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Abstract 
 
Traditional genome-wide scans for positive selection have mainly uncovered selective sweeps 
associated with monogenic traits. While selection on quantitative traits is much more common, 
very few signals have been detected because of their polygenic nature. We searched for positive 
selection signals underlying coronary artery disease (CAD) in worldwide populations, using 
novel approaches to quantify relationships between polygenic selection signals and CAD genetic 
risk. We identified new candidate adaptive loci that appear to have been directly modified by 
disease pressures given their significant associations with CAD genetic risk. These candidates 
were all uniquely and consistently associated with many different male and female reproductive 
traits suggesting selection may have also targeted these because of their direct effects on fitness. 
This suggests the presence of widespread antagonistic-pleiotropic tradeoffs on CAD loci, which 
provides a novel explanation for the maintenance and high prevalence of CAD in modern 
humans. Lastly, we found that positive selection more often targeted CAD gene regulatory 
variants using HapMap3 lymphoblastoid cell lines, which further highlights the unique biological 
significance of candidate adaptive loci underlying CAD. Our study provides a novel approach for 
detecting selection on polygenic traits and evidence that modern human genomes have evolved in 
response to CAD-induced selection pressures and other early-life traits sharing pleiotropic links 
with CAD. 
 
 
Author Summary 
 
How genetic variation contributes to disease is complex, especially for those such as coronary 
artery disease (CAD) that develop over the lifetime of individuals.  One of the fundamental 
questions about CAD –– whose progression begins in young adults with arterial plaque 
accumulation leading to life-threatening outcomes later in life –– is why natural selection has not 
removed or reduced this costly disease. It is the leading cause of death worldwide and has been 
present in human populations for thousands of years, implying considerable pressures that natural 
selection should have operated on.  Our study provides new evidence that genes underlying CAD 
have recently been modified by natural selection and that these same genes uniquely and 
extensively contribute to human reproduction, which suggests that natural selection may have 
maintained genetic variation contributing to CAD because of its beneficial effects on fitness.  
This study provides novel evidence that CAD has been maintained in modern humans as a by-
product of the fitness advantages those genes provide early in human lifecycles. 
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Introduction 
 
It is well established that modern human traits are a product of past evolutionary forces that have 
shaped heritable phenotypic and molecular variation, but we are far from understanding what 
diseases have driven natural selection and how this process has left its imprint across the genome. 
Although many recent genome-wide multi-population scans have searched for signatures of 
positive selection [1-9], these studies have detected few signals of selection on candidate loci 
associated with traits or diseases [10-12]. This suggests that classic ‘selective sweeps’ have been 
relatively rare in recent human history [13, 14] and that the tools currently used miss most of the 
smaller selection signals caused by diseases associated with polygenic traits [12]. This limits our 
understanding of how natural selection has acted on variation underlying complex diseases. In 
this study, we aimed to comprehensively identify positive selection signals underlying coronary 
artery disease (CAD) loci with methods designed to detect signals of recent positive selection. 
We also compared quantitative selection signals in 12 worldwide populations (HapMap3) with 
patterns of disease risk to identify signals of selection linked to CAD pressure.  
 
Classic population genetics theory describes positive selection with the selective-sweep (or hard-
sweep) model, in which a strongly advantageous mutation increases rapidly in frequency (often to 
fixation) resulting in reduced heterozygosity of nearby neutral polymorphisms due to genetic 
hitch-hiking [15, 16] and a longer haplotype with higher frequency. Many methods have been 
developed to detect these signatures [17, 18], including traditional tests that detect differentiation 
in allele frequencies among population (i.e. Wright’s fixation index, Fst [19]) and more recently 
developed within population tests for extended haplotype homozygosity (i.e. integrated haplotype 
score, iHS [9]). Some of the most convincing examples of human adaptive evolution have been 
uncovered for traits influenced by single loci with large effects. For example, the lactase 
persistence (LCT) and Duffy-null (DARC) mutations affecting expression of key proteins in milk 
digestion [10] and malarial resistance [20] both display hallmarks of selective sweeps. Other loci 
that are not clearly monogenic but also show selective sweeps are associated with high-altitude 
tolerance (EPAS1 [21]) and skin pigmentation (SLC24A5 and KITLG [22]). These previous 
studies showed that rapid selective sweeps occurred around loci where alleles that were 
previously rare or absent in populations had large effects on phenotypes.  
 
Motivated by these initial successes and the increasing availability of global population data 
genotyped on higher resolution arrays (i.e. HapMap Project, 1000 Genomes Project), many 
genome-wide scans for candidate adaptive loci have recently been performed [11]. These studies 
suggest that selection may have operated on a variety of biological processes [10] in ways that 
differ among populations (i.e. local adaptation) [23], has been prevalent in genetic variation 
linked to metabolic processes [24], and may have often targeted intergenic regions and gene 
regulatory variants rather than protein-coding regions [12]. However, only the larger signals 
underlying monogenic traits are typically captured due to the lack of statistical power imposed by 
the need to correct for genome-wide multiple testing [18]. Most of these candidates also are not 
yet convincing due to inconsistencies between studies that utilized the same data [14], cannot be 
validated due to the absence of biological or functional information [25, 26], and perhaps because 
selective sweeps have actually been rare in human populations [27, 28]. 
 
In contrast to population genetics, in quantitative genetics rapid adaptation typically involves 
selection acting on quantitative traits that are highly polygenic [29, 30]. Under the ‘infinitesimal 
(polygenic) model’, such traits are likely to respond quickly to changing selective pressures 
through smaller frequency shifts in many polymorphisms already present in the population [13, 
31]. Such alleles would not necessarily sweep to fixation, would produce smaller changes in 
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surrounding heterozygosity, and would thus be hard to detect with most current population 
genetic methods [14, 26, 32]. Note that polygenic and classic sweep models are not mutually 
exclusive [13, 33], for alleles with small- and large-effects may both underlie a polygenic trait.  
Thus the degree to which candidate alleles will be detectable after a selective event will vary. 
Given that most common diseases are highly polygenic [34], this suggests a need to improve how 
we detect and understand adaptive signatures in the loci associated with polygenic traits. 
 
Recent selection studies investigating polygenic traits have taken two approaches. The first scans 
for significant selection signals within genome-wide significant disease effect SNPs. For 
example, Ding and Kullo [35] found significant population differentiation (Fst) for 8 of 158 index 
SNPs underlying 36 cardiovascular disease phenotypes, and Raj et al. [36] observed elevated 
positive selection scores (Fst, iHS) for 37 of 416 index susceptibility SNPs underlying 10 
inflammatory-diseases. The second approach tests if aggregated shifts in genome-wide significant 
allele frequencies are associated with phenotypic differences by population, latitudinal, or 
environmental gradients, which might indicate local adaptation. For example, Castro and 
Feldman [37] used 1300 index SNPs underlying many polygenic traits and found elevated 
adaptive signals (Fst and iHS) above background variation, and Turchin et al. [38] demonstrated 
moderately higher frequency of 139 height-increasing alleles in a Northern (taller) compared to 
Southern (shorter) European populations. These approaches all assume that the variants with the 
most significant p values are the most probable selection targets, but many if not most such 
variants are tagging tested or untested causal variants, which may themselves be of lower 
frequencies. This suggests an approach sensitive to more subtle signals of selection and disease 
risk is needed for polygenic selection.  
 
We chose CAD as a model for examining polygenic selection signals underlying complex disease 
because it has (and continues to) impose considerable disease burden (selection pressure) in 
humans [39], its underlying genetic architecture has been extensively studied [40, 41] and many 
of its risk factors (cholesterol, blood pressure) have been under recent natural selection [42] 
related to potential pleiotropic effects or tradeoffs with CAD. Antagonistic pleiotropy describes 
gene effect on multiple linked traits where selection on one may cause fitness tradeoffs (i.e. 
disease, survival) in the other due to their negative genetic association [43]. Two common 
misconceptions are that CAD is exclusively late age of onset and only occurs at appreciable 
frequency in contemporary humans. If that were true, selection might not have had either the 
opportunity or sufficient time to affect genetic variation associated with CAD. However, CAD 
manifests early in life [44, 45] and can be detected even in adolescence through degree of 
atherosclerosis [45, 46] and myocardial infarction events [47]. CAD is also a product of many 
heritable risk factors (cholesterol, weight, blood pressure) whose variation is expressed during the 
reproductive period, when CAD could drive selection directly or indirectly. Furthermore, CAD 
has impacted human populations since at least the ancient Middle Kingdom period, with studies 
finding the presence of atherosclerosis in Egyptian mummies [48]. This suggests that there has 
been enough time for genomic signatures of selection related to CAD to develop and be 
detectable in modern humans. 
 
By combining several 1000 Genomes-imputed datasets including HapMap3 and Finnish SNP 
data, a large genetic meta-analysis of CAD, and HapMap3 gene expression data, we sought to 
address the reason(s) why CAD exists in humans by answering the following questions: 1) Has 
selection recently operated on CAD loci 2) How do selection signals underlying CAD loci vary 
among populations and are they enriched for gene regulatory effects? 3) Do candidate adaptive 
signatures overlap directly with CAD genetic risk and is this useful for highlighting disease-
linked selection signals? 4) Do CAD-linked selection signals display functional effects and 
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evidence of antagonistic pleiotropy, in that they are also linked to biological processes or traits 
influencing reproduction?  
 
 
 
Results 
 
To test for selection signals for variants directly linked with CAD, we utilized SNP summary 
statistics from 56 genome-wide significant CAD loci in Nikpay et al. [41], the most recent and 
largest CAD case-control GWAS meta-analysis to date, to identify 76 candidate genes for CAD 
(Supplementary Materials and Methods). Nikpay et al. used 60,801 CAD cases and 123,504 
controls from a mix of individuals of mainly European (77%), south (13% India and Pakistan) 
and east (6% China and Korea) Asian, Hispanic and African American (~4%) descent with 
genetic variation imputed to a high-density using the 1000 Genomes reference panel. By 
investigating all SNPs in candidate CAD genes, we aimed to improve detection of smaller 
polygenic selection signals for the range of functional genic variants and short-range intergenic 
regulatory variants that would be missed with approaches that only consider genome-wide 
significant SNPs. 
 
 
Signals of positive selection within coronary artery disease loci 
 
We utilised the integrated Haplotype Score (iHS) to estimate positive selection for each SNP 
underlying candidate CAD genes within each population separately. Because iHS is typically 
used to detect candidate adaptive SNPs where the selected alleles may not have reached fixation 
[9], this estimate is well suited for detecting recent signals of selection as opposed to other 
measures [18]. iHS is also better suited for detecting selection acting on standing variation in 
polygenic traits [18, 49]. 
 
Candidate selection signals were found for many of the 76 CAD genes within each of the 12 
worldwide populations (11 HapMap3 populations and Finns; Fig. 1A for top 40 based on their 
association with CAD log odds genetic risk, Fig. S1 for all 76). These were defined as ‘peaks’ of 
significantly elevated iHS scores across SNPs within each gene-population combination, with the 
apex approximating the likely positional target of positive selection.  
 
In the sample of all populations (Fig. 1A, largest iHS scores), most candidate selection signals 
were relatively small, but a few larger signals were detected. For example, out of the 912 gene-
by-population combinations (Fig. S1), 354 (38%) contained weak-moderate candidate selection 
signals (significant iHS between 2-3), 84 (9%) contained moderate-strong signals (significant iHS 
between 3-4), and 6 (0.6%) had very strong signals (significant iHS > 4). The 6 largest selection 
signals were found in the following gene-population combinations: BCAS3 in GIH (iHS=4.45), 
MEX (iHS=4.23) and CEU (iHS=4.86), PEMT in MKK (iHS=4.24), ANKS1A in LWK 
(iHS=4.03), and CXCL12 in JPT (iHS=4.10), with all iHS p values <0.0001. Six genes (BCAS3, 
SMG6, PDGFD, KSR2, SMAD3, HDAC9) exhibited candidate selection signals consistently 
within all populations (Fig. 1A), and many genes also contained consistent selection signals for 
all populations within similar ancestral groups (e.g. African, European etc, Fig. 1A). 
 
