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Abstract

The minfi package is widely used for analyzing Illumina DNA methylation array
data. Here we describe modifications to the minfi package required to support the
HumanMethylationEPIC (”EPIC”) array from Illumina. We discuss methods for the
joint analysis and normalization of data from the HumanMethylation450 (”450k”) and
EPIC platforms. We also introduce the single-sample Noob (ssNoob) method, a nor-
malization procedure suitable for incremental preprocessing of individual Human-
Methylation arrays. Our results recommend the ssNoob method when integrating data
from multiple generations of Infinium methylation arrays. Finally, we show how to
use reference 450k datasets to estimate cell type composition of samples on EPIC ar-
rays. The cumulative effect of these updates is to ensure that minfi provides the tools
to best integrate existing and forthcoming Illumina methylation array data.
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Introduction

The IlluminaHumanMethylation450 (“450k”) array is a widely used platform for assay-
ing DNA methylation in a larger number of samples using bisulfite conversion followed
by array hybridization (Bibikova et al., 2011), and has been the platform of choice for
epigenome-wide association studies and large scale cancer projects. In 2015, Illumina re-
leased their next generation methylation array, the HumanMethylationEPIC (“EPIC”) ar-
ray (Moran, Arribas, and Esteller, 2016), with almost twice the number of CpG loci. This
increased resolution, coupled with greatly expanded coverage of regulatory elements,
makes the EPIC array an attractive platform for large-scale profiling of DNA methyla-
tion.

The minfi package in R/Bioconductor (Gentleman et al., 2004; Huber et al., 2015) is a
widely used software package for analyzing data from the Illumina HumanMethyla-
tion450 array (Aryee et al., 2014). In addition to the analysis methods provided in the
package, it exposes a flexible framework for handling DNA methylation data. Because
of this, minfi is used as the data backend for many other software packages, including
ChAMP (Morris et al., 2014), DMRcate (Peters et al., 2015), quantro (Hicks and Irizarry,
2015), missMethyl (Phipson, Maksimovic, and Oshlack, 2016), shinyMethyl (Fortin, Fer-
tig, and Hansen, 2014), MethylAid (Iterson et al., 2014), ENmix (Xu et al., 2016), ELMER
(Yao et al., 2015), conumee (Hovestadt and Zapatka, 2016), CopyNumber450k (Papillon-
Cavanagh, Fortin, and De Jay, 2013), funtooNorm (Oros Klein et al., 2016) and Multi-
DataSet (Ruiz-Arenas, Hernandez-Ferrer, and Gonzalez, 2016).

Results

Extending the minfi package to handle EPIC arrays

Here we report the extension of the minfi package to handle the recently released Hu-
manMethylationEPIC DNA methylation microarray from Illumina, also referred to as
the “EPIC” or “850k” array. Simultaneously, we extend the interactive visualization tool
shinyMethyl (Fortin, Fertig, and Hansen, 2014), used for quality control assessment of
450k datasets, to add support for the EPIC array.

The launch of the EPIC array has been marred by some “technical” difficulties, including
(1) issues with software settings in the scanner and (2) issues with the released annotation
files describing the array design. For (1), early scanner settings distributed by Illumina
incorrectly masked certain probes, resulting in an IDAT file with fewer registered probes
(1,052,641 probes / 866,836 methylation loci in current IDAT files, versus 1,032,279 probes
/ 855,184 methylation loci in early access files, representing a difference of 11,652 methy-
lation loci). This can be addressed by rescanning the physical array with updated scanner
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settings, which is sometimes impossible. The presence of multiple valid IDAT files for
the same array design has led to the creation of a check for this situation in the parsing
functions in minfi. For (2), Illumina has released multiple different versions of their “man-
ifest” file which serves the dual purpose of describing the array design and annotation of
the measured methylation loci. The different versions of the manifest file differ in a small
number of probes. These errors do not reflect errors in the manufacturing process, but
rather errors in the annotation released to outside researchers.

