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Abstract 

The functions of human brains highly depend on the precise temporal regulation of 

gene expression, and substantial transcriptome changes across lifespan have been 

observed. The substantial transcriptome alteration in neural disorders like autism has 

also been observed and is thought to be important for the pathology. While the cell 

type composition is known to be variable in brains, it remains unclear how it 

contributes to the temporal and pathological transcriptome changes in brains. Here, 

we applied the transcriptome deconvolution procedure to the age series RNA-seq data 

of healthy and autism samples, to quantify the contribution of cell type composition in 

shaping the temporal and autism pathological transcriptome in human brains. We 

estimated that composition change was the primary factor of both transcriptome 

changes. On the other hand, genes with substantial composition-independent 

expression changes were also observed in both cases. Those temporal and autism 

pathological composition-independent changes, many of which are related to synaptic 

functions, indicate the important intracellular regulatory changes in human brains in 

both processes. 
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Introduction 

The development and aging of human brains are complex processes, which are shaped 

by anatomical and molecular changes 1, 2, 3, 4. Autism spectrum disorder (ASD), as a 

common neurodevelopmental disorder, disrupts the critical developmental processes 

and results in the disruption of cognitive functions 5, 6, 7. With the emergence of 

high-throughput measurement of different molecules, dozens of studies have been 

conducted to characterize age-related molecular changes in human brains, especially 

at the transcriptome level 8, 9, 10, 11. Meanwhile, several studies have also been 

conducted in order to investigate the transcriptome alteration in ASD 12, 13, 14. 

The human brain, however, is a highly complex and heterogeneous organ comprised 

of numerous different cell types, including neurons and multiple classes of 

non-neuronal glial cells – such as astrocytes, oligodendrocytes, oligodendrocyte 

precursor cells and microglia – as well as vascular, such as endothelial, cells. Each of 

those cell types expresses a distinct set of genes 15 and plays a unique and essential 

role in the development and functions of the brain 16. Different cell types are also 

known to show different spatial-temporal distributions. Such complexity thus raises 

the unanswered questions: how much of the age-related molecular change in human 

brains, or specifically the age-related transcriptome change, is the direct consequence 

of the cell type composition change? If composition changes contribute to age-related 

expression changes, what’s the biological meaning of the rest? Similar questions 

about the molecular changes in neural disorders, including ASD, also remain opened. 

In order to comprehensively answer these questions, an accurate estimation of cell 

type composition in healthy and autistic human brains is required. Although 

experiments including stained cell counting 17, 18, 19, 20 and large scale single-cell 

RNA-seq 21, 22 have the potential to provide these data, these methods are either too 

labor-intensive or costly at present. Thus, the computational method of inversing 

sample heterogeneity, i.e. deconvolution, is one of the best alternative solutions to 

estimate the mixing percentage of different cell types 23, 24, 25. The application of 

transcriptome deconvolution to human brain was long limited by the lack of 

comprehensive transcriptome data for the varied cell types in human brains. The 

recent emergence of the human brain single cell RNA-seq data, covering all the main 

cell types in the human brain 21, now renders this approach more feasible. 

In this study, we used a two-step deconvolution procedure to estimate the cell type 

composition changes in the human brain after birth, as well as to quantitatively 

decompose the human brain transcriptome profiles across lifespan into 

composition-dependent and composition-independent components. The estimated 

composition changes matched well with the previous observations. The delineation of 
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the composition-dependent component from gene expression suggested that cell-type 

composition explained about 25% of the total expression temporal variance, and 

greatly contributes to the age-related expression pattern in brain. Meanwhile, although 

to a lesser extent, the composition-independent component also significantly 

contributes to age-related expression pattern. In addition, we used the similar 

framework to analyze the contribution of cell-type composition alteration in the brain 

transcriptome alteration of ASD patients. While composition-dependent component, 

especially the decreased proportion of RNA contributed by neurons, appeared to be 

the main power driving the difference, one group of synaptic genes with altered 

composition-independent component presented strong enrichment of ASD-associated 

genetic variants, implying the active regulatory disruption of synaptic functions in 

ASD. 
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Results 

Cell type composition changes in brains across the human lifespan 

To investigate the temporal cell type composition changes across lifespan in human 

brains, we applied the deconvolution procedure to the age series RNA-seq data set of 

the human prefrontal cortex (PFC) consisting of 40 postnatal human brain samples 

aged from two-day old to 61.5 year-old 11. The published human brain single cell 

RNA-seq data 21 was used to obtained the gene expression information of the eight 

main cell types in human brains, quantifying the expression level of 14,054 

protein-coding genes. CIBERSORT 24 was used to select genes distinguishing cell 

types, resulted in 904 genes (referred as CIBERSORT-selected markers, 

Supplementary Table S1). Two well-developed transcriptome deconvolution 

algorithms, CIBERSORT 24 and quadratic programming (QP), were applied based on 

the CIBERSORT-selected markers. 