Within CAD genes, multiple candidate selection signals were sometimes present (particularly 
within larger genes, within separate linkage disequilibrium (LD)-blocks); these varied between 
and sometimes within a population. For example, in PHACTR1 (~0.57mb in size, 14 introns) 
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there are three main candidate selection signals in introns 4, 7 and 11 (see Fig. S2, comparing 
cross-population selection signals in PHACTR1) that were in separate LD-blocks (see Fig. 3C, 
LD plots). Within most populations, there was a broad and relatively weak set of candidate 
selection signals in intron 4 (the largest PHACTR1 intron, ~300kb in length). Intron 4 is also the 
location of the published CAD index SNP (rs9369640) for PHACTR1. Three of the African 
populations had the highest iHS score for the same SNP in intron 4 (rs8180558) including ASW 
(iHS=2.4, P<0.05), LWK (iHS=2.8, P<0.01) and YRI (iHS=2.2, P<0.05), which is ~18kb 
upstream from the index CAD SNP (r2 between rs8180558 and rs9369640 in PHACTR1: 
ASW=0.12; LWK=0.03; YRI=0.04). Peaks of PHACTR1 selection signals within the three Asian 
populations were at rs4715043 in CHB (iHS=2.3, P<0.05) and rs6924689 in both CHD (iHS=2.9, 
P<0.01) and JPT (iHS=3.0,P<0.01). The GIH population contained the largest selection signal, 
also in intron 4, with an apex at rs4142300 (iHS=3.7, P<0.001, 75kb downstream of/r2=0.07 with 
index CAD SNP rs9369640). This corresponded with the same apex SNP in intron 4 for TSI, 
though the TSI signal was weaker and non-significant (rs4142300, iHS=1.84); rs4142300 was 
also close to the apex SNP in CEU (rs9349350, iHS=2.0, P<0.05, r2=0.92) and MEX (rs2015764, 
iHS=2.1, P<0.05, r2=0.30). Other significant candidate selection signals were also present in 
intron 7 for three of the African populations (ASW, LWK, MKK), the CHD and GIH 
populations, with the largest intron 7 signal within MKK (SNP rs13191209, iHS=3.0, P<0.001). 
The last significant candidate selection signal within PHACTR1 was found within intron 11 with 
the largest signal at rs9349549 (MKK iHS=2.9, P<0.01; CEU iHS=2.7, P<0.01; TSI iHS=3.0, 
P<0.01). Other interesting candidate selection signals present in other CAD genes (Fig. S1) are 
not discussed here. Such patterns suggest that candidate selection signals are complex and often 
do not correspond to the alleles with largest effect on CAD.  

 
Relationship between CAD genetic risk and selection across populations 
 
For each CAD gene within each population, we used a mixed effects linear model to regress 
SNP-based estimates of CAD log odds genetic risk (ln(OR), obtained from 
cardiogramplusc4d.org) against iHS selection scores (Supplementary Materials and Methods). 
We accounted for LD structure by including the first eigenvector from an LD matrix of 
correlations (r2) between SNPs within each gene as a random effect. 
 
For a subset of CAD loci, we found significant quantitative associations between disease risk and 
selection signals and for each of these the direction of this association was often consistent 
between populations (Fig. 1B). Furthermore, when compared to a null distribution of genes 
selected randomly from the genome, the strength of the CAD log odds versus selection signal at 
most loci was statistically significant (Fig. 1C). Fig. 1B shows 40 genes ranked based on those 
that showed the most consistent number of significant associations across the 12 populations, 
with those that showed fewer than four significant associations excluded. Positive and negative 
associations indicate elevated selection signals present in regions with higher or lower CAD log 
odds genetic risk, respectively.  
 
In the comparison across populations, directionality of significant selection-risk associations 
tended to be most consistent for populations within the same ancestral group (Fig. 1B). For 
example, in PHACTR1, negative associations were present within all European populations 
(CEU, TSI, FIN), and in NT5C2 strong positive associations were present in all East Asian 
populations (CHB, CHD, JPT). Other negative associations that were consistent across all 
populations within an ancestry group included five genes in Europeans (COG5, ABO, ANKS1A, 
KSR2, FLT1) and four genes (LDLR, PEMT, KIAA1462, PDGFD) in East Asians.  
 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 28, 2016. ; https://doi.org/10.1101/064758doi: bioRxiv preprint 

https://doi.org/10.1101/064758


	 7	

Additional consistent positive associations included four genes (CNNM2, TEX41, NT5C2, MIA3) 
in East Asians, three (BCAS3, RAI1, KCNK5) in Europeans, and one (PPAP2B) in Africans. In 
comparison to other ancestral groups, African populations showed fewer significant selection-risk 
associations (27.9% of all 76-gene x 12-population combinations) than Asians (31.5%) or 
Europeans (32.8%). Some associations were consistent in all but one population (e.g. CNNM2, 
ABCG8 in Europeans; BCAS3, KCNK5 in Asians; CNNM2, TEX41 in Africans) or unique to one 
population within an ancestral group (e.g. TEX41 in FIN, COG5 in ASW).  
 
Below we focus on BCAS3 (Fig. 2) and PHACTR1 (Fig. 3), two of the strongest selection-risk 
associations which, when adjusting for LD (Supplementary Materials and Methods), displayed 
varying directionality between at least two populations.  
 
Genetic risk of CAD vs positive selection in BCAS3 
The genetic risk of CAD for variants in BCAS3 were positively correlated with an extremely large 
candidate adaptive signal in all European and two of three East Asian populations (Fig. 1B). For 
example in CEU, the largest iHS score was 4.85 and highly significant, and was elevated across 
most of BCAS3 (Fig. 2B CEU, spanning introns 1-18 and various LD-blocks, Fig. 2C), which 
matched the approximate trends in CAD log odds giving rise to a highly significant positive 
correlation (Fig. 2A CEU). In contrast, in YRI there was no detectable selection signal close to 
the index SNP (Fig. 2B YRI), but weak-moderate signals were present towards the end of BCAS3 
(Fig. 2B YRI, introns 18-19, smaller LD-blocks Fig. 2C), which also corresponded with lower 
CAD log odds (Fig. 2B, YRI) thus giving rise to a significant negative correlation in Fig. 2A.  
 
Genetic risk of CAD vs positive selection in PHACTR1 
For all European populations, PHACTR1 (see CEU example, Fig. 3A) selection peaks were 
typically located within regions of consistently lower CAD log odds (Fig. 3B). This contrasted 
with most other non-European populations where the highest candidate selection peaks were 
located within regions with elevated CAD log odds (including the index CAD SNP rs9369640, 
intron 4). The largest selection peak in GIH (Fig. 3B) overlapped the CAD log odds peak in 
PHACTR1 giving rise to the strong positive association seen in Fig. 3A. The two distinctive 
selection peaks in both CEU and GIH were separated by different LD-blocks (Fig 3C), suggesting 
that these may have developed independently within PHACTR1. Interestingly, the negative 
association found for the MKK population was due to the location of the selection peaks more 
closely matching those of the European populations in intron 11 (Fig. S2).  
 
 
Enrichment of gene regulatory variants under selection at CAD loci 
 
To establish whether variants with evidence of selection in CAD genes also showed evidence of 
function, we performed an eQTL scan in 8 HapMap3 populations with matched LCL gene 
expression.  We compared all SNPs in each CAD locus against expression for each focal gene 
within each population. We found that SNPs with significant integrated Haplotype Scores (iHS) 
were often also involved in gene regulation, compared to SNPs with non-significant selection 
scores (Fig. 4, Kolmogorov-Smirnov test p value <0.001). To assess which biological pathways 
were enriched for the highest-ranked genes according to Fig. 1B, i.e. those where selection scores 
were most closely associated with CAD log odds genetic risk, we included the top 10 genes into 
the Enrichr analysis tool [50] and found that these genes are especially enriched in pathways 
related to metabolism, focal adhesion and transport of glucose and other sugars. More 
interestingly, we found connections to reproductive phenotypes in the associations of these genes 
with pathways, ontologies, cell types and transcription factors. For example, we found links to 
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ovarian steroidogenesis and genes expressed in specific cell types and tissues including the ovary, 
endometrium and uterus (see Table S4 for Enrichr outputs). 
 
 
 
Discussion 
 
This study has identified many candidate adaptive signals which suggests that selection on CAD 
loci is much more widespread than previously appreciated (also see Supplementary Discussion). 
It has previously been suggested [12] and demonstrated [51] that selection on gene expression 
levels has been an important element of human adaptation in general. We confirm this result for 
CAD associated loci. Positive selection signals within CAD loci were more likely than random 
SNPs to be associated with gene expression levels in cis (Fig. 4). 
 
We found evidence that some of these signals may be a result of selection pressures induced 
directly by CAD itself. This finding is important for highlighting genes that may have been 
modified directly by selection on disease phenotypes and also for our general understanding of 
how quickly human genomes can respond to selection induced by changing environments. 
Subsequent biological process analyses and a thorough literature assessment (below) 
demonstrated that the loci most consistently associated with CAD genetic risk are also often 
linked to human reproduction, which suggests both their potential to respond to natural section 
and their possible role via antagonistic pleiotropy in the reproductive tradeoffs that would help to 
explain why CAD exists in human populations.  
  
  
Coronary artery disease-induced changes to human genomes 
 
One of our most interesting findings was the significant association between selection signals and 
CAD log odds genetic risk. This approach of integrating genome scans of positive selection with 
genome-wide genotype-phenotype data has been promoted previously as a tool to uncover 
biologically meaningful selection signals of recent human adaptation [12, 51] but has rarely been 
applied. Among the exceptions, Jarvis et al. [52] found a cluster of selection and association 
signals coinciding on chromosome 3 that included genes DOCK3 and CISH, which are known to 
affect height in Europeans.  
 
For highly-ranked genes (according to the number of significant associations present within the 
12 populations) in Fig. 1B such as BCAS3, CNNM2, TEX41, SMG6 and PHACTR1, the consistent 
overlap between selection and genetic risk of CAD suggests that many of these may have been 
modified by CAD-linked selective pressures. If so, then two conditions must have been met. 
Firstly, CAD was present for long enough to be involved in these genetic alterations, an 
evolutionary process which generally takes thousands of years. Indeed, precursors of CAD (i.e. 
atherosclerosis) are detectable in very early civilizations [48]. Secondly, the effects of CAD were 
directly or indirectly expressed during the reproductive period and trait variation was under 
natural selection due to its effects on reproductive success.  
 
It is only possible for natural selection to directly act on CAD if those outcomes modify 
individual fitness relative to others in the same population. As outlined in the introduction, this is 
possible as CAD outcomes (i.e. myocardial infarction) do occur in young adults. However, early-
life CAD outcomes are relatively rare, suggesting selection is more likely to operate indirectly on 
CAD via its risk factors (or other pleiotropically linked traits, discussed below), which provides a 
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more likely explanation for the close associations we found between positive selection and 
genetic risk. Supporting this, phenotypic selection has been found operating on CAD risk factors 
[42], suggesting that these selection pressures are still present in modern humans. 
 
Some genes had large signals of selection but showed weak or no consistent overlap with CAD 
genetic risk. For example HDAC9 (Histone Deacetylase 9) shows extensive evidence for having 
undergone recent selection within most populations, especially those of European or Mexican 
decent, but little or no overlap with CAD risk was evident in most populations. This suggests 
positive selection has operated on this gene due to its effects on a trait unrelated to CAD, which 
may not be surprising given HDAC9’s broad biological roles (as a transcriptional regulator, cell-
cycle progression) and association with other very different phenotypes including ulcerative 
colitis [53] and psychiatric disorders [54]. This further demonstrates that this approach is useful 
for separating candidate selection signals important for the disease or phenotype of interest from 
those that aren’t. 
 