Because of these issues, it is critical (at the time of writing) to keep minfi and its associated
annotation packages updated to their latest versions. To keep the associated annotation
packages current, it may be necessary to re-read the original IDAT files with newer ver-
sions of minfi; the resulting R object will be linked to the latest annotation package.

For methods development and software testing, we have bundled 3 replicates of the
GM12878 cell line assayed on the EPIC chip and released by Illumina as a demo dataset
into an experimental package named minfiDataEPIC, available from Bioconductor. These
3 replicates are used below in a number of analyses.

Additionally, we have developed similar annotation and data packages for the older Il-
lumina HumanMethylation27 (”27k”) array; this required extending internal functions in
minfi to work with array designs having only one probe type. The minfiData27k package
bundles 20 kidney samples (tumor and normal) assayed on the 27k array from the TCGA
Kidney Renal Papillary Cell Carcinoma (KIRP) study (Cancer Genome Atlas Research
Network, 2013).

The different array types along with the currently available preprocessing functions are
listed in Table 1.

Table 1. Summary of the Illumina Methylation Arrays.

Array N. CpGs Type I Type II Preprocessing functions in minfi Data package

27k 27,578 27,578 0 preprocessRaw, preprocessNoob, preprocessQuantile minfiData27k

450k 482,421 135,476 346,945 preprocessRaw, preprocessNoob, preprocessQuantile minfiData
preprocessFunnorm, preprocessSWAN

EPIC 863,904 142,262 721,642 preprocessRaw, preprocessNoob, preprocessQuantile minfiDataEPIC
preprocessFunnorm, preprocessSWAN

Combining 450k and EPIC arrays by using common probes

Unlike the transition from 27k to 450k arrays, a substantial percentage (93.3%) of loci con-
tained on the 450k microarray are also contained on the EPIC microarray, measured using
the exact same probes and same chemistry. This represents a total of 453,093 CpG loci in
common between the two arrays. In addition to probes measuring CpG loci, both arrays
contain 65 SNP probes to assess possible sample mislabeling, 59 of which are shared by
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both arrays. Finally, the two arrays both contain a number of control probes, 850 on the
450k array and 635 on the EPIC array, with 487 probes in common.

The large percentage of common loci measured by common probes makes it possible to
combine data from 450k and EPIC arrays. The lowest level of the combination can occur
at the probe level, before the probes are summarized into methylated and unmethylated
intensities. We have implemented this functionality in the function combineArrays
which outputs an object that behaves either as a 450k or an EPIC array as chosen by the
user with a reduced number of probes; we call this is a virtual array. We achieve this
goal by remapping probes between identifiers used on the two arrays. We also support
the combination of the two array types at the CpG locus level, after the creation of the
methylation and unmethylation channels, with or without prior normalization. This is
implemented in the same function.

Most of the common probes between the 27k array and the 450k array (or between the
27k array and the EPIC array) do not have the same probe chemistry, and therefore it is
not possible the combine those two arrays at the probe level. Only the creation of a virtual
array at the CpG locus level is supported, also via the function combineArrays.

Combining the 450k and EPIC arrays at the probe level has several advantages. First, it
opens up the possibility of using advanced preprocessing methods such as Noob (Triche
et al., 2013) and functional normalization (Fortin, Labbe, et al., 2014), and using the batch
effect correction tools ComBat (Johnson, Li, and Rabinovic, 2007), SVA (Leek and Storey,
2007; Leek and Storey, 2008) and RUVm (Maksimovic, Gagnon-Bartsch, et al., 2015).
Second, it also allows users to estimate cell type proportions using existing algorithms
(Houseman et al., 2012) making use of flow-sorted reference datasets currently available
from whole blood, cord blood and prefrontal cortex assayed on the 450k array (Reinius
et al., 2012; Bakulski et al., 2016; Guintivano, Aryee, and Kaminsky, 2013). Finally, this
also allows the prediction of A/B compartments for estimating the open/closed state of
the chromatin using the methodology described in Fortin and Hansen (2015).