In addition, diffusion ratio (DR) based deconvolution was also used based on the 1491 

cell type signature genes. This deconvolution algorithm was based on the simple 

assumption that the expression of a cell type signature gene in the bulk tissue can be 

seen as its expression in the cell type scaled by the cell type’s mixing proportion. It is 

similar to the recent deconvolution algorithm MCP-counter 27 but simplified (see 

Methods). The cell type signature genes were identified by requiring at least ten-fold 

higher expression level in one cell type comparing to any of the remaining, including 

319 signature genes for astrocytes, 288 for endothelial cells, 224 for microglia, 99 for 

oligodendrocytes, 71 for oligodendrocyte progenitor cells (OPC), 166 for adult 

neurons, 92 for fetal quiescent neurons, and 232 for fetal replicating neurons 

(Supplementary Table S1). 

The three deconvolution algorithms resulted in similar composition patterns across the 

postnatal lifespan (Figure 1 and Supplementary Figure S1). The estimated 

composition changes were consistent with previous studies, e.g. the elimination of 

fetal neurons soon after birth accompanying with the increase of adult neurons 28, and 

the increase of oligodendrocytes with the decrease of OPC which may due to the 

myelination process 29. The remaining cell types including astrocyte, endothelial cells 

and microglia did not show significant changes across the lifespan. 

Nevertheless, the three deconvolution algorithms provided slightly different results. 

Therefore, two complementary measurements, namely the similarity measurement 

and discrimination measurement (see Methods), were used to compare the three 

estimated composition patterns. According to Pearson’s correlation coefficient (PCC) 
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and root-mean-square deviation (RMSD), both of which were similarity 

measurements, CIBERSORT out-performed among the three algorithms, while DR 

performed slightly better than QP (Supplementary Figure S2). On the other hand, the 

discrimination measurement (see Methods), suggested that the cell type gene 

expression identities were reconstructed in the most discriminating way by DR, while 

CIBERSORT performed better than QP (Supplementary Figure S2). 

In addition to the postnatal brain transcriptome, we further applied the three 

algorithms to the human embryonic developmental brain RNA-seq data obtained from 

BrainSpan database (Figure 1 and Supplementary Figure S1). DR-estimated 

composition pattern successfully recapitulated the domination of fetal replicating 

neurons dominate before 12 post conception weeks (pcw) and its dramatic elimination 

after that. This observation, coupling with the increase of fetal quiescent neurons, well 

matched with the neuronal proliferation that occurred during four pcw to 12 pcw 30. 

Moreover, the estimated compositions by DR algorithm, especially those of fetal and 

adult neurons, presented a successive pattern with the postnatal composition changes 

estimated above, which further indicated the reliability and robustness of the 

composition estimation. On the other hand, CIBERSORT, although out-performed 

both DR and QP deconvolution according to the similarity measurement, failed to 

reproduce those scenarios. 

Composition change is the primary power shaping the human brain postnatal 

temporal transcriptome 

To comprehensively study the contribution of cell type composition changes in the 

human brain temporal transcriptome, we dissected the bulk gene expression into the 

composition-dependent and composition-independent components, based on the 

composition pattern estimated by DR algorithm (see Methods). Their contributions to 

the overall gene expression variance were estimated. On average, the composition 

dependent component, which represents the upper limit of transcriptome variance 

caused by variation of cell type composition in human brains, explained 26.4% of the 

total variance in the human postnatal age series data (Figure 2a). Focusing on the 

5,119 genes with age-related expression (referred as age-related expressed genes, age 

test BH-corrected FDR<0.05), the composition-dependent component contributed 

34.7% of the total variance which was significantly higher than the other genes 

(Figure 2b, permutation test, P<0.001). 

To further investigate the roles of the composition-dependent and independent 

component in shaping the temporal gene expression pattern, we calculated the 

variances explained by age (age-explained variance) for each of the two components 

separately. Interestingly, the relative contribution of age-explained variance from the 
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composition component (55.8%) was much larger than the proportion of composition 

variance among total variance (34.7%) for age-related expressed genes, while the 

difference was much smaller for the non-age-related expressed genes (27.8% vs. 

22.1%) (Figure 2b). Altogether, these observations implied that the change of the 

composition-dependent component, i.e. the cell-type composition changes, was the 

main power shaping the observed temporal expression in human brains. 

Additionally, the proportion of age-explained variance in the composition-dependent 

component was dramatically higher for the age-related expressed genes than for other 

genes (median=66.4%, permutation test, P<0.001, Figure 2c); meanwhile for the same 

genes, a moderate but significant increase of age-related variance proportion was 

observed for the composition-independent component (median=28.9%, permutation 

test, P<0.001, Figure 2c). These observations not only point to the significance of 

composition-dependent changes, but also to that of the composition-independent 

changes, some of which may represent the changes of molecular features in one or 

several cell types, also participate in shaping the temporal transcriptome in human 

brains. It is worth to mention, that all the above observations were reproducible based 

on CIBERSORT-based composition pattern (Supplementary Figure S3), suggesting 

that it is not artifact due to the DR-based deconvolution procedure. 