 
Pleiotropic effects that establish the genetic foundations of tradeoffs 
 
To further investigate whether top candidate adaptive loci for CAD modify fitness or share 
pleiotropic links with other traits that may modify fitness, we performed an extensive systematic 
literature search on the 40 top-ranked genes in Fig. 1 and a random set of 20 genes. If they have 
been under selection recently, they might still be associated with reproductive variation (i.e. 
fitness) in modern environments. We found that all 40 CAD genes shared at least one (often 
more) connection with fitness (Table S1-S2). Some appear to directly influence fitness (offspring 
number, age at menarche, menopause, survival), while many were associated with early-life 
reproductive traits that are likely to indirectly correlate with fitness including variation in ability 
to fertilize/conceive or fetal growth, development and survival. To test the novelty of this, we 
randomly chose 20 genes that were approximately the same size as the top 20 genes in Fig. 1. We 
only found three (out of 20) random genes with at least one potential link with fitness (Table S3). 
This suggests there are unique pleiotropic links between CAD and traits that have likely been 
under selection earlier in life. 
 
Evidence for direct links between CAD genes and fitness (Table S1-S2) included genes 
associated with reproductive (PPAP2B, [55]) or twinning (SMAD3, [56]) capacity and number of 
offspring produced (e.g. KIAA1462, [57], SLC22A5, [58]). PHACTR1, LPL, SMAD3, ABO and 
SLC22A5 may contribute to reproductive timing (menarche, menopause) in women [59-61] and 
animals [62]. Expression of PHACTR1 [63], KCNK5 [64], MRAS and ADAMST7 [65] appear to 
regulate lactation capacity. Some gene deficiencies also cause pregnancy loss (e.g. LDLR, [66], 
COL4A2, [67]). Evidence for antagonistic links were much more common and included these: 25 
genes shared links with traits expressed during pregnancy (Table S1-S2), i.e. variation that can 
negatively influence the health and survival outcomes of both the fetus and mother [68]. For 
example, a variant of CDKN2B-AS1 significantly contributes to risk of fetal growth restriction 
[69], both FLT1 [70] and LPL [71] are significantly differentially expressed in placental tissues 
from pregnancies with intrauterine growth restriction (IUGR), and preeclampsia and LDLR-
deficient mice had litters with significant IUGR [72]. A further 29 and 19 genes were linked to 
traits that can directly influence female and male fertility, respectively (13 influence both) (Table 
S1-S2). For example, BCAS3 and PHACTR1 are highly expressed during human embryogenesis 
[73, 74], SWAP70 is intensely expressed at the site of implantation [75], and PHACTR1 may play 
a role in receptivity to implantation [76]. For ABCG8 and KSR2, animal models provide further 
support as gene expression deficiency can cause infertility in females (ABCG8, [77]) and males 
(KSR2, [78]).  
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Pleiotropic connections were also apparent in the classification of specific disorders or from 
studies investigating single-gene effects. For example, women with polycystic ovarian syndrome 
(PCOS) have higher rates of infertility due to ovulation failure and modified cardiovascular 
disease risk factors (i.e. diabetes, obesity, hypertension [79]). A number of CAD genes in this 
study (e.g. PHACTR1, LPL, PDGFD, IL6R, CNNM2) are found differentially expressed in PCOS 
women [80-84], suggesting possible links between perturbed embryogenesis and angiogenesis. In 
males, this can be demonstrated with a mutation in SLC22A5 that causes both cardiomyopathy 
and male infertility due to altered ability to break down lipids [85, 86]. More generally, many 
recent studies link altered cholesterol homeostasis with fertility, which is most apparent in 
patients suffering from hyperlipidemia or metabolic syndrome [87, 88].  
 
To facilitate interpretation of selection occurring on early-life traits or CAD phenotypic risk 
factors that share pleiotropic connections and possible evolutionary tradeoffs with coronary artery 
disease, we present a conceptual figure (Fig. 5). These pleiotropic effects are important because 
many of them affect traits expressed early in life, some extremely early in life. Any allele that 
increases reproductive performance enough early in life to more than compensate for a loss of 
associated fitness late in life will be selected [43]. Such a mechanism has been recently suggested 
to help explain the maintenance of polymorphic disease alleles in modern human populations 
[89]. Some previous studies have tested for such tradeoffs in humans using direct fitness-related 
phenotypes (e.g. [90]) although evidence for such a mechanism influencing human disease is 
currently lacking. Our approach examining antagonistic fitness effects for disease genes that 
displayed consistent selection-genetic risk associations in diverse worldwide populations provides 
support for such a mechanism influencing CAD. Here we have presented multiple cases in which 
such antagonistic pleiotropy appears to be present for genes associated with CAD, which may 
help to explain our vulnerability to the disease. 
 
 
Study limitations 
 
There are also some limitations to our approach. We utilized CAD genetic risk estimated from a 
meta-analysis based on predominantly European (77%) with smaller contributions from 
south/east Asian (19%), Hispanic and African American (~4%) ancestry [41]. Genetic risk 
variation for CAD might be different in the un-represented (i.e. Mexican) or less-represented (i.e. 
African) populations in this meta-analysis. If that were the case, it would reduce the usefulness of 
comparing selection and risk estimates in those populations. We also saw fewer significant 
selection-risk associations in the African populations (Fig. 1B), however this may be due to 
selection signals in the African populations being less obvious than those in East Asian and 
European populations, perhaps due to lesser linkage disequilibrium, as is consistent with results 
from previous studies [91]. Calculating disease risk and selection variation from populations 
within the same ancestral group might help resolve this, however it only represents a potential 
shortcoming for our cross-population analyses and not observations of antagonistic pleiotropy. 
 
 
Summary  
 
In this study, we found evidence that natural selection has recently operated on CAD associated 
variation. By comparing positive selection variation with genetic risk variation at known loci 
underlying CAD, we were able to identify and prioritize genes that have been the most likely 
targets of selection related to this disease across diverse human populations. That selection 
signals and the direction of selection-risk relationships varied among some populations suggests 
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that CAD-driven selection has operated differently in these populations and thus that these 
populations might respond differently to similar heart disease prevention strategies.  The 
pleiotropic effects that genes associated with CAD have on traits associated with reproduction 
that are expressed early in life strongly suggests some of the evolutionary reasons for the 
existence of human vulnerability to CAD. 
 
 
 
Methods 
 
Defining loci linked to coronary artery disease 
 
We started with the 56 lead index SNPs from Supplementary Table 5 in Nikpay et al. [41] 
corresponding to 56 CAD loci. When the index SNP was genic, all SNPs within that gene were 
extracted (using NCBI’s dbSNP) including directly adjacent intergenic SNPs ±5000bp from 
untranslated regions (UTR) in LD>0.7 (with any respective genic SNP). When the index SNP 
was intergenic, that SNP and other directly adjacent SNPs ±5000bp and in LD>0.7 (with the 
index SNP) were extracted and combined with SNPs from the respective linked gene listed in 
Nikpay et al. [41] including SNPs ±5000bp from UTR regions in LD>0.7 with that gene. This 
resulted in SNP lists for 56 genes. To further explore other genes not directly connected with lead 
index SNPs, but that were found within the CAD loci identified by Nikpay et al. [41], we 
extracted SNPs within each of those genes (plus SNPs ±5000bp from UTR regions in LD>0.7 
with that gene). This resulted in SNP lists for a further 20 genes, bringing the total number of 
candidate genes for CAD to 76.  
 
The per-SNP log odds (ln(OR)) values for the 76 genes were obtained from Nikpay et al. [41] 
available at http://www.cardiogramplusc4d.org/downloads and used in the analysis described 
below. 
 
 
Preparation of HapMap3 samples 
 
Genotype data (1,457,897 SNPs, 1,478 individuals) were downloaded for 11 HapMap Phase 3 
(release 3) populations (http://www.hapmap.org [92]) including: Yoruba from Ibadan, Nigeria 
(YRI), Maasai in Kinyawa, Kenya (MKK), Luhya in Webuye, Kenya (LWK), African ancestry in 
Southwest USA (ASW), Utah residents with ancestry from northern and western Europe from the 
CEPH collection (CEU), Tuscans in Italy (TSI), Japanese from Tokyo (JPT), Han Chinese from 
Beijing (CHB), Chinese in Metropolitan Denver, Colorado (CHD), Gujarati Indians in Houston, 
TX, USA (GIH), and Mexican ancestry in Los Angeles, CA, USA (MEX). We also included 
another HapMap3 population, the Finnish in Finland (FIN) sample 
(ftp://ftp.fimm.fi/pub/FIN_HAPMAP3 [93]). These data had already been pre-filtered, i.e. SNPs 
were excluded that were monomorphic, call rate < 95%, MAF<0.01, Hardy-Weinberg 
equilibrium P <1x10-6 etc.  
 
Before phasing and imputation, we performed a divergent ancestry check with flashpca [94] to 
check accuracy of population assignments, converted SNP data from build 36 to 37 with UCSC 
LiftOver (https://genome.ucsc.edu/cgi-bin/hgLiftOver), checked strand alignment in Plink v1.9 
[95] to ensure all genotypes were reported on the forward strand, and kept only autosomal SNPs. 
To speed up imputation, data were first pre-phased with Shapeit v2 [96] using the duoHMM 
option that combines pedigree information to improve phasing and default values for window size 
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(2Mb), per-SNP conditioning sates (100), effective population size (n=15000) and genetic maps 
from the 1000 Genomes Phase 3 b37 reference panel 
(ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/).  
 
Phased data were imputed in 5 Mb chunks across each chromosome with Impute v2 [97]. We 
then removed any multiallelic SNPs (insertions, deletions etc) from the imputed data and 
excluded SNPs with call rate < 95%, HWE P <1x10-6 and MAF<1%. The final dataset was then 
phased with Shapeit v2, and alleles were converted to ancestral and derived states using python 
script. Ancestral allele states came from 1000 Genomes Project FASTA files and derived 6-
primate (human, gorilla, orangutan, chimp, macaque, marmoset) Enredo-Pecan-Ortheus 
alignment [98] from the Ensembl Compara 59 database [99].  
 
 
Estimating signatures of recent selection 
 
Integrated Haplotype Score (iHS): Using the package rehh [100] in R version 3.1.3, per SNP iHS 
scores were calculated within each population (after excluding non-founders) using methods 
described previously [9]. iHS could not be calculated for SNPs without an ancestral state, or 
whose population minor allele frequency is <5%, or for some SNPs that are close to chromosome 
ends or large regions without SNPs [9]. Rehh was also used to standardize (mean 0, variance 1) 
iHS values empirically to the distribution of available genome-wide SNPs with similar derived 
allele frequencies. For analyses in the main text, we considered a SNP to have a candidate 
selection signal if it had an absolute iHS score > 2, a permuted p value <0.05, and was within a 
‘cluster’ of SNPs that also had elevated iHS scores. Although permuting p values is 
computationally more intensive, it provides more flexibility to detect smaller selection signals 
that may be incorrectly classified with the more stringent Bonferroni correction that is often 
applied to these estimates. For the analyses described below, even though we only used iHS 
estimates for the SNPs defined in the CAD genes (and additional SNPs for permutation 
purposes), we calculated per-SNP iHS scores genome-wide (rather than locally, i.e. within 1MB 
regions around focal SNPs), for this provides more accurate estimates because final adjustments 
are made relative to other genome-wide SNPs of similar sized derived allele frequency classes. P 
values for iHS scores were permuted based on comparison of nominal p values against 10000 
randomly selected estimates from within the same derived allele frequency classes. 
 
 
Comparing CAD genetic risk and quantitative selection signals 
 
We first tested the null hypothesis that there is no association between CAD genetic risk and 
signals of positive selection for CAD genes. For each gene within each population, we used a 
mixed effects linear model to regress SNP-based estimates of CAD log odds (ln(OR)) genetic risk  
against selection scores (iHS) resulting in 912 separate regressions. To account for LD structure 
(and potential confounding of highly correlated SNPs) within each gene, we also included the 
first eigenvector derived from an LD matrix of correlations (r2) between SNPs within each gene 
as a random effect. We chose to model LD structure with mixed-effects models rather than LD-
prune because for many genes, the sample would have been too small for regression analyses. 
Also, it would be very difficult to properly capture both selection and the CAD log odds peaks 
needed to compare these variables. We accounted for multiple testing by permuting p values for 
each regression based on comparing each nominal p value against 10000 permuted p values 
derived from shuffling iHS scores. 
 