Single sample normalization with ssNoob

Single sample normalization is of great potential benefit to users, particularly for ana-
lyzing large datasets which arrive in batches, because data can be processed separately
and independently of the previously processed data. Of particular interest are single
sample normalization methods which perform comparable to methods that pool infor-
mation across multiple samples (McCall, Bolstad, and Irizarry, 2010; Piccolo, Sun, et al.,
2012; Piccolo, Withers, et al., 2013). We note that single-sample processing does not re-
move the need for proper experimental design (Birney, Smith, and Greally, 2016) and,
where appropriate, batch effect correction methods such as ComBat (Johnson, Li, and
Rabinovic, 2007), SVA (Leek and Storey, 2007; Leek and Storey, 2008) and RUVm (Mak-
simovic, Gagnon-Bartsch, et al., 2015), especially for large or multi-center studies. If the
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incrementally processed results are directly comparable to batch-processed results from
large studies (such as the Cancer Genome Atlas project, or TCGA), the benefits of single
sample processing are magnified.

We determined that the Noob method (Triche et al., 2013), which combines both back-
ground correction and dye bias equalization, behaves as a single sample normalization
method for Beta values: the Beta values computed after Noob normalization are the same
whether samples are processed individually or in a group (see below for a proof). This is
not currently the case for the methylated and unmethylated probe intensities themselves.
Therefore, we updated the Noob algorithm to remove the need for a reference sample,
thereby creating a full single sample normalization method with excellent performance.
We emphasize that this change to the Noob method does not affect the resulting Beta val-
ues, and ssNoob-processed arrays are directly comparable to Level 3 TCGA methylation
array data, as the latter were processed with the reference-based Noob algorithm. The
new version of Noob is now the default from minfi version 1.19.10.

For single sample preprocessing, we eliminated the use of a reference sample r in correct-
ing the dye bias ratio RUM estimated from normalization controls (cAT for U, cGC for M).
Previously (Triche et al., 2013), we computed the corrected β̃ij at probe j in sample i as

β̃ij =
M̃ij

M̃ij + Ũij

where the corrected methylated and unmethylated intensities are estimated as

M̃ij =
Mij Iref

ĉGCi

, Ũij =
Uij Iref

ĉATi

with

Iref =
ĉGCr + ĉATr

2
, r = arg min

r

∣∣∣ ĉGCr

ĉATr

− 1
∣∣∣.

Here the methylated Mij and unmethylated intensities Uij are background corrected as
described in Triche et al. (2013), and ĉGCi , ĉATi are the averages of the normalization con-
trols on array i. We note that background correction is a single sample procedure.

Note that, since the reference normalization control intensity Iref vanishes when we con-
vert the corrected M̃ij and Ũij into β̃ij, it has no impact on the corrected Beta values. We
address the dye bias in Type II probes by correcting Uij as

Ũij =
Uij

RUMi

, RUMi =
ĉATi

ĉGCi

recovering the dye bias corrected Beta values as

βij =
Mij

Mij + Ũij
.
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The resulting βij is identical to reference-based β̃ij, and accuracy of detection p-values
(based on intensities) may also benefit from the reduced manipulation of raw intensities.

Background correction & dye bias correction reduce technical variation

We assessed how the different preprocessing methods available in minfi perform at re-
ducing technical variation among three technical replicates of the cell line GM12878, bun-
dled in the minfiDataEPIC package. The different methods are: preprocessing as Illu-
mina, SWAN normalization (Maksimovic, Gordon, and Oshlack, 2012), stratified quantile
normalization as discussed in Touleimat and Tost (2012) and Aryee et al. (2014), single-
sample noob background correction followed by dye bias correction (Triche et al., 2013),
and functional normalization (Fortin, Labbe, et al., 2014). We also compare those methods
to no normalization.

