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Abstract

Parkinson’s disease and Parkinson’s tremor are the two most com-
mon movement disorders, nor do we fully understand the origin of one of
the disease’s cardinal symptom: the Parkinsonian tremor. We study one
mathematical model involved in Parkinson’s disease and in the Parkinso-
nian tremor. In this paper, we use the Van der Pol equation to further un-
derstand this tremor as well as investigate different numerical approaches
to solve the system and compare them.
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1 Introduction

Parkinson disease (PD) is a currently incurable progressive neurodegenerative
disease identified by bradykinesia, stiffness, postural instability, which occurs in
the later stages of PD, and rest tremors, often first seen in the hands or feet.
Rest tremors are the most recognisable symptom in patients with PD and un-
like physiological tremors, with a frequency range of 8-12Hz, rest tremors have a
slower frequency in the range of 4-6Hz [1]. Although the full cause of PD is still
unknown, it is linked to a deficiency of the neurotransmitter, dopamine, and
elderly patients suffering from PD have been found to have reduced neuronal
density in the substantia nigra [1]. Rest tremors are proposed to be caused by
either central or peripheral feedback mechanisms or a combination of both [2].
For the central mechanisms, it is proposed that abnormal signals due to oscilla-
tions in the central nervous system are transmitted to muscles and result in the
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tremors seen in patients with PD [3, 4], and for the peripheral feedback mech-
anisms, it is thought that neurons involved in the muscle stretch reflex become
unstable and no longer dampen muscle oscillations, resulting in tremors [5].
Mathematical modelling has proven to be a useful tool in further understanding
PD tremors and what may potentially cause them. Previously, a model proposed
by [6] using the Van der Pol equation, [6] discussed the possibilities of destroy-
ing downstream facilitatory paths to reduce the rest tremors. It was some time
later that deep brain stimulation was proposed to be a possible treatment, where
electrodes were implanted in patients brains to modulate any abnormal neural
signals [7]. It has since proven to be effective against rest tremors in patients
where medication was no longer sufficient. [6, 8] used a second order, nonlinear
equation with one parameter that measured the ratio of emotional excitement
to inhibition for their model. This model was proposed due to the observation in
patients that tremors increased with excitation. Excitation has also been seen
to affect bradykinesia, where patients are able to move faster at higher levels of
excitation [1]. The Van der Pol equation was first proposed by Balthazar van
der Pol (1889-1959), who was a Dutch electrical engineer who initiated modern
experimental dynamics in the laboratory during the 1920’s and 1930’s. He first
introduced his equation in order to describe triode oscillations in electrical cir-
cuits in 1927. The mathematical model has since become a well known second
order ordinary differential equation with cubic nonlinearity, where thousands of
articles have been published achieving better approximations to the solutions
occurring in such non-linear systems. The Van der Pol oscillator is a classical
example of a self-oscillatory system and is now considered to be a very useful
mathematical model that can be used in much more complicated and modified
systems. During the first half of the twentieth century, Balthazar van der Pol
pioneered the fields of radio and telecommunications [9, 10, 11, 12, 13] . In an
era when these areas were much less advanced than they are today, vacuum
tubes were used to control the flow of electricity in the circuitry of transmitters
and receivers. Contemporary with Lorenz, Thompson, and Appleton, in 1927,
van der Pol experimented with oscillations in a vacuum tube triode circuit and
concluded that all initial conditions converged to the same periodic orbit of
finite amplitude. Since this behaviour was different from the behaviour of solu-
tions of linear equations, van der Pol proposed a nonlinear differential equation
commonly referred to as the unforced Van der Pol equation, as a model for the
behaviour observed in the experiment. He also discovered the importance of
the relaxation oscillations [11, 12]. The relaxation oscillations have become the
cornerstone of the germetric singular perturbation theory and play a significant
role in analysis. Moreover, it was noted that irregular noise was also appear-
ing before transition from one subharmonical regime to another [13]. It was
one of the first observations of chaotic oscillations in the electronic tube circuit.
Since then it has been used by scientists to model a variety of physical and
biological phenomena. In this paper, we extensively study this renowned equa-
tion numerically to obtain a better understanding of the Parkinsonian tremor.
Moreover, we compare the different stiff and non-stiff ODE solvers according to
their performance.
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2 Mathematical Model

The Van der Pol oscillator is a model nonlinear differential equation where p
is the position coordinate, which is a function of time, and pu > 0 is a scalar
parameter indicating the nonlinearity and the strength of the damping. The
governing differential equation is

P —pu(l—p*)p +p=0, (1)

o represents the emotional excitation and is defined as in [6] as the ratio of
excitation (F) over inhibition (I)

F
== 1 2
p=7-1 (2)
When p = 0, meaning the level of excitation is equal to the level of inhibition,
this is a simple harmonic oscillator and solutions have the form

p(t) = p(O)cos(t) + p/ (0)sin(t), (3)

When p is nonzero, the picture gets slightly more complicated. We can relate
this as a class of ODE such as

p//+bpl+p:0 (4)

which have decaying oscillating solutions for b > 0 and exponentially growing
solutions for b < 0. The coefficient b is interpreted as damping (with b <
0 corresponding to anti-damping behaviour where solutions gain energy over
time). In the case of the Van der Pol equation, b is replaced by a nonlinear
term which is negative when |p| < 1 and positive when [p| > 1. Therefore, the
behaviour seen in practice is that there is a balance between growth behaviour
for smaller p and decay behaviour for larger p. The result is that the solution
bounces back and forth between slow motions for p > 1 and p < —1 with
fast transitions between, and the speed of those transitions is governed by the
magnitude of p.