Genes were then ranked based on the number of significant associations summed across the 12 
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populations. The 40 genes with at least four or more significant associations are shown in Fig. 
1B. To illustrate the positional architecture of these selection-risk associations, plots for selected 
highly-ranked genes are shown in Fig. 2-3. By demonstrating how CAD genetic risk peaks and 
valleys correspond to variation in the magnitude of selection scores (iHS), this allowed visual 
assessment of potential modifications made to the phenotype-genotype map by selective 
pressures imposed directly or indirectly by CAD. It also helped us localize selection peaks within 
genes and compare them between populations.  Similar peaks suggested similar selection and 
different peaks suggested local adaptation. This way of presenting the results also allowed us to 
detect the smaller adaptive shifts in allele frequencies typically expected to underlie selection on 
polygenic traits. 
 
We then tested a second null hypothesis: that the selection-risk associations using the CAD genes 
are not unique compared to non-CAD associated loci. For each of the 76 CAD genes, we 
randomly (without replacement) chose 100 genes of similar length across the genome and 
performed the same mixed effects regression procedure described above for each gene by 
population combination using both CAD log odds values from Nikpay et al. [41], iHS scores 
estimated from the SNP data, and the first LD eigenvector from SNPs within a gene. Permuted p 
values were derived by comparing the nominal p value for each CAD gene against the 100 null 
distribution p values from the non-CAD associated genes. Results are shown in Fig. 1C. 
 
 
Identifying functional targets of selection 
 
To examine whether candidate adaptive signals within each gene corresponded to a gene’s 
regulatory variation, we regressed SNPs within focal genes and gender against that gene’s probe 
expression levels, which had previously been quantified in lymphoblastoid cell lines using 
Illumina’s Human-6 v2 Expression BeadChip for eight of the 12 populations [101]. While 
selection related to CAD may have targeted regulatory variants important for other tissues/cell-
types, gene expression data was only available for this cell-type. Given the central importance of 
circulating lymphoblastoid cells in CAD and its risk factors, we might expect this cell type a good 
candidate to search for association between selection signals and regulatory variants important for 
these genes. The raw gene microarray expression data had previously been normalized on a log2 
scale using quantile normalization for replicates of a single individual then median normalization 
for each population [101]. P values for each SNP-probe association were permuted using 10000 
permutations by randomly shuffling gene probes expression. P values were then extracted for the 
most significant iHS score for each gene-population combination and compared to the same 
number of p values randomly drawn from different LD blocks underlying SNPs with non-
significant iHS scores across each gene-population combination. A Kolmogorov-Smirnov test 
was used to compare the distribution of p values from each. To examine what biological 
processes were associated with the top ranked genes from Fig. 1, we uploaded the top 10 genes 
into Enrichr (http://amp.pharm.mssm.edu/Enrichr/) to define associated pathways (i.e. KEGG 
2016, kegg.jp/kegg), ontologies (MGI Mammalian phenotypes, informatics.jax.org), cell types 
(Cancer cell line Encyclopedia, broadinstitute.org/ccle) and transcription factors (ChEA 2015, 
amp.pharm.mssm.edu/lib/chea.jsp). 
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Figure legends 
 
Figure 1. Association of coronary artery disease (CAD) genetic risk and positive signatures 
of selection in 12 worldwide populations.  The 40 of 76 CAD genes investigated are shown that 
have at least four significant selection-risk associations in Panel B across all 12 populations. 
Panel A. Magnitude and significance of largest positive selection signal (integrated haplotype 
score, iHS) within each gene-population combination. P values (circles within squares) were 
obtained from 10000 permutations. Bonferroni corrected p-value limit also shown 
(α=0.05/76=0.000657) with closed circles. Panel B. Null hypothesis: no association between 
CAD genetic risk and positive selection, tested using mixed effects model with SNP estimates of 
CAD log odds genetic risk and iHS while accounting for gene LD structure as a random effect 
(first eigenvector from LD matrix per gene). Scaled regression coefficients were obtained directly 
from regressions, each p value from 10000 permutations. Panel C. Null hypothesis: association 
between genetic risk and positive selection for SNPs within CAD genes no different than non-
CAD associated genes. Permuted p values were estimated by comparing each p value in Panel B 
against 100 nominal p values obtained by randomly choosing (without replacement) 100 non-
CAD associated genes of similar size across the genome and using the same mixed effects model 
setup as described above. Populations. Grouped by ancestry, African (ASW, African ancestry in 
Southwest USA; MKK, Maasai in Kinyawa, Kenya; YRI, Yoruba from Ibadan, Nigeria; LWK, 
Luhya in Webuye, Kenya), East-Asian (CHB, Han Chinese subjects from Beijing; CHD, Chinese 
in Metropolitan Denver, Colorado; JPT, Japanese subjects from Tokyo), European (CEU, Utah 
residents with ancestry from northern and western Europe from the CEPH collection; TSI, 
Tuscans in Italy; FIN, Finnish in Finland), GIH (Gujarati Indians in Houston, TX, USA), MEX 
(Mexican ancestry in Los Angeles, CA, USA). 
 
Figure 2. Quantitative links between coronary artery disease risk and selection signals in 
BCAS3. A. Correlation between selection signals (iHS) and coronary artery disease (CAD) log 
odds genetic risk (log odds, ln(OR)), both represented as absolute values. Red line/upper right 
value, β from mixed effects regression. B. Base pair positional comparison of selection signals 
and CAD genetic risk across BCAS3. Blue points, CAD log odds values; grey-orange or non-
significant-significant points, iHS scores. Horizontal bar shows BCAS3 gene (and intron) span 
and location of lead index SNP. Blue/orange lines are smoothed lines estimated with loess 
function in R. C. LD plots, r2. Populations: CEU, Utah residents with ancestry from northern and 
western Europe from the CEPH collection; YRI, Yoruba from Ibadan, Nigeria. 
 
Figure 3. Quantitative links between coronary artery disease risk and selection signals in 
PHACTR1. A. Correlation between selection signals (iHS) and coronary artery disease (CAD) 
log odds genetic risk (ln(OR)), both represented as absolute values. Red line/upper right value, β 
from mixed effects regression. B. Base pair positional comparison of selection signals and CAD 
genetic risk across PHACTR1. Blue points, CAD log odds values; grey-orange or non-significant-
significant points, iHS scores. Horizontal bar shows PHACTR1 gene (and intron) spans and 
location of index SNP if present. C. LD plots, r2. Populations: CEU, Utah residents with ancestry 
from northern and western Europe from the CEPH collection; GIH, Gujarati Indians in Houston, 
TX, USA. 
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Figure 4: Comparing positive selection with gene regulation. Summary distribution of 
permuted eQTL p values for SNPs with (left) or without (right) a significant selection signal. 
SNPs with a significant selection signal (iHS) were chosen by taking the largest significant 
positive selection signal (if one was present) within each gene-population combination. The same 
number of SNPs without a significant selection signal were also randomly drawn across all gene-
population combinations for comparison. These SNPs were used in an eQTL analysis where they 
were regressed (including gender as a covariate) against their associated gene probe’s expression. 
 
Figure 5. Conceptual figure of potential evolutionary tradeoffs between coronary artery 
disease (CAD) burden and other phenotypes as a consequence of antagonistic pleiotropy 
(AP) [43]. As a simple example, AP describes gene effect on two traits (pleiotropy) that 
oppositely (antagonistic) affect individual fitness at different ages. Selection on that gene 
conferring a fitness advantage and disadvantage at different ages depends on the size and timing 
of the effects. An advantage during the ages with the highest probability of reproduction 
(between~20-45 years of age in humans) would increase fitness (lifetime reproductive success) 
more than a similarly sized disadvantage at later ages would decrease it. This concept is part of 
the well-known evolutionary theory of ageing, which describes tradeoffs in energy invested into 
growth, reproduction and survival [102].  In the figure above, intense natural selection occurring 
on CAD loci as a result of fitness advantages (+ signs, red text callout box 1.) conferred by 
genetically correlated risk factors (‘CAD risk factors’ box) or early-life traits (‘early-life traits’ 
box) trades off with the deleterious effects of these genes on fitness (i.e. CAD burden) later in life 
(- sign, red text callout box 2.) where the intensity of selection is weak. This occurs because of 
the negative relationship between genetic effects on early vs late-life traits (- sign, red text callout 
box 3.), which could help explain the high prevalence and maintenance of CAD in modern human 
populations.  Over shorter timescales, lifetime probability of CAD is modified by a combination 
of genetic and environmental risk factors (e.g. [103]). There is a good evidence that such 
antagonistic effects have operated on CAD loci given: significant associations between CAD 
genetic risk and selection we found (Fig 1-2); CAD genes also underlie many early-life traits 
known to modify fitness (Table S2); phenotypic selection has been found operating on CAD 
phenotypic risk factors [42]. 
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Figure	S1:	Association	of	coronary	artery	
disease	(CAD)	risk	and	genomic	signatures	
of	selection	in	12	worldwide	populations.	
All	76	genes	are	shown	ranked	according	to	
Fig.	1B.	Boxes	show	magnitude	and	
significance	of	largest	positive	selection	signal	
(integrated	haplotype	score,	iHS)	within	each	
gene-population	combination.	P	values	(circles	
within	squares)	were	obtained	from	10000	
permutations.	Bonferroni	corrected	p	value	
limit	also	shown	(α=0.05/76=0.000657)	with	
closed	circles.	Populations.	Grouped	by	
common	ancestry,	African	(ASW,	African	
ancestry	in	Southwest	USA;	MKK,	Maasai	in	
Kinyawa,	Kenya;	YRI,	Yoruba	from	Ibadan,	
Nigeria;	LWK,	Luhya	in	Webuye,	Kenya),	East-
Asian	(CHB,	Han	Chinese	subjects	from	Beijing;	
CHD,	Chinese	in	Metropolitan	Denver,	
Colorado;	JPT,	Japanese	subjects	from	Tokyo),	
European	(CEU,	Utah	residents	with	ancestry	
from	northern	and	western	Europe	from	the	
CEPH	collection;	TSI,	Tuscans	in	Italy;	FIN,	
Finnish	in	Finland),	GIH	(Gujarati	Indians	in	
Houston,	TX,	USA),	MEX	(Mexican	ancestry	in	
Los	Angeles,	CA,	USA).
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Figure	S2:	Comparing	cross-population	candidate	selection	signals	in	PHACTR1.	Per-SNP	integrated	Haplotype	Scores	(iHS)	plotted	
by	chromosome	position	within	PHACTR1	(including	LD	plots	below	each)	for	12	worldwide	populations.	Permuted	p	value	significance	
for	each	score	coded	by	color	(grey,	non-significant;	orange,	p	<	0.05).	Red	dashed	line	indicates	position	of	index	SNP	for	PHACTR1.	Grey	
columns	in	background	represent	intron	spans.	Populations	are	clustered	by	common	ancestry,	African	(ASW,	African	ancestry	in	
Southwest	USA;	MKK,	Maasai	in	Kinyawa,	Kenya;	YRI,	Yoruba	from	Ibadan,	Nigeria;	LWK,	Luhya	in	Webuye,	Kenya),	East-Asian	(CHB,	Han	
Chinese	subjects	from	Beijing;	CHD,	Chinese	in	Metropolitan	Denver,	Colorado;	JPT,	Japanese	subjects	from	Tokyo),	European	(CEU,	Utah	
residents	with	ancestry	from	northern	and	western	Europe	from	the	CEPH	collection;	TSI,	Tuscans	in	Italy;	FIN,	Finnish	in	Finland),	GIH	
(Gujarati	Indians	in	Houston,	TX,	USA),	MEX	(Mexican	ancestry	in	Los	Angeles,	CA,	USA).	
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Table	S1.	Pleiotropic	links	between	coronary	artery	disease	(CAD)	and	early-
life	fitness-related	traits	due	to	shared	genetic	loci.	The	table	below	provides	
extensive	support	(143	studies)	that	antagonistic	pleiotropy	is	likely	to	be	present	
for	CAD	genes	due	to	their	consistent	connections	with	fitness-related	traits	
expressed	early	in	life.	See	Fig.	5	for	discussion	and	conceptual	overview	of	these	
potential	effects.	Fitness-related	traits	include	fertility	potential,	reproductive	
outcomes,	pregnancy	outcomes,	fetal	growth	and	survival,	i.e.	affecting	the	ability	of	
an	organism	to	reproduce	and	transfer	genes	to	the	next	generation.	The	first	3	
columns	give	CAD	gene	rank	(no.;	based	on	rank	of	40	genes	from	Fig.	1B),	name	and	
full	name.	Columns	4-8	provide	key	details	of	each	study	where	CAD	genes	also	
contribute	to	traits	that	influence	fitness,	including	what	species	that	was	
demonstrated	in,	what	biological	process	or	fitness	effects	that	gene	is	impacting,	
what	fitness	class	that	effect	is	likely	to	impact	(e.g.	dysfunctional	spermatogenesis	
or	embryogenesis	will	affect	male	and	female	fertility,	ability	to	conceive),	what	the	
observed	genetic	effect	or	mechanism	that	gene	was	associated	with.	
	

