the right column show the individual pairwise cor-
relations of the model (red) and the data minus the model (purple) against the pairwise
correlations in the original data. Note that the model almost exactly captures the mean
pairwise correlation of the original data, and part of the remaining structure (R? = 0.52).
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