The age-related changes in the composition-independent components are 

important and well regulated 

To better understand the biological significance of the age-related changes in the 

composition-dependent and composition-independent component explicitly, we 

applied age tests to each of the two components (see Methods), to identify genes with 

significant age-related changes in either component. 8,156 and 1,455 genes were 

found with age-related changes in the composition-dependent and independent 

component, respectively (Figure 3a, Supplementary Table S2). Both of the two gene 

sets were largely overlapped with the age-related expressed genes (Fisher’s exact test, 

P<0.0001). However, no significant overlap was observed between them (Fisher’s 

exact test, P=0.216, odds ratio=0.932), implying the independent contribution of the 

two components to the temporal transcriptome in human brains. CIBERSORT-based 

composition pattern provided similar estimation, resulting in 6,671 and 1,129 genes 

with age-related changes in the composition-dependent and independent component, 

respectively. Majority of those genes were overlapping with genes identified based on 

DR-based estimation (Supplementary Figure S4). 

We further grouped the 8,719 genes with age-related changes in at least one of the two 

components into three categories: G1 – genes with age-related changes in both 

components; G2 – genes with age-related changes only in the composition-dependent 
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components; and G3 – genes with age-related changes only in the 

composition-independent components. Interestingly, these three groups of genes 

showed distinct temporal expression patterns (Figure 3b). G1 and G2 genes, and 

especially the latter gene, showed higher expression levels in early postnatal 

development stages, while G3 genes were highly expressed in adult stages. Different 

groups of genes were also enriched in different cell types: G1 – adult neuron, G2 – 

fetal quiescent neuron, fetal replicating neuron and adult neuron, and G3 – astrocyte 

and endothelial cells (Figure 3b). 

More importantly, the three groups of genes showed distinctive functional 

enrichments (DAVID 31, Supplementary Table S3). In brief, G1 genes were enriched 

for synapse and translation-related functions. G2 genes were enriched in transcription 

regulation, protein degradation, and cell cycle. Lastly, G3 genes were significantly 

involved in extracellular regions and metabolism. These results indicated the distinct 

biological significance of the age-related composition dependent and independent 

changes. 

The expression of these three groups of genes should have been modulated by certain 

regulatory mechanisms, such as transcription factors (TFs). To test this, we estimated 

the enrichment of TF binding motifs in the promoter regions of genes in each category. 

We observed significant excess of enriched TF binding motifs (hypergeometric test, 

P<0.1) in the G2 and G3 genes (permutation test, P<0.001) (Figure 3c). In addition, 

the expression of representative TFs of the enriched TF binding motifs in groups 

showed significantly better correlation (Wilcoxon test, P<0.05) with their targets in 

the respective groups than expected by chance (permutation test, P<0.001) (Figure 3c). 

TFs with TF binding motifs enriched in G2 genes, e.g. CUX1 and E2F1, were mostly 

negatively correlated with their targets and had been shown to be relevant to cell 

migration, cell cycles and neuronal development and maturation 32, 33, 34. On the other 

hand, most of the TFs with binding motifs enriched in G3 genes, e.g. SMAD3, 

SREBF1 and NR2F2, were positively correlated with their G3 target genes, many of 

which had been reported participating in signal transduction and metabolism of 

astrocytes 35, 36, 37. 

Significance of composition-independent component in ASD pathogenesis 

Autism spectrum disorder (ASD) is a common neurodevelopmental disorder. Previous 

transcriptomic studies have suggested dramatic changes of gene expression 12, 13, 14. 

For instance, using the same human PFC postnatal age series RNA-seq data set as 

described above, coupled with RNA-seq data of 34 PFC samples of autistic patients, 

Liu et al. identified 1,775 genes with differential expression (DE) between ASD cases 

and unaffected controls 14. It is worthwhile to estimate the contribution of cell type 
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composition as well as to identify the composition-independent alteration which may 

represent the active regulatory alternation in ASD patients. 

We applied CIBERSORT, QP and DR algorithms to estimate composition patterns in 

the autistic samples. The three algorithms provided similar results, and interestingly, 

all showed significant smaller proportion of neurons as well as larger proportions of 

non-neuron cells (Figure 4a and Supplementary Figure S5). The amplitudes of 

composition changes were significantly correlated among the estimations based on the 

three algorithms (Supplementary Figure S5), eliminating the possibility of algorithm 

artifact. The increase amplitudes of different non-neuron cell types were proportional 

to their estimated proportion in healthy samples (Figure 4b), suggesting that they were 

likely to be the passive consequence of neuron proportion decrease. 

To further investigate the contribution of composition differences in the autistic brain 

transcriptome alteration, we dissected the bulk gene expressions of all the PFC 

samples, including the 34 ASD cases and 30 healthy controls within the same sample 

age range, into the composition-dependent and composition-independent components, 

based on the DR-based composition pattern. Natural spline based ANCOVA (Methods) 

was applied to each of the two components to identify genes with DE between ASD 

cases and healthy controls. Among the 14,032 detected genes, 74% of them (10,358) 

showed DE in their composition-dependent components (Benjamini-Hochberg 

corrected FDR<20%), while only no more than 5% of the genes (644) showed DE in 

composition-independent components under the same criteria (Supplementary Table 

S4). The two numbers based on CIBERSORT-based composition pattern were 8,030 

and 275, with majority overlapping with the DR-based ones (Supplementary Figure 

S4). Both the two sets of genes were significantly overlapping with the 1,775 DE 

genes identified based on bulk expression (referred as bulk DE genes, Figure 5a, 

Fisher’s exact test, P<0.0001), suggesting that both of them were important 

contributors in transcriptome alteration in ASD brains. 