no.	 CAD	gene	 full		name	 species	 fitness	effects	 fitness	class*	 observed	genetic	effect	or	
mechanism	

ref	
	

1	 BCAS3	 Breast	Carcinoma	
Amplified	Sequence	3	

human/
mouse	

embryogenesis	 female	potential	
fertility	

BCAS3	highly	expressed	in	
developing	oocytes	

[1]	

	 BCAS3	 	 mouse	 embryogenesis	 female	potential	
fertility	

BCAS3	significantly	up-
regulated	in	developmentally	
incompetent	mouse	oocytes	

[2]	

2	 CNNM2	 Cyclin	And	CBS	
Domain	Divalent	Metal	
Cation	Transport	
Mediator	2	

human	 pregnancy-related	
blood	pressure	

pregnancy	
outcomes	

CNNM2	significantly	
differentially	expressed	

[3]	

	 CNNM2	 	 mouse	 pregnancy	
complications,	
hypoxia	

pregnancy	
outcomes	

CNNM2	significantly	down-
regulated	(-2.5	fold	change)	
during	pregnancy	

[4]	

3	 TEX41	 Testis	Expressed	41	
(Non-	Protein	Coding)	

human	 fetal	IUGR,	
developmental	
delays	

pregnancy	
outcomes	

triplication	involving	TEX41	
causes	IUGR	

[5]	

4	 SMG6	 Nonsense	Mediated	
MRNA	Decay	Factor	

mouse	 altered	
embryogenesis	

female	potential	
fertility	

SMG6	essential	for	normal	
embryogenesis	based	on	gene	
knock-down	study	

[6]	

5	 PHACTR1	 Phosphatase	And	
Actin	Regulator	1	

human	 reproductive	timing	 reproductive	
outcomes	

PHACTR1	genetic	variation	 [7]	

	 PHACTR1	 	 human	 oocyte	function	 female	potential	
fertility	

PHACTR1	highly	significantly	
expressed	

[8]	

	 PHACTR1	 	 human	 placental	
inflammatory	
responses	

pregnancy	
outcomes	

PHACTR1	significantly	down-
regulated	

[9]	

	 PHACTR1	 	 human	 endometrium	
implantation	
receptivity	

female	potential	
fertility	

PHACTR1	8-fold	significantly	
up-regulated	

[10]	

	 PHACTR1	 	 mouse	 uterus	functioning	 female	potential	
fertility	

PHACTR1	significant	1.4-1.9	
fold	change	

[11]	

	 PHACTR1	 	 rat	 lactation	 reproductive	
outcomes	

PHACTR1	significantly	
expressed	(4.7	fold	change)	
in	mammary	tissues	

[12]	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 28, 2016. ; https://doi.org/10.1101/064758doi: bioRxiv preprint 

https://doi.org/10.1101/064758


Table	S1	

	 S6		

6	 COG5	 Component	of	
Oligomeric	Golgi	
Complex	5	

Drosophi
la	

spermatogenesis	 male	potential	
fertility	

COG5	expression	required	for	
normal	spermatogenesis	

[13]	

	 COG5	 	 human	 intrauterine	growth	 pregnancy	
outcomes	

COG5	expression	required	for	
normal	fetal	growth	

[14]	

7	 ABCG8	 ATP-Binding	Cassette,	
Sub-Family	G,	Member	
8	

mouse	 infertility	 female	potential	
fertility	

Knockout	mice	deficient	
Abcg8	are	infertile	

[15]	

	 ABCG8	 	 human	 fetal	distress,	
asphyxial	events,	
intrauterine	death	

pregnancy	
outcomes	

ABCG8	involved	in	
intrahepatic	cholestasis	of	
pregnancy	(ICP),	
enterohepatic	circulation,	
specifically	for	exportation	of	
cholesterol	

[16]	

8	 RAI1	 Retinoic	Acid	Induced	
1	

human/
mouse	

growth	retardation,	
embryonic-postnatal	
development	

pregnancy	
outcomes	

knock-out	mouse	model	for	
Smith-Magenis	syndrome	
shows	involvement	of	RAI1	

[17]	

	 RAI1	 	 mouse	 growth	retardation,	
impaired	motor	and	
sensory	
coordination,	
smaller	litter	size	
(direct	reproductive	
fitness)	

pregnancy	
outcomes	

Transgenic	mice	over-
expressing	RAI1	have	
developmentally	impaired	
offspring	

[18]	

9	 NT5C2	 Nucleotidase,	
Cytosolic	II	

human	 female	reproduction	 female	potential	
fertility	

NT5C2	is	over-expressed	in	
fallopian	tube,	uterine	
endometrium,	endocervix,	
ectocervix	

[19]	

	 NT5C2	 	 human	 fetal	growth,	
birthweight,	
postnatal	growth	&	
metabolism	

pregnancy	
outcomes	

NT5C2	genetic	variation	
affects	birthweight	

[20]	

10	 LDLR	 Low	Density	
Lipoprotein	Receptor	

human/
mouse	

IUGR	in	offspring	of	
LDLR-/-	mice.	
Childhood	obesity.	

pregnancy	
outcomes	

LDLR	involved	in	
fetal/offspring	growth	

[21]	

	 LDLR	 	 human	 Placental	regulation	
of	cholesterol	

pregnancy	
outcomes	

Maternal	lipid	profile	
affecting	placental	protein	
expression	of	LDLR	

[22]	

	 LDLR	 	 mouse	 Placental	regulation	
of	cholesterol	

pregnancy	
outcomes	

LDLR	involved	in	maternal-
fetal	transfer	of	lipids	

[23]	

	 LDLR	 	 rat	 Pregnancy	loss	 fetal/offspring	
mortality	

LDLR	rat	model	for	diabetes	 [24]	

11	 KCNK5	 Potassium	Channel,	
Two	Pore	Domain	
Subfamily	K,	Member	
5	

human	 Fertility	-	sperm	
volume	

male	potential	
fertility	

KCNK5	involved	in	protein	
and	mRNA	levels	in	sperm	

[25]	

	 KCNK5	 	 human	 Male	infertility	 male	potential	
fertility	

KCNK5	involvement	in	sperm	
inability	to	fertilize	egg	

[26]	

	 KCNK5	 	 mouse	 Male	infertility	 male	potential	
fertility	

KCNK5	involved	in	sperm	
volume	

[27]	

	 KCNK5	 	 primate	 Male	fertility	 male	potential	
fertility	

KCNK5	involved	in	sperm	
function	

[28]	

	 KCNK5	 	 mouse	 Female	fertility	 female	potential	
fertility	

KCNK5	involved	in	oocyte	
survival/viability	

[29]	

	 KCNK5	 	 cattle	 Lactation	 reproductive	 KCNK5	expression	 [30]	
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outcomes	
12	 ABO	 ABO	Blood	Group	

(Transferase	A,	Alpha	
1-3-N-
Acetylgalactosaminylt
ransferase;	
Transferase	B,	Alpha	
1-3-
Galactosyltransferase)	

human	 Birth	weight,	
maternal	age	at	
child-bearing	

pregnancy	
outcomes	

ABO	variation	effects	 [31]	

	 ABO	 	 human	 Fetal	growth	
restriction	

pregnancy	
outcomes	

ABO	variation	effects	 [32]	

	 ABO	 	 human	 fetal	hypoxia,	
pregnancy	
complications,	
hemolytic	disease	of	
fetus/newborn,	fetal	
death	

pregnancy	
outcomes	

ABO	incompatibility	effects	 [33]	

	 ABO	 	 human	 protection	against	
malaria	

pregnancy	
outcomes	

ABO	variation	effects	 [34]	

	 ABO	 	 human	 Age	at	menarche	 reproductive	
outcomes	

ABO	blood	group	phenotypes	 [35]	

	 ABO	 	 human	 male	infertility	 male	potential	
fertility	

ABO	involved	in	sperm	
concentration/function	

[36]	

	 ABO	 	 human	 pregnancy	
complications	

pregnancy	
outcomes	

ABO	involved	in	preeclampsia	[37]	

	 ABO	 	 human	 female	fertility,	
embryo	implantation	

female	potential	
fertility	

ABO	variation	effects	 [38]	

13	 SWAP70	 SWAP	Switching	B-
Cell	Complex	70kDa	
Subunit	

monkey	 female	fertility,	
implantation,	
placentation	

female	potential	
fertility	

SWAP-70	expression	effects	 [39]	

	 SWAP70	 	 human	 fetal	growth	
restriction	

pregnancy	
outcomes	

SWAP70	involved	in	
preeclampsia	

[40]	

14	 SH2B3	 SH2B	Adaptor	Protein	
3	

human	 intrauterine/postnat
al	growth	

pregnancy	
outcomes	

SH2B3	variation	effects	 [41]	

	 SH2B3	 	 human	 male	testicular	
function	

male	potential	
fertility	

SH2B3	variation	effects	 [42]	

15	 PEMT	 Phosphatidylethanola
mine	N-
Methyltransferase	

human	 fetal	growth,	
placental	function	

pregnancy	
outcomes	

Choline	metabolism/PEMT	
expression	effects	

[43]	

	 PEMT	 	 human	 premature	birth	 pregnancy	
outcomes	

PEMT	variation	[744CC	
genotype]	effects	

[44]	

	 PEMT	 	 human	 sperm	quality	 male	potential	
fertility	

PEMT	variation	[27774G.C]	
effects	

[45]	

	 PEMT	 	 human	 fetal	growth,	
placental	function	

pregnancy	
outcomes	

mRNA	levels	of	PEMT	
involved	in	fetal/placental	
function	

[46]	

	 PEMT	 	 mouse	 embryo	
survival/viability	
during	pre-
implantation	

female	potential	
fertility	

PEMT	expression	effects	 [47]	

	 PEMT	 	 human	 fetal	development	 pregnancy	
outcomes	

PEMT	expression	effects	 [48]	

16	 MRAS	 Muscle	RAS	Oncogene	
Homolog	

mouse	 male	testicular	
function	

male	potential	
fertility	

MRAS	expression	effects	 [49]	

	 MRAS	 	 	 embryo	implantation	female	potential	MRAS	regulation	by	androgen	[50]	
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fertility	 and	progesterone	receptors	
	 MRAS	 	 mouse	 embryo	pluripotency	female	potential	

fertility	
MRAS	expression	effects	 [51]	

	 MRAS	 Muscle	RAS	Oncogene	
Homolog	

human	 breastfeeding	
capacity	

reproductive	
outcomes	

MRAS	expression	effects	 [52]	

17	 KIAA1462	 KIAA1462	 bird	 offspring	number	 reproductive	
outcomes	

KIAA1462	expression	effects	 [53]	