Now equation (1) can be written as the dynamical system, y' = Ay, with y(0) =
Yo. Solving this dynamical system, we can find that the eigenvalues of the
Jacobian are —1 and A. We now analyze the system numerically and tally the
results.

3 Numerical Experiment

In this section, we are numerically simulating the Van der Pol equation. We use
Matlab to find the oscillatory behaviour. First, we took an example problem
y' = Ay with y(0) = 1 and A = —10 and used the matlab code for the Eu-
ler Scheme to find the oscillatory behaviour with different step sizes. Figure 1
to Figure 4 shows the oscillations with the step size h = 0.184,0.2,0.3,0.5. We
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observed that a small step size resulted in more oscillations than a large step size.

Figure 1: Oscillating behaviour for step size h = 0.184
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Figure 2: Oscillating behaviour for step size h = 0.2
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Figure 3: Oscillating behaviour for step size h = 0.3

5000 ; 1 T 1 !
4000
3000
2000

1000

-1000

] : .

Figure 4: Oscillating behaviour for step size h = 0.5


https://doi.org/10.1101/065318
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/065318; this version posted July 22, 2016. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

3.1 Numerical Simulation of Van der Pol equation

We used the ODE45 and ODE15s solvers and compared the results. ODE45 is
a non-stiff solver for the differential equations with a medium order method. It
is based on the Runge-Kutta explicit scheme. On the other hand, ODE15s is a
stiff solver with various order methods.

e For p=1
We found for ODE45.
o 55 successful steps.
o 8 failed attempts.
o 379 function evaluations.
o Elapsed time is 0.023931 seconds.

For ODE15s
o 193 successful steps.
o 31 failed attempts.
o 406 function evaluations.
o Elapsed time is 0.087537 seconds.
o 1 partial derivative.
o 57 LU decompositions.
o 402 solutions of linear systems.
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Figure 5: Oscillatory behaviour with time for u =1
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Figure 6: Phase plane for p =1

Therefore, we can say that for u = 1, ODE45 is the better choice due to
it taking less time to compute and having a faster rate of convergence than
ODE15s. We observe this because u = 1 is a non-stiff equation. Figure 5 and
Figure 6 illustrate solutions for both the solver and phase plane respectively.

e For =10
We found for ODE45.
o 382 successful steps.
o 55 failed attempts.
o 2623 function evaluations.
o Elapsed time is 0.044707 seconds.

For ODE15s
o 536 successful steps.
o 138 failed attempts.
o 1475 function evaluations.
o Elapsed time is 0.159399 seconds.
o 16 partial derivatives.
0 192 LU decompositions.
o 1426 solutions of linear systems.
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Figure 7: Oscillatory behaviour with time for p = 10
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Figure 8: Phase plane for p = 10

Here, we see that ODEA45 is also a better solver than ODE15s in all aspects
for 4 = 10. Figure 7 and Figure 8 show the solution curve and phase plane for
w=10.
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e For ;1 =100
We found for ODE45.
0 26368 successful steps.
o 1701 failed attempts.
o 168415 function evaluations.
o Elapsed time is 2.574692 seconds.

For ODE15s
o 761 successful steps.
o 282 failed attempts.
o 2434 function evaluations.
o Elapsed time is 0.251495 seconds.
o 53 partial derivatives.
o 357 LU decompositions.
o 2274 solutions of linear systems.
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Figure 9: Oscillatory behaviour with time for p = 100
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Figure 10: Phase plane for p = 100

Finally, we observe that ODE15s is a better solver than ODE45 because
now the problem is stiff (for ¢ = 100). Both the solvers return results that are
nearly indistinguishable visually. Figure 9 and Figure 10 portrait the nature of
the solution and phase plane for the stiff problem.
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Figure 11: Oscillatory behaviour for step size h = 0.05
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Figure 12: Oscillatory behaviour for step size h= 0.184

Figure 11 and Figure 12 show the oscillatory behaviour of the Van der Pol
equation with two different step sizes. The smaller step size shows more oscil-
lation.

4 Conclusions

We studied the Van der Pol equation as a model of the Parkinson’s tremor and
reported the numerical results. From these results, we can conclude that ODE45
works well for non-stiff problems while ODE15s performs better in the case of
stiff problems. If we discretise the domain with a small step size, we obtain
a good solution with less error. The model we have studied only considers
the impact of emotional excitation rather than pinpointing the origin of the
Parkinsonian tremor.
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