Although majority of the transcriptome alterations in ASD brains were related to the 

cellular composition changes, the alterations in the composition-independent 

components of brain transcriptome were of particular interest. They might represent 

the active regulatory disruptions in particular brain cells. The functional enrichments 

(DAVID 31) suggested that they were enriched for membrane and synaptic proteins 

(Figure 4b, Supplementary Table S5). Consistently, those genes showed significant 

expression enrichment in adult and fetal quiescent neurons (Figure 4b). More 

interestingly, the genes with significant alterations in their composition-independent 

components, but not those with significant alterations only in their 

composition-dependent components, contained a significant excess of genes with 
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genetic variants associated with ASD, based on analysis of genes extracted from 

SFARI AutDB 38 (Fisher’s exact test, odds ratio=1.52, P=0.009, Figure 4b), as well as 

genes from AutismKB database 39 (Fisher’s exact test, odds ratio=1.37, P=0.008, 

Figure 4b). Furthermore, those genes were also consistently identified as differentially 

expressed genes in autistic brains in previous studies 12, 13 (Fisher’s exact test, 

P<0.005, Figure 4b). It is also worth to note, that 40 microRNA (miRNA) families 

showed enrichment of predicted binding at the 3’UTRs of those genes (TargetScan 

v7.1 40; hypergeometric test, P<0.05), which was significantly more than by chance 

(permutation test, P<0.01, FDR=0.65). Some of the enriched miRNAs, including 

has-miR-363-3p which was also reported to be dysregulated in Alzheimer's disease 41, 

have been reported as differentially expressed in autistic brains 42. All the above 

observations suggested that the disruptions of neuronal transcriptional regulations in 

autistic brains, which were likely to be partially caused by the dysregulations of 

certain neuronal miRNAs, may result in pathological changes in synapses and largely 

contribute to ASD pathology. 
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Discussions 

In this study, we attempted to investigate the role of changes related or independent to 

cell type composition in human brain development and pathogenesis of ASD using 

computational approaches. With the gene expression of eight main cell types in 

human brain estimated using the human brain single cell RNA-seq data 21, we applied 

a two-step transcriptome deconvolution procedure to the human brain postnatal age 

series RNA-seq data 11 and the ASD brain RNA-seq data 14. Based on the estimated 

composition patterns, gene expression was dissected into the composition-dependent 

and independent component, allowing the further investigation on each of them. 

The transcriptome deconvolution in healthy samples resulted in temporal composition 

patterns consistent with the prior studies. On the other hand, we also notice that our 

estimated proportion of total neurons in the adult samples reached around 60-70%, 

which is much higher than the estimation based on cell counting 43, 44 or DNA 

methylation deconvolution 45. This may be explained by the fact, that the estimated 

composition of transcriptome deconvolution actually reflects the proportion of RNAs 

contributed by each cell type instead of the proportion of cell numbers. In fact,  the 

RNA content in neurons is reported to be close-to-two-fold as much as in glia cells 46. 

Based on the variance analysis, we regard the composition change to be the main 

source of the age-related expression change in human brain. This is a consistent 

conclusion drawn by previous studies based on DNA methylation 45. The proportion 

of variance explained by cell types, on the other hand, is smaller: only about 30% for 

the age-related expressed genes, while it is around 50% for the DNA methylation. 

Although the influence of sampling and measurement noise could not be ruled out, 

such observation may imply the additional regulatory signal that show age-related 

manner and is independent from the DNA methylation, which might be an interesting 

focus for further study. 

Interestingly, genes with age-related changes in the composition-dependent 

components show high expression level in the infant stages, i.e. < 2 years old, with 

significantly enriched expression in the three types of neurons. This suggests that 

although some other cell types such as oligodendrocytes and OPCs presented mixing 

proportion changes in the age-related manner, most of the composition-dependent 

changes are due to the transition from fetal neurons to adult neurons, i.e. the neuron 

maturation process. It therefore implies that the neuron maturation is the primary 

factor creating the age-related expression, especially during the infant stage. 

On the other hand, the age-related changes to the composition-independent 

component is appealing. Unlike the genes with age-related composition-dependent 
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changes which mostly express highly in the early postnatal development, genes with 

age-related composition-independent changes tend to have higher expression in adults. 