	 KIAA1462	 	 human	 birth-related	
myometrial	gene	
expression	

pregnancy	
outcomes	

KIAA1462	expression	effects	 [54]	

	 KIAA1462	 	 mouse	 female	reproduction	 female	potential	
fertility	

KIAA1462	highly	expressed	in	
oocytes	&	ovaries	

[55]	

	 KIAA1462	 	 pig	 fetal	growth	 pregnancy	
outcomes	

KIAA1462	expression	effects	 [56]	

	 KIAA1462	 	 human	 embryo	implantation	female	potential	
fertility	

KIAA1462	significantly	
differentially	expression	

[57]	

18	 GUCY1A3	 Guanylate	Cyclase	1,	
Soluble,	Alpha	3	

cattle	 embryo	implantation	female	potential	
fertility	

GUCY1A3	expression	effects	 [58]	

	 GUCY1A3	 	 	 embryo	implantation	female	potential	
fertility	

GUCY1A3	expression	effects	 [59]	

	 GUCY1A3	 	 human	 placental	functioning	pregnancy	
outcomes	

GUCY1A3	expression	effects	 [60]	

	 GUCY1A3	 	 human	 birth	weight	 pregnancy	
outcomes	

GUCY1A3	expression	effects	 [61]	

	 GUCY1A3	 	 human	 fetal	growth,	
birthweight,	
postnatal	growth	&	
metabolism	

pregnancy	
outcomes	

GUCY1A3	fetal	genotype	
involved	in	fetal	development	

[62]	

19	 CDKN2B-
AS1	

CDKN2B	Antisense	
RNA	1	

human	 fertility	 female	potential	
fertility	

CDKN2B-AS1	linked	
endometriosis	

[63]	

	 CDKN2B-
AS1	

	 human	 fetal	growth	
restriction	

pregnancy	
outcomes	

CDKN2B-AS1	variation	 [64]	

20	 ANKS1A	 Ankyrin	Repeat	And	
Sterile	Alpha	Motif	
Domain	Containing	1A	

cattle	 fertility	 female	potential	
fertility	

ANKS1A	significant	
expression	in	endometrium	
and	corpus	luteum	

[65]	

	 ANKS1A	 	 cattle	 fertility	 female	potential	
fertility	

ANKS1A	6.7-fold	significantly	
up-regulated	in	blastocysts	

[66]	

	 ANKS1A	 	 human/
mouse	

male	fertility	 male	potential	
fertility	

ANKS1A	expression	 [67]	

21	 PDGFD	 Platelet	Derived	
Growth	Factor	D	

human	 female	fertility	 female	potential	
fertility	

PDGFD	involved	in	ovarian	
hyperstimulation	

[68]	

	 PDGFD	 	 human	 female	reproduction	 female	potential	
fertility	

PDGFD	significantly	
expressed	in	oocytes	

[69]	

	 PDGFD	 	 mouse	 male/female	
reproduction	

female	potential	
fertility	

PDGFD	significantly	
expression	

[70]	

	 PDGFD	 	 	 female	reproductive	
function	

female	potential	
fertility	

PDGFD	significantly	down-
regulated	in	endometrium	

[71]	

	 PDGFD	 	 rat	 female	reproductive	
function	

female	potential	
fertility	

PDGFD	significantly	
expressed	

[72]	

	 PDGFD	 	 human	 pregnancy	
complication,	
preeclampsia	

pregnancy	
outcomes	

PDGFD	significantly	down-
regulated	in	placenta	

[73]	

22	 KSR2	 Kinase	Suppressor	Of	
Ras	2	

mouse	 male	fertility	 male	potential	
fertility	

KSR2	-/-	knockout	mouse	
model	for	spermatogenesis	

[74]	

	 KSR2	 	 cattle	 female	reproductive	 female	potential	KSR2	significantly	up- [75]	
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function	 fertility	 regulated	in	epithelial	cells	
	 KSR2	 	 mouse	 offspring	growth	 fetal/offspring	

mortality	
KSR2	-/-	knockout	mouse	
model	

[76]	

23	 FLT1	 Fms-Related	Tyrosine	
Kinase	1	

human	 fetal	development	 pregnancy	
outcomes	

FLT1	expression	effects	 [77]	

	 FLT1	 	 mouse	 offspring	viability,	
fetal	growth	

pregnancy	
outcomes	

FLT1	knockdown	effects	 [78]	

	 FLT1	 	 human	 pregnancy	loss	 fetal/offspring	
mortality	

FLT1	involved	in	immune	
responses	to	placental	
malaria	

[79]	

	 FLT1	 	 	 female	reproduction	 female	potential	
fertility	

FLT1	significantly	expression	
in	oocytes	

[80]	

	 FLT1	 	 human	 intrauterine	growth	
restriction	

pregnancy	
outcomes	

FLT1	significantly	up-
regulated	

[81]	

	 FLT1	 	 human	 fetal	growth	 pregnancy	
outcomes	

FLT1	significantly	expressed	
in	placenta	

[82]	

	 FLT1	 	 human	 female	reproduction	 female	potential	
fertility	

FLT1	significantly	expressed	
in	oocytes	

[83]	

	 FLT1	 	 human	 female	reproduction,	
implantation	

female	potential	
fertility	

FLT1	significantly	expressed	
in	uterus	

[84]	

	 FLT1	 	 human	 female	reproduction	 pregnancy	
outcomes	

FLT1	significantly	expressed	
in	placenta,	fetal	tissues	

[85]	

	 FLT1	 	 human	 intrauterine	growth	
restriction	

pregnancy	
outcomes	

FLT1	significantly	expressed	
during	pregnancy	

[86]	

24	 ABCG5	 ATP-Binding	Cassette,	
Sub-Family	G,	Member	
5	

rat	 intrauterine	growth	
restriction	

pregnancy	
outcomes	

rat	model	of	IUGR	 [87]	

	 ABCG5	 	 	 trophoblast,	
blastocyst	
development	

female	potential	
fertility	

ABCG5	gene	expression	
effects	

[88]	

25	 ZC3HC1	 Zinc	Finger,	C3HC-
Type	Containing	1	

	 male	fertility	 male	potential	
fertility	

meiosis	disruptors	 [89]	

	 ZC3HC1	 	 mouse	 pregnancy	
establishment,	
maintenance,	
conceptus	survival	

female	potential	
fertility	

ZC3HC1	expression,	1.57-fold	
significantly	changed	

[90]	

26	 SMAD3	 SMAD	Family	Member	
3	

	 folliculogenesis	 female	potential	
fertility	

SMAD3	expression	effects	 [91]	

	 SMAD3	 	 mouse/r
at	

oocyte	function	 female	potential	
fertility	

SMAD3	expression	effects	 [92]	

	 SMAD3	 	 	 estrogen	receptor	
interactions	

female	potential	
fertility	

SMAD3	expression	effects	 [93]	

	 SMAD3	 	 rat	 testis	function	 male	potential	
fertility	

SMAD3	expression	effects	 [94]	

	 SMAD3	 	 human	 age	at	natural	
menopause	

reproductive	
outcomes	

SMAD3	interaction	effects	 [95]	

	 SMAD3	 	 human	 twinning	capacity	 reproductive	
outcomes	

SMAD3	genotype	
(rs17293443-C)	effects	

[96]	

	 SMAD3	 	 human	 female	fertility	and	
fecundity	

female	potential	
fertility	

SMAD3	promotes	
proliferation	and	
steroidogenesis	of	human	
ovarian	lutenized	granulosa	
cells	

[97]	

	 SMAD3	 	 mouse	 embryo	viability	 female	potential	
fertility	

SMAD3	signalling	effects	 [98]	
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	 SMAD3	 	 human	 spermatogenesis,	
male	reproduction	

male	potential	
fertility	

SMAD3	expression	effects	 [99]	

27	 SLC22A3	 Solute	carrier	family	
22,	extra	neuronal	
monoamine	
transporter	

human	 placental	functioning	pregnancy	
outcomes	

SLC22A3	expression	effects	 [100]	

	 SLC22A3	 	 human	 fetal	development,	
fetal-placental	
resource	
provisioning	

pregnancy	
outcomes	

SLC22A3	expression	effects	 [101]	

	 SLC22A3	 	 human	 fetal-placental	
functioning	

pregnancy	
outcomes	

SLC22A3	expression	changes	
during	pregnancy	

[102]	

	 SLC22A3	 	 human	 fetal-placental	
functioning	

pregnancy	
outcomes	

SLC22A3	significantly	
expressed	by	trimester	

[102]	

28	 REST	 RE1-Silencing	
Transcription	Factor	

mouse	 embryo	functioning	 female	potential	
fertility	

REST	regulatory	network	
effects	

[103]	

29	 PPAP2B	 Phospholipid	
Phosphatase	3	

human	 endometriosis,	
female	fertility	

female	potential	
fertility	

PPAP2B	-1.69-fold	
significantly	changed	

[104]	

	 PPAP2B	 	 human/r
odent	

gametogenesis	 male	potential	
fertility	

PPAP2B	expression	effects	 [105]	

	 PPAP2B	 	 sheep	 breeding	capacity	 reproductive	
outcomes	

PPAP2B	association	effects	 [106]	

	 PPAP2B	 	 human	 pregnancy	
complications	

pregnancy	
outcomes	

PPAP2B	1.36	-fold	
significantly	up-regulated	in	
placental	tissues	of	
preeclamptic	mothers	

[107]	

	 PPAP2B	 	 human	 embryo	viability	 female	potential	
fertility	

PPAP2B	involved	in	
spontaneous	abortion	due	to	
parthenogenesis	

[108]	

	 PPAP2B	 	 human	 embryo	implantation	female	potential	
fertility	

PPAP2B	differential	
expression	effects	

[57]	

	 PPAP2B	 	 	 female	reproductive	
function	

female	potential	
fertility	

PPAP2B	up-regulated	in	
endometrium	

[71]	

30	 MIA3	 Melanoma	Inhibitory	
Activity	Family,	
Member	3	

cattle	 ovarian	functioning	 female	potential	
fertility	

MIA3	4.6-fold	significantly	
up-regulated	

[109]	

	 MIA3	 	 mouse	 placental	
(dys)function	

female	potential	
fertility	

MIA3	expresed	in	early	
trophoblast	differentiation	

[110]	

31	 IL6R	 Interleukin	6	Receptor	pig	 endometrium	
functioning	

pregnancy	
outcomes	

IL6R	significantly	
differentially	expressed	in	
endometrium	

[111]	

	 IL6R	 	 cattle	 endometrium	
functioning	

pregnancy	
outcomes	

IL6R	3.38-fold	significantly	
up-regulated	during	
pregnancy	

[112]	

	 IL6R	 	 human	 endometrium	
functioning	in	PCOS	
women	

female	potential	
fertility	

IL6R	significantly	up-
regulated	

[113]	

	 IL6R	 	 human	 pre-term	birth	SNP	
variation	

pregnancy	
outcomes	

IL6R	significantly	associated	
with	pre-term	birth	

[114]	

32	 HDAC9	 Histone	Deacetylase	9	 human	 oocyte	function	 female	potential	
fertility	

HDAC9	expression	effects	 [115]	

	 HDAC9	 	 cattle	 male	fertility	 male	potential	
fertility	

HDAC9	involved	in	germ	cell	
production	

[116]	

	 HDAC9	 	 pig	 birth	weight	 pregnancy	
outcomes	

HDAC9	expression	effects	 [117]	
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	 HDAC9	 	 human/
mouse	

oocyte	function	 female	potential	
fertility	

HDAC9	expression	effects	 [118]	

	 HDAC9	 	 human	 birth-related	
myometrial	gene	
expression	

pregnancy	
outcomes	

HDAC9	expression	effects	 [119]	

33	 COL4A1	 Collagen,	Type	IV,	
Alpha	1	

pig	 neonate	survival	 pregnancy	
outcomes	

COL4A1	expression	effects	 [120]	

	 COL4A1	 	 human	 testis	function	 male	potential	
fertility	

COL4A1	expression	effects	 [121]	

	 COL4A1	 	 mouse	 folliculogenesis	 female	potential	
fertility	

COL4A1	expression	effects	 [122]	

	 COL4A1	 	 human	 fetal	survival	 fetal/offspring	
mortality	

COL4A1	mutation	effects	 [123]	

	 COL4A1	 	 	 fetal/placenta	
growth	and	
development	

pregnancy	
outcomes	

COL4A1	expression	effects	 [124]	

34	 ABHD2	 Abhydrolase	Domain	
Containing	2	

	 male	fertility	 male	potential	
fertility	

ABHD2	expression	effects	 [125]	

35	 SORT1	 Sortilin	1	 human	 endometrium	
functioning	

pregnancy	
outcomes	

SORT1	significantly	
expressed	during	labour	

[54]	

	 SORT1	 	 	 ovarian	functioning	 female	potential	
fertility	

SORT1	significantly	up-
regulated	

[126]	

	 SORT1	 	 rat	 ovarian	functioning	 female	potential	
fertility	

SORT1	expression	effects	 [127]	

	 SORT1	 	 human	 embryo	implantation	female	potential	
fertility	

SORT1	differential	expression	
effects	

[128]	

36	 SLC22A5	 Solute	Carrier	Family	
22	(Organic	
Cation/Carnitine	
Transporter),	Member	
5	

mouse	 male	infertility	 male	potential	
fertility	

SLC22A5	mutation	related	to	
male	infertility	

[129]	

	 SLC22A5	 	 pig	 reproductive	
variation,	offspring	
born	alive	and	total	
born	

reproductive	
outcomes	

SLC22A5	genotype	effects	on	
reproductive	capacity	

[130]	

	 SLC22A5	 	 pig	 age	at	puberty	 reproductive	
outcomes	

SLC22A5	genotype	effects	 [131]	

37	 NOA1	 Nitric	Oxide	
Associated	1	

human	 male	fertility,	
testicular	
functioning	

male	potential	
fertility	

NOA1	expression	effects	 [132]	

	 NOA1	 	 mouse	 embryo/trophoblast	
viability	

female	potential	
fertility	

NOA1-deficient	mouse	model	 [133]	

38	 LPL	 Lipoprotein	Lipase	 human	 pregnancy	
complications	

pregnancy	
outcomes	

LPL	expression	effects	 [134]	

	 LPL	 	 human	 male	infertility	 male	potential	
fertility	

sperm	DNA	fragmentation	
related	to	LPL	expression	

[135]	

	 LPL	 	 human	 reproductive	timing	 reproductive	
outcomes	

LPL	expression	effects	 [7]	

	 LPL	 	 human	 intrauterine	growth	
restriction	

pregnancy	
outcomes	

LPL-mediated	fetal-placental	
nutrient	transfer	

[136]	

	 LPL	 	 human/
mouse	

placental	functioning	pregnancy	
outcomes	

LPL	expression	effects	 [137]	

	 LPL	 	 	 fetal/placental	
resource	transfer,	
pregnancy	

pregnancy	
outcomes	

LPL	expression	effects	 [138]	
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complications	
	 LPL	 	 human	 testis/spermatogene

sis	
male	potential	
fertility	

LPL	expression	effects	 [139]	

	 LPL	 	 mouse	 placental	regulation	
of	cholesterol	

pregnancy	
outcomes	

LPL	involved	in	maternal-
fetal	transfer	of	lipids	

[23]	

39	 COL4A2	 Collagen,	Type	IV,	
Alpha	2	

mouse	 fetal	viability	 fetal/offspring	
mortality	

mouse	knockout	model	for	
COL4A2	

[140]	

	 COL4A2	 	 human	 testis	function	 male	potential	
fertility	

COL4A2	expression	effects	 [121]	

	 COL4A2	 	 human	 offspring	viability	 fetal/offspring	
mortality	

COL4A2	expression	effects	 [141]	

40	 ADAMST7	 ADAM	
Metallopeptidase	With	
Thrombospondin	
Type	1	Motif,	7	

mouse	 embryogenesis	 female	potential	
fertility	

COL4A2	expression	effects	 [142]	

	 ADAMST7	 	 dog	 mammary	tissue	
functioning	

reproductive	
outcomes	

ADAMST7	significantly	up-
regulated	in	mammary	
tissues	

[143]	

	 ADAMST7	 	 human	 breastfeeding	
capacity	

reproductive	
outcomes	

ADAMST7	expression	effects	 [52]	

	
Table	footnotes:	
	
*'fitness	class'	column	defined	further:	
male	potential	fertility	 -		 includes	processes	affecting	spermatogenesis,	sperm	motility,	volume	or		
	 	 function	that	ultimately	affect	probability	of	successful	egg	fertilization.	
female	potential	fertility	 -		 includes	processes	affecting	embryogenesis	(i.e.	oocyte	viability,	survival),		
	 	 functioning	of	uterus	(i.e.	implantation	receptivity,	endometrium	functioning),		
	 	 placentation	(trophoblast	cell	motility)	that	ultimately	affects	initial	successful		
	 	 establishment	of	pregnancy.	
pregnancy	outcomes	 -	 includes	processes	affecting	regulation	of	blood	pressure,	nutrient	and	oxygen		
	 	 transfer	between	fetal	and	placental	tissues	during	pregnancy	that	ultimately		
	 	 influences	fetal	growth,	development	and	survival.	
fetal/offspring	mortality	 -	 includes	processes	linked	to	pregnancy	defects,	resistance	to	pathogens,		
	 	 affecting	survival	of	fetus	during	pregnancy	or	perinatal	mortality.	
reproductive	outcomes	 -	 includes	effects	on	age	at	maturity,	reproductive	timing,	potential	number	of		
	 	 offspring,	breastfeeding	capacity.	
	
Search	criteria:	

• For	each	CAD	gene,	Google	scholar	was	used	to	search	for	studies	using	the	'Search	terms'	(below)	and	the	
gene	name	(BCAS3	is	used	as	an	example)	

• For	each	search,	only	the	first	page	of	results	was	considered.	Search	results	most	consistent	with	all	search	
terms	are	ranked	by	page,	thus	the	most	relevant	results	were	always	on	the	first	page.	This	approach	was	
also	employed	to	keep	this	literature	search	tractable	in	terms	of	time	(i.e.	a	search	for	each	of	the	terms	
below	for	one	gene	usually	took	~1	hour).	

• We	also	used	the	GWAS	Catalog	(https://www.ebi.ac.uk/gwas/)	using	the	gene	name	to	search	for	further	
potential	links	to	fitness	related	traits	

	
Search	terms	(example	using	gene	BCAS3):	

• "BCAS3"	and	"reproduction"	and	gene	and	-"noncommercial	use,	distribution,	and	reproduction	in	any"	
• "BCAS3"	and	"fitness"	and	gene	
• "BCAS3"	and	"fertility"	and	gene	
• "BCAS3"	and	"menarche"	and	gene	
• "BCAS3"	and	"menopause"	and	gene	
• "BCAS3"	and	"birth"	or	"birth	weight"	
• "BCAS3"	and	"pregnancy"	and	gene	
• "BCAS3"	and	"placenta"	and	gene	
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• "BCAS3"	and	"implantation"	and	gene	
• "BCAS3"	and	"oocyte"	and	gene	
• "BCAS3"	and	"sperm"	and	gene	
• "BCAS3"	and	"testis"	
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143.	 Rao,	N.A.,	et	al.,	Gene	expression	profiles	of	progestin-induced	canine	mammary	
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Table	S2.	Summary	of	types	of	pleiotropic	connections	between	coronary	
artery	disease	(CAD)	and	fitness-related	traits.	Counts	are	based	on	Table	S1,	
‘fitness	class’	column.	Most	fitness-related	traits	were	related	to	female	potential	
fertility	(29	of	40	genes	had	these	effects)	and	pregnancy	outcomes	(25	of	40	genes	
had	these	effects).	Some	genes	had	broad	or	specific	effects	on	fitness-related	traits.	
For	example,	number	of	fitness	classes	affected	ranged	from	6	for	ABO	(had	fitness	
effects	across	all	classes)	to	1,	for	example	CNNM2	(evidence	for	fitness	effects	in	
pregnancy	outcomes	class).	
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1	 BCAS3	 	 1	 	 1	 	 	 2	
2	 CNNM2	 	 	 	 1	 	 	 1	
3	 TEX41	 	 	 	 1	 	 	 1	
4	 SMG6	 	 1	 	 	 	 	 1	
5	 PHACTR1	 	 1	 	 1	 1	 	 3	
6	 COG5	 1	 	 	 1	 	 	 2	
7	 ABCG8	 1	 1	 1	 1	 	 1	 5	
8	 RAI1	 	 	 	 1	 	 	 1	
9	 NT5C2	 	 1	 	 1	 	 	 2	
10	 LDLR	 	 	 	 1	 	 1	 2	
11	 KCNK5	 1	 1	 1	 	 1	 	 4	
12	 ABO	 1	 1	 1	 1	 1	 1	 6	
13	 SWAP70	 	 1	 	 1	 	 	 2	
14	 SH2B3	 1	 	 	 1	 	 1	 3	
15	 PEMT	 1	 1	 1	 1	 	 	 4	
16	 MRAS	 1	 1	 1	 	 1	 	 4	
17	 KIAA1462	 	 1	 	 1	 1	 	 3	
18	 GUCY1A3	 	 1	 	 1	 	 1	 3	
19	 CDKN2B-

AS1	
	 1	 	 1	 	 	 2	

20	 ANKS1A	 1	 1	 1	 	 	 	 3	
21	 PDGFD	 	 1	 	 1	 	 	 2	
22	 KSR2	 1	 1	 1	 	 	 1	 4	
23	 FLT1	 	 1	 	 1	 	 1	 3	
24	 ABCG5	 	 1	 	 1	 	 	 2	
25	 ZC3HC1	 1	 1	 1	 	 	 	 3	
26	 SMAD3	 1	 1	 1	 	 1	 	 4	
27	 SLC22A3	 	 	 	 1	 	 	 1	
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28	 REST	 	 1	 	 	 	 	 1	
29	 PPAP2B	 1	 1	 1	 1	 1	 	 5	
30	 MIA3	 	 1	 	 	 	 	 1	
31	 IL6R	 	 1	 	 1	 	 	 2	
32	 HDAC9	 1	 1	 1	 1	 	 	 4	
33	 COL4A1	 1	 1	 1	 1	 	 1	 5	
34	 ABHD2	 1	 	 	 	 	 	 1	
35	 SORT1	 	 1	 	 1	 	 	 2	
36	 SLC22A5	 1	 	 	 	 1	 	 2	
37	 NOA1	 1	 1	 1	 	 	 	 3	
38	 LPL	 1	 	 	 1	 1	 	 3	
39	 COL4A2	 1	 	 	 	 	 1	 2	
40	 ADAMST7	 	 1	 	 	 1	 	 2	

	 	 	 	 	 	 	 	 	
	 sum	 19	 29	 13	 25	 10	 9	 106	
	 	 	 	 	 	 	 average	 2.7	
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Table	S3.	Pleiotropic	links	between	randomly	chosen	genes	and	early-life	
fitness-related	traits.	Fitness-related	traits	include	fertility	potential,	reproductive	
outcomes,	pregnancy	outcomes,	fetal	growth	and	survival,	i.e.	affecting	the	ability	of	
an	organism	to	reproduce	and	transfer	genes	to	the	next	generation.	The	first	
column	gives	coronary	artery	disease	(CAD)	gene	(first	20	of	40	CAD	genes	from	Fig.	
1B/Table	S1).	Columns	2-3	give	name	(abbreviated,	full)	of	randomly	chosen	genes	
matched	for	approximate	length	for	each	CAD	gene.	Columns	4-8	provide	key	details	
of	each	study	where	random	genes	also	contribute	to	traits	that	influence	fitness,	
including	what	species	that	was	demonstrated	in,	what	biological	process	or	fitness	
effects	that	gene	is	impacting,	what	fitness	class	that	effect	is	likely	to	impact	(e.g.	
dysfunctional	spermatogenesis	or	embryogenesis	will	affect	male	and	female	
fertility,	ability	to	conceive),	what	the	observed	genetic	effect	or	mechanism	that	
gene	was	associated	with.	
	