What’s more, these composition-independent changes are significantly related to 

either synapse in neurons (G1), or extra-cellular regions and signal peptides in 

astrocytes and endothelial cells (G3), both of which are relevant to cell-to-cell 

communications. This is unlikely to be a coincidence. As an information processing 

system, such communications are critically important for human brains 47, 48, and our 

results suggest that the complexity growth of the communication system not only 

depends on the increased number of computational units, i.e. neurons, but also greatly 

relies on the enhanced inter-cellular communications which are independent from the 

cell type composition changes across lifespan. Such communications may not limit to 

the synaptic connections between neurons, but also include the neuron-glia and 

glia-glia communications which are also critical to the neuronal network functions 49. 

In autistic brains, the contradictory statements of unchanged density of both neuronal 

and glial cell pools 50 and even more neuron numbers 51 has been reported. Therefore, 

it is a surprising observation that the estimated neuron proportions in autistic brains 

are significantly smaller than that in healthy brains. While the influence of unknown 

technical issue cannot be ruled out, this result implies the possibility that the general 

transcriptional activity of neurons is inhibited in ASD. In such case, the total mRNA 

content in neurons reduces, therefore resulting in smaller contribution of neuronal 

mRNAs to the bulk mRNA pool. This assumption is supported by the depletion of 

neuronal marker MAP2 in autistic brains 50. However, further experimental 

measurement is also awaited for validation. 

Considering that neuroinflammation is thought to play important roles in ASD 

pathology 52, 53, it is also unexpected to find no evidence suggesting general activation 

of microglia, the macrophage cells participating neuroinflammation in the central 

nervous system. Although the increase of microglia proportion is observed, no 

significant excess of increase is observed when comparing to other glial cell types 

after normalizing to their relative proportion in healthy brains. Nevertheless, our 

results did not rule out the importance of neuroinflammation in ASD, considering that 

the strongest activation of microglia in ASD patients happens in cerebellum and white 

matters 53, 54. Although higher microglia density was also reported in ASD dorsolateral 

PFC 55, they may not be fully activated, making our analysis lack of power to capture 

such signal. More investigation is required to comprehensively study the role of PFC 

microglia in ASD brains. 

While our results suggest that majority of the transcriptome alteration detected in PFC 

of ASD patients are passive alteration due to the changes of relative mRNA 
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contribution from cell types, a group of genes attracts most of the focus. Those 644 

genes, enriching for membrane protein genes and synaptic functions in neurons, 

represent the transcriptome alterations which are at least partially independent to the 

composition changes. This is an interesting observation, suggesting the pathological 

changes happened to the regulatory network in neurons regulating synaptic functions 

in ASD. This linkage is further supported by their enriched genetic association with 

ASD. It is also concordant with previous studies, which report the abnormalities of 

synaptic functions as well as neuronal dendrites and spines in autistic humans and 

autistic mouse models 56, 57. More comprehensive investigations are awaited for the 

roles of synaptic disruptions in ASD, which may lead to effective pharmacological 

treatment in the future. 

Although our framework paves a way for more exhaustive analyses regarding the 

contribution of cell type composition to the transcriptome changes, we are well aware 

of the limitations of our method. For instance, our analysis failed to squarely pinpoint 

the one or several cell types with the greatest influence on either of the two 

components, though cell-type enrichment analysis was capable to give a glance. Our 

analysis greatly relied on the accurate transcriptome measurement of all or at least 

close to all of the cell types in the bulk tissue, which limits its applications. The 

experimental validation is relatively difficult. Nevertheless, the fast-developing 

single-cell technology, especially the single-cell RNA-seq, should be able to 

comprehensively, simultaneously and separately quantify changes happened in cell 

type composition, cell type RNA content and cell type molecular profiles. Indeed, the 

single cell RNA-seq technology has been widely used to describe cell type 

compositions in different organs including brains 21, 22, 58, as well as to characterize the 

molecular processes driving neurogenesis and somatic reprogramming to neurons 59, 60. 

The further application of this technology to characterize human brain development, 

ageing, and pathology of neural disorders including ASD would be sufficient to verify 

our observation and of great value to comprehensively understand those important 

processes. 

If nothing else, we hope that our attempt to dissect expression into 

composition-dependent and composition-independent components will inspire further 

studies to elucidate transcriptome changes in a more comprehensive manner. 
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Methods 

Data 

The human brain single cell RNA-seq data was retrieved from SRA (SRP057196). 

The human postnatal age-series brain RNA-seq data with 40 samples was retrieved 

from GEO (GSE51264). All the RNA-seq reads were mapped to the human genome 

hg38 with STAR 2.3.0e using the default parameters. The number of reads covering 

the exonic regions of each protein-coding gene annotated in GENCODE v21 was 

counted and normalized using the R package DESeq2 for each data set separately. The 

autistic brain RNA-seq data retrieved from GEO (GSE59288), were processed in the 

same way. The pre-calculated RPKM of the fetal human brain samples were 

downloaded from BrainSpan (http://www.brainspan.org/static/download.html). 

Deconvolution for cell-type composition 

Three different strategies were used for deconvolution for cell-type composition. The 

first method, quadratic programming (QP) based deconvolution, was to model the 

gene expression of each cell type signature genes in the bulk tissue sample as a linear 

combination of its expression in each cell type according to the cell type mixing 

proportion. Thus, the deconvolution problem for each bulk tissue sample was 

represented as a constrained linear least-square problem, which was: 

min���� � 	��
 , �. �. � � �� � 1
� �� � 0, �� �. 

Here, f was the vector of cell type mixing proportion, and C was the matrix of gene 

expression of the cell type signature genes in each cell type, while x was the known 

expression level of the cell type signature genes. This model was widely used in the 

deconvolution problem 23, 25, and can be solved using quadratic programming 26. 

The second method, CIBERSORT 24, which was developed by Newman et al. in 2015, 

was also used. Instead of the solving the least square problem, CIBERSORT estimates 

the relative cell type composition based on nu-support vector regression, minimizing a 

linear ε-insensitive loss function with L2 regularization. 

The third method, namely diffusion ratio (DR) based deconvolution, was based on the 

simple assumption that the expression of a cell type signature gene in the bulk tissue 

can be seen as its expression in the cell type scaled by the cell type’s mixing 

proportion. It is similar as the recent algorithm MCP-counter 27 but was implemented 

in a simpler way. Under this assumption, the proportion of cell type i (represented as fi) 
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was simply estimated as: 

�� � ����������
���


. 

Here, g represented each cell type signature gene of cell type i. After calculating fi for 

all the cell types, f was normalized so that ∑ ��� � 1. 

Deconvolution for cell-type expression profile re-estimation 

The similar model as the QP-based deconvolution for cell-type composition described 

above was used for the second deconvolution to re-estimate cell-type expression 

profile, which was used for estimation of deconvolution performance and variance 

analysis. Similarly, the deconvolution problem for each gene can be seen as a 

constrained linear least-square problem, that is: 

min�� ! � 	��
 , �. �.  "� � 0, ��. 
Here, c was the vector of re-estimated gene expression level in different cell types, 

and x was the vector of gene expression across the bulk tissue samples. F was the 

composition matrix with each row representing the estimated mixing proportion in the 

corresponding bulk tissue sample. This problem was also solved by using quadratic 

programming as described above. 

Performance measurement of transcriptome deconvolution 

Two different types of deconvolution performance measurements were used to 

compare different deconvolution methods. 

The first type of performance measurement, namely similarity measurement, aimed to 

measure the general similarity between the real bulk tissue gene expression and the 

predicted gene expression based on the cell type gene expression level and the cell 

type mixing proportion. It is the commonly used measurement of deconvolution 

performance. In this case, two measurements were applied: Pearson’s correlation 

coefficient (PCC), and root-mean-square deviation (RMSD) which was calculated as 

the root mean squares of log10-transformed fold changes between the observed 

FPKMs and the predicted FPKMs (products of estimated cell-type proportions and 

re-estimated cell type expressions) across all genes. 

The second type of performance estimation, namely discrimination measurement, was 

established based on the following assumption: the accurate deconvolution can result 

in re-estimated cell type expression estimations which are not only similar to the 

measured cell type expressions, but also able to recover the cell type identities 

discriminating one cell type from the others. Using PCC as the proxy of similarity 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 12, 2017. ; https://doi.org/10.1101/065292doi: bioRxiv preprint 

https://doi.org/10.1101/065292
http://creativecommons.org/licenses/by-nc-nd/4.0/


between two cell type expression profiles, the discriminating recovery score (DRS) of 

cell type i was defined as: 

#$%� � &�'( � , '�
 � max
�

&�'( � , '�
 

Here, ei was the vector of observed log10-transformed FPKM of cell type i, and '( �  
was the vector of re-estimated log10-transformed FPKM of cell type i. The mean 

DRS across different cell types was then used as the proxy of the overall DRS. 

Dissection of composition-dependent and composition-independent expression 

components 

With X denoted as the N × M gene expression matrix with N genes and M samples, 

and the d × M estimated composition matrix F by any of the mentioned transcriptome 

deconvolution method with d cell types, the re-estimated cell type expression matrix 

C with N rows and d columns was obtained as described above. The 

composition-dependent component was then represented as the matrix Xd = CM, 

while the composition-independent component was represented as Xi = X - Xd. 

ANCOVA based on natural spline with variable degree of freedom 

To identify age-related changes, for each gene, with its observed expression level, 

composition-dependent component, or composition-independent component as the 

response variable, the age test, an ANCOVA employing the F-test was used to 

compare the null model: a linear model only with intercept, to a series of alternative 

models: the natural spline with degree of freedom from two to eight in response to 

square root transformed sample ages (sqrt-age). The best alternative model was 

chosen by applying the adjusted r2 criterion 8. Genes with BH corrected P<0.05 were 

considered as genes with its expression, composition-dependent or 

composition-independent component changed in the age-related manner. For 

calculating the proportion of variance explained by age, the natural spline model with 

degree of freedom equaling to eight in response to sqrt-age was used. 