CAD	gene	 Random	
Gene	

full		name	 species	 fitness	effects	 fitness	class*	 observed	genetic	effect	or	
mechanism	

ref	
	

BCAS3	 STPG2	 Sperm	Tail	PG-Rich	
Repeat	Containing	2	

-	 -	 -	 -	 	

CNNM2	 CFAP44	 Cilia	And	Flagella	
Associated	Protein	44	

-	 -	 -	 -	 	

TEX41	 SHISA9	 Shisa	Family	Member	
9	

-	 -	 -	 -	 	

SMG6	 TANGO6	Transport	And	Golgi	
Organization	6	
Homolog	

-	 -	 -	 -	 	

PHACTR1	 SUMF1	 Sulfatase	Modifying	
Factor	1	

mouse	 embryogenesis	 female	potential	
fertility	

SUMF1	significantly	up-
regulated	in	
developmentally	
incompetent	mouse	
oocytes	

[1]	

COG5	 FRMD5	 FERM	Domain	
Containing	5	

-	 -	 -	 -	 	

ABCG8	 ASIC5	 Acid	Sensing	Ion	
Channel	Subunit	
Family	Member	5	

-	 -	 -	 -	 	

RAI1	 ZNF516	 Zinc	Finger	Protein	
516	

human	 endometriosis	 female	potential	
fertility	

ZNF516	appears	to	be	
involved	in	endometriosis	

[2]	

NT5C2	 LANCL1-
AS1	

LANCL1	Antisense	
RNA	1	

-	 -	 -	 -	 	

LDLR	 SYT13	 Synaptotagmin	13	 -	 -	 -	 -	 	
KCNK5	 FAM53A	 Family	With	Sequence	

Similarity	53	Member	
A	

-	 -	 -	 -	 	

ABO	 TTC22	 Tetratricopeptide	
Repeat	Domain	22	

-	 -	 -	 -	 	

SWAP70	 RNF157	 Ring	Finger	Protein	
157	

cattle	 oocyte/follicle	
maturation	
(oocyte	quality)	

female	potential	
fertility	

In	cattle	model,	RNF157	
2.24	significantly	
differentially	up-regulated	
between	BCB+	and	BCB-	
oocytes	

[3]	

	 RNF157	 	 human	 early	peripheral	
blood	gene	

pregnancy	
complications/ou

RNF157	is	-1.65	fold	
significantly	(P=0.01)	

[4]	
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expression	
during	
pregnancy	
related	to	
preeclampsia	

tcomes	 down-regulated	in	
peripheral	blood	

SH2B3	 PLBD1-
AS1	

PLBD1	Antisense	RNA	
1	

-	 -	 -	 -	 	

PEMT	 WAC	 WW	Domain	
Containing	Adaptor	
With	Coiled-Coil	

-	 -	 -	 -	 	

MRAS	 TMEM17
8A	

Transmembrane	
Protein	178A	

-	 -	 -	 -	 	

KIAA1462	 PLEKHD
1	

Pleckstrin	Homology	
And	Coiled-Coil	
Domain	Containing	D1	

-	 -	 -	 -	 	

GUCY1A3	 MACC1	 Metastasis	Associated	
In	Colon	Cancer	1	

-	 -	 -	 -	 	

CDKN2B-
AS1	

CACNA2
D4	

Calcium	Voltage-Gated	
Channel	Auxiliary	
Subunit	Alpha2delta	4	

-	 -	 -	 -	 	

ANKS1A	 NWD2	 NACHT	And	WD	
Repeat	Domain	
Containing	2	

-	 -	 -	 -	 	

	
Table	footnotes:	
	
*'fitness	class'	column	defined	further:	
male	potential	fertility	 -		 includes	processes	affecting	spermatogenesis,	sperm	motility,	volume	or		
	 	 function	that	ultimately	affect	probability	of	successful	egg	fertilization.	
female	potential	fertility	 -		 includes	processes	affecting	embryogenesis	(i.e.	oocyte	viability,	survival),		
	 	 functioning	of	uterus	(i.e.	implantation	receptivity,	endometrium	functioning),		
	 	 placentation	(trophoblast	cell	motility)	that	ultimately	affects	initial	successful		
	 	 establishment	of	pregnancy.	
pregnancy	outcomes	 -	 includes	processes	affecting	regulation	of	blood	pressure,	nutrient	and	oxygen		
	 	 transfer	between	fetal	and	placental	tissues	during	pregnancy	that	ultimately		
	 	 influences	fetal	growth,	development	and	survival.	
fetal/offspring	mortality	 -	 includes	processes	linked	to	pregnancy	defects,	resistance	to	pathogens,		
	 	 affecting	survival	of	fetus	during	pregnancy	or	perinatal	mortality.	
reproductive	outcomes	 -	 includes	effects	on	age	at	maturity,	reproductive	timing,	potential	number	of		
	 	 offspring,	breastfeeding	capacity.	
	
Search	criteria:	

• For	each	random	gene,	Google	scholar	was	used	to	search	for	studies	using	the	'Search	terms'	(below)	and	
the	gene	name	(STPG2	is	used	as	an	example)	

• For	each	search,	only	the	first	page	of	results	was	considered.	Search	results	most	consistent	with	all	search	
terms	are	ranked	by	page,	thus	the	most	relevant	results	were	always	on	the	first	page.	This	approach	was	
also	employed	to	keep	this	literature	search	tractable	in	terms	of	time	(i.e.	a	search	for	each	of	the	terms	
below	for	one	gene	usually	took	~1	hour).	

• We	also	used	the	GWAS	Catalog	(https://www.ebi.ac.uk/gwas/)	using	the	gene	name	to	search	for	further	
potential	links	to	fitness	related	traits	

	
Search	terms	(example	using	gene	STPG2):	

• "STPG2"	and	"reproduction"	and	gene	and	-"noncommercial	use,	distribution,	and	reproduction	in	any"	
• "STPG2"	and	"fitness"	and	gene	
• "STPG2"	and	"fertility"	and	gene	
• "STPG2"	and	"menarche"	and	gene	
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• "STPG2"	and	"menopause"	and	gene	
• "STPG2"	and	"birth"	or	"birth	weight"	
• "STPG2"	and	"pregnancy"	and	gene	
• "STPG2"	and	"placenta"	and	gene	
• "STPG2"	and	"implantation"	and	gene	
• "STPG2"	and	"oocyte"	and	gene	
• "STPG2"	and	"sperm"	and	gene	
• "STPG2"	and	"testis"	
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Table	S4.	Selected	Enrichr	analysis	outputs	for	top	10-ranked	CAD	genes	with	
highest	genetic	risk-selection	associations	from	Fig.	1B.	Enrichr	outputs	
includes	KEGG	2016	Pathways	(http://www.kegg.jp/kegg/download/),	MGI	
Mammalian	Phenotype	Level	3	(http://www.informatics.jax.org/),	Cancer	Cell	Line	
Encyclopaedia	(http://portals.broadinstitute.org/ccle/data/browseData),	and	ChEA	
2015	(http://amp.pharm.mssm.edu/lib/cheadownload.jsp).	
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CELL	TYPES	-	Cancer	Cell	Line	Encyclopedia	
	
	
	
	
	
	
	
	
	
	
	
	
	
TRANSCRIPTION	-	ChEA	2015	
	
	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 28, 2016. ; https://doi.org/10.1101/064758doi: bioRxiv preprint 

https://doi.org/10.1101/064758


Supplementary	Discussion	

	 S30		

Widespread	signals	of	positive	selection	on	CAD	loci	
Evidence	of	candidate	positive	selection	signals	for	CAD	loci	were	widespread,	with	many	
genes	having	significant	iHS	scores	of	small-medium	size	(i.e.	iHS	score	range:	2-3)	with	
four	genes	(BCAS3,	ANKS1A,	CXCL12,	PEMT)	harboring	large	selection	signals	(iHS	>4),	two	
of	which	had	previously	been	identified	as	having	strong	selection	signals	including	BCAS3	
(Breast	Carcinoma	Amplified	Sequence	3)	in	the	HapMap3	CEU	population	[1]	and	PHACTR1	
(phosphatase	and	actin	regulator	1)	across	the	ASW,	CEU	and	CHB/CHD	HapMap3	
populations	[2].	Twelve	genes	contained	SNPs	with	selection	scores	that	remained	
significant	after	correction	for	multiple	testing	(Fig.	1A).	The	consistency	of	smaller,	less	
significant	selection	signals	for	several	genes	within	most	populations	(i.e.	CNNM2,	
PHACTR1,	PDGFD)	strongly	suggest	that	these	may	be	smaller	and	possibly	valid	incomplete	
selective	sweeps	that	are	typically	missed	due	to	stringency	of	multiple-correction	
thresholds	and	lack	of	validation	across	multiple	populations.		
	
These	patterns	match	expectations	from	the	polygenic	model	of	selection	that	predicts	that	
selection	on	complex	traits	mostly	involves	smaller	shifts	in	many	underlying	loci;	it	is	the	
likely	reason	why	so	few	large	selection	signals	have	been	found	underlying	complex	traits	
in	general	[3,	4]	and	those	underlying	cardiovascular	disease	phenotypes	in	particular	[5,	6].	
For	example,	Kullo	&	Ding	2007	[6]	found	that	110	out	of	364	genes	in	pathways	associated	
with	cardiovascular	disease	(i.e.	inflammation,	insulin,	p53,	Ras,	cholesterol	biosynthesis	
etc)	had	significantly	higher	Fst	(empirical	P<0.05)	in	at	least	one	SNP	between	4	
populations,	but	none	remained	significant	after	correction	for	multiple	testing.	In	a	later	
study,	Ding	&	Kullo	2011	[5]	found	that	8	out	of	158	genome-wide	significant	SNPs	in	genes	
for	36	cardiovascular	disease	phenotypes	and	related	traits	(CHD,	hypertension,	stroke,	
BMI,	lipids	etc)	had	significantly	elevated	Fst	between	52	populations	in	the	Human	
Genome	Diversity	Project.	
	
It	is	difficult	to	compare	selection	candidates	we	found	in	the	76	CAD	associated	genes	with	
results	from	these	two	previous	studies	as	full	sets	of	gene	lists	and	Fst	estimates	were	not	
available	for	either,	and	they	used	loci	underlying	much	broader	cardiovascular	disease	
phenotypes	than	our	more	current	list	of	specific	CAD	loci	[7].	Nevertheless,	due	to	fine-
scale	imputation	with	the	1000	Genomes	Panel,	our	study	suggests	that	many	more	loci	
related	to	cardiovascular	disease	have	been	recently	modified	by	natural	selection	than	
previously	identified.	The	larger	sample	of	SNPs	also	likely	improved	reliability	of	iHS	p	
values,	with	many	more	estimates	available	per	MAF	bin	used	to	standardize	iHS	measures	
[8].	
	
The	Fst	measures	used	in	the	Ding	and	Kullo	studies	also	differ	qualitatively	from	the	iHS	
scores	we	used.	Fst	captures	allele	frequency	differences	between	populations	and	is	less	
sensitive	to	detecting	alleles	that	have	undergone	recent	selection	[9],	while	the	iHS	statistic	
detects	whether	common	alleles	are	carried	on	unusually	long	haplotypes	within	
populations	and	should	be	better	at	capturing	more	recent	smaller	selection	signals	[8].	
Lastly,	by	considering	not	just	genome-wide	significant	index	SNPs,	we	were	able	to	detect	
smaller	selection	signals	within	CAD	loci	that	were	consistent	across	populations	and	would	
have	otherwise	been	missed.	PHACTR1	is	a	good	example	of	this	–	several	smaller	candidate	
selection	signals	were	found	(iHS	ranging	from	2-3.8)	where	peak	selection	signals	did	not	
span	the	index	SNP	location	-	sometimes	signals	were	in	different	introns	within	the	same	
locus	(Fig.	S2).		
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