The similar ANCOVA framework was also applied to identify changes between 

autistic samples and healthy samples, by considering the sample ages. The null model 

was defined as the unified natural spline model with no discrimination of autistic and 

healthy samples, while the alternative model with varied coefficient in the two groups 

was compared by employing the F test. Genes with BH corrected P < 0.2 were 

considered as genes with composition-dependent or composition-independent 

component changed between the two groups of samples. Similarly, sqrt-age was used 

as the independent variable. 
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Cell type expression enrichment analysis 

The cell type enrichment analysis was performed based on the average RPKM of each 

gene in the eight major cell types in human brains including fetal replicating neurons, 

fetal quiescent neurons, adult neurons, astrocytes, oligodendrocytes, endothelial cells, 

microglia and oligodendrocyte precursor cells (OPCs), based on the human brain 

single cell RNA-seq data 21. The expression specificity of one gene in one cell type 

was represented by the log10-transformed fold change between its expression level in 

the cell type and its average expression level in the other cell types. For each cell type, 

a one-sided Wilcoxon’s rank test was applied to compare the expression specificities 

of genes in the gene list, to the other genes that were detected in both data. 
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Figures 

 

Figure 1. The cell type compositions across lifespan in human brains, estimated using 

the DR-based deconvolution. The dots show the estimated proportions of samples, 

and the curves show the spline interpolation results. The left panel shows the cell type 

composition in human fetal brains, based on the human embryonic developmental 

brain RNA-seq data from BrainSpan; the right panel shows the cell type composition 

in human postnatal brains, based on the human postnatal brain data set. 
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Figure 2. The cell type composition change was the primary driving force of the 

age-related expression. (a) The proportion of gene expression variance explained by 

cell type composition (composition-related variance) in the human postnatal brain 

data set. Light grey – genes without age-related expression; dark grey – genes with 

age-related expression. The horizontal dash lines show the mean proportion of 

composition-related variance. (b) The relative contribution of the 

composition-dependent component to the variance explained by age (age-explained 

variance), measured as ratio of age-explained variance in the composition-dependent 

component to the sum of age-explained variance in both components. Light grey – 

genes without age-related expression; dark grey – genes with age-related expression. 

The horizontal dash lines show the mean proportion of composition-related variance. 

(c) The proportion of variance explained by ages (age-related variance) in each of the 

two components of expression: pink – the composition-dependent component; green – 

the composition-independent component. The light colors represent the proportions of 

age-related variance in genes without age-related expression changes; the dark colors 

represent the proportions of age-related variance in genes with age-related expression 

changes. The horizontal dash lines show the means of age-related variance 

proportions. 
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Figure 3. Age-related changes happened in the composition-dependent and 

composition-independent components. (a) The number of genes with age-related 

changes in each component or the observed expression level, based on the human 

postnatal brain data set (blue – observed expression level; pink – 

composition-dependent component; green – composition-independent component). (b) 

The expression properties of genes with age-related changes in the 

composition-dependent or composition-independent components. G1 – genes with 

age-related changes in both components; G2 – genes with age-related changes only in 

the composition-dependent component; G3 – genes with age-related changes only in 

the composition-independent component. Top: proportion of genes with highest 

expression level at each of the three lifespan stages. Bottom: expression enrichment in 

each of the eight cell types for the three groups of genes, represented as –log10(P), 

where P being the p-value of one-sided Wilcoxon’s rank test of log10-transformed 

fold change from the particular cell type to the remaining cell types, between each of 

the three groups of genes and all the expressed protein-coding genes. The grey 

octagonal boxes represent –log10(P) equaling to values from ten (the outermost box) 

to two (the inner most box). Strong expression enrichment with –log10(P)>10 was 

presented as ten. (c) Regulation of genes with age-related changes in either 

component by transcription factors (TFs). (Left) the number of TF binding motifs 

enriched among genes within each group. The dark streaked bars represent the mean 
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number of enriched TF binding sites expected by chance, calculated by 1000 random 

assignment of the expressed genes into the three groups. (Right) the number of TF 

binding motifs with its representative TF correlated with the targets (correlated TF 

binding motifs) in the same group. The dark streaked bars represent the mean number 

of correlated TF binding motifs expected by chance, calculated by 1000 random 

assignment of the expressed genes into the three groups. The asterisks show 

significance of the numbers (* P<0.05, ** P<0.01, *** P<0.001, Bonferroni 

corrected). 

  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 12, 2017. ; https://doi.org/10.1101/065292doi: bioRxiv preprint 

https://doi.org/10.1101/065292
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 4. Alteration of cell type composition in ASD. (a) The estimated proportions 

of each cell types in ASD case samples and healthy control samples with ages at the 

same age range. Each pair of boxes with the same color show the proportions of one 

cell type, with the left box represents the proportions in healthy samples, and the right 

box represents the proportions in ASD samples. The plus signs mark significant 

difference according to Wilcoxon’s test (+ – P<0.1; ++ – P<0.05). (b) The disparity of 

observed altered non-neuron cell type compositions and the predicted altered 

compositions with the assumption of passive change of non-neuron cell type 

composition. Each box with a different color showed the observed altered proportion 

of one non-neuron cell type subtracted by the predicted altered proportion of the cell 

type based on the altered proportion of neurons scaled by the relative proportions of 

the non-neuron cell type in healthy samples. 
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Figure 5. Composition-dependent and independent transcriptome alteration in ASD. 

(a) The number of genes with ASD alterations in each component or the bulk 

expression levels (blue – bulk expression levels; pink – composition-dependent 

component; green – composition-independent component). The plus signs mark the 

significance of overlap (+++ - Fisher’s exact test P<0.0001). (b) Functional 

investigations of genes with ASD alterations in the composition-independent 

components, including GO enrichments (upper), cell type expression enrichments 

(button left) and enrichments of ASD-associated genes (button right). The bars show 

the log10-transformed P-values. The values within brackets in the button right panel 

show the numbers of all associated genes (right) and the sizes of the overlap with 

genes with ASD alterations in their composition-independent components (left). 
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Supplementary materials 

 

Supplementary Figure S1. The cell type compositions across lifespan in human 

brains, using QP (upper) and CIBERSORT (lower) algorithms. The dots show the 

estimated proportions of samples, and the curves show the spline interpolation results. 

The left panel shows the cell type compositions in human fetal brains, based on the 

human embryonic developmental brain RNA-seq data from BrainSpan; the right panel 

shows the cell type compositions in human postnatal brains, based on the human 

postnatal brain data set. 
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Supplementary Figure S2. Comparison of the three deconvolution algorithms: QP, 

DR and CIBERSORT. (a) Performance estimation using the similarity measurements, 

including the Pearson’s correlation coefficient (PCC, upper) and root-mean-square 

deviation (RMSD, lower) between the observed bulk expression and the predicted 

bulk expression based on estimated cell type compositions. Colors of bars and boxes 

represent different algorithms. Each triple of bars in the left panel shows PCC and 
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RMSD of each sample. Boxes in the right panel show PCC and RMSD across all 

samples. (b) Performance estimated based on the discrimination measurement, i.e. 

discriminating recovery score (DRS). The heatmaps show PCC between the 

re-estimated cell type transcriptome (columns) and the measured cell type 

transcriptome by Darmanis et al. 2015 21 (rows). Each of the three heatmaps 

represents the results based on QP-based (left), DR-based (middle) and 

CIBERSORT-based (right) composition patterns, respectively. Numbers in the 

heatmaps show the PCC, with colors representing the relative PCCs in each column. 

The DRS of each cell type is shown above each column of the heatmaps, with the 

mean DRSs with the standard deviations shown at the bottom. 
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Supplementary Figure S3. The impact of cell type composition changes in 

age-related expressions, based on CIBERSORT-based composition patterns. (a) The 

proportions of gene expression variance explained by cell type composition 

(composition-related variance) in the human postnatal brain data set. Light grey – 

genes without age-related expression; dark grey – genes with age-related expression. 

The horizontal dash lines show the mean proportion of composition-related variance. 

(b) The relative contribution of the composition-dependent component to the variance 

explained by age (age-explained variance), measured as ratio of age-explained 

variance in the composition-dependent component to the sum of age-explained 

variance in both components. Light grey – genes without age-related expression; dark 

grey – genes with age-related expression. The horizontal dash lines show the mean 

proportion of composition-related variance. (c) The proportion of variance explained 

by ages (age-explained variance) in each of the two components of expression: pink – 

the composition-dependent component; green – the composition-independent 

component. The light colors represent the proportions of age-related variance in genes 

without age-related expression changes; the dark colors represent the proportions of 

age-related variance in genes with age-related expression changes. The horizontal 

dash lines show the means of age-related variance proportions. 
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Supplementary Figure S4. DR and CIBERSORT based cell type composition 

patterns resulted in consistent classification of genes with composition-dependent 

and/or composition-independent component showing (a) age-related changes in 

postnatal human brains and (b) ASD alteration. The red shadows indicate significant 

overlap (hypergeometric test, P<0.0001). 
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Supplementary Figure S5. Three deconvolution algorithms provide similar 

estimations of cell type composition alterations in ASD samples. Different ellipses 

represent the eight cell types. The center of each ellipse shows the average altered 

proportion of each cell type in ASD samples comparing to the healthy samples, based 

on the DR-based composition patterns (y-axis) or CIBERSORT (left panel) / QP (right 

panel) (x-axis) based composition patterns. The major and minor radius of each 

ellipse is proportional to the standard deviation of the alteration based on the 

corresponding algorithm. 
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Supplementary Table S1. The CIBERSORT-selected markers used in CIBERSORT 

and QP algorithms, and the cell type signature genes of the eight main cell types in 

human brains used in DR algorithms. 

Supplementary Table S2. ANCOVA results indicating age-related changes in 

postnatal human brains in composition-dependent or composition-independent 

components. 

Supplementary Table S3. Functional enrichment (DAVID) of each of the three 

groups of age-related changed genes. 

Supplementary Table S4. ANCOVA results indicating ASD alteration in 

composition-dependent or composition-independent components. 

Supplementary Table S5. Functional enrichment (DAVID) of genes with altered 

expressions in ASD in their composition-independent components. 
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