To assess technical variation, we calculated the variance of the Beta values across the
the 3 technical replicates at each CpG, stratified by probe design type. Boxplots of the
distribution of these variances are shown in Figure 1. The results follow the patterns
that we have reported previously (Fortin, Labbe, et al., 2014), and show that the EPIC
array behaves similarly to the 450k array on this assessment. This result is limited by the
following: (1) it is based on only 3 technical replicates of a single sample and (2) technical
variability is a poor proxy for performance, as we have shown previously (Fortin, Labbe,
et al., 2014). To expand on the second point, we have shown previously that methods
which best reduce technical variation are not the best at achieving replication between
different datasets, where the latter is arguably of far greater importance.

Background correction & dye bias correction improve sample classifica-
tion across array types

Above, we describe how to combine data from the EPIC and 450k array into a virtual
array that contains only common probes or CpG loci. This implies discarding probes or
CpG loci only measured on one of the array types. It might be of interest for researchers
to normalize the two array types without discarding these probes or CpG loci. Most
normalization procedures for the 450k array modify the marginal distributions of each
sample by estimating a global trend across all samples. For such procedures, it can have
unfortunate results if different subsets of the data are normalized separately. We therefore
expected that separate normalization of EPIC data and 450k data might lead to reduced
performance.

To examine this question, we used the three technical replicates of the GM12878 cell line
assayed on the EPIC array, and compared them to a set of 450k arrays we combined
from publicly available data (Table 2). This set consists of 261 lymphoblastoid cell lines
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(LCLs), the same cell type as GM12878, and 78 other samples. The 78 other samples have
a selection of 20 peripheral blood mononuclear (PBMC) samples as well as 58 samples
from ENCODE.

First we assessed the performance of the different normalization methods, when the data
was combined at the probe level into a virtual array and subsequently normalized to-
gether. As performance measure, we computed the median distance between the data
from the EPIC array and all of the 450k data. A useful normalization strategy will re-
sult in the LCLs drawing closer to each other while moving further from the other cell
types. We used the distance as a metric for predicting whether or not a 450k sample is an
LCL sample, and displayed prediction performance as an ROC curve (Figure 2a). While
all methods predict well, this shows that ssNoob, functional normalization and quantile
normalization achieved perfect prediction performance. To investigate whether or not
the methods can separate the PBMC samples from the ENCODE samples, we plotted the
sorted values of the distance between the EPIC data and the 450k samples (Figure 3), and
in Figure 5, we show the median distance between the ENCODE GM12878 cell line as-
sayed on the 450k platform and the EPIC arrays (full dots). ssNoob performs the best,
followed by functional normalization and quantile normalization. These assessments
broadly mirror existing literature (Fortin, Labbe, et al., 2014).

Next, we explored the effect of normalizing the 450k samples separately from the EPIC
samples followed by combining the data at the CpG loci level. We used the same assess-
ments to investigate performance (Figures 2b, 4, and circle dots in Figure 5). The main
difference is that quantile normalization performs significantly worse. This is expected:
quantile normalization normalizes data to a common reference which is empirically de-
termined. By separating the EPIC and 450k data, the reference distribution will differ
between the two datasets. Given the performance of ssNoob, together with the fact that
functional normalization might suffer from the same issue as quantile normalization, we
recommend ssNoob for separate normalization of EPIC and 450k arrays, if the goal is
to subsequently combine the data from the two arrays. We note that it may be possible
to extend functional normalization and quantile normalization to use targeted quantile
normalization and ensure that the reference is common across the two array types.

Estimation of cell-type composition for EPIC arrays

It has been shown that in epigenome-wide association studies (EWAS), celullar hetero-
geneity, that is different cell-type proportions across samples, can lead to spurious as-
sociations when confounded with the outcome of interest (Houseman et al., 2012; Jaffe
and Irizarry, 2014). Several methods have been proposed to estimate the cell-type pro-
portions from a reference dataset that is made of sorted samples (Houseman et al., 2012;
Jaffe and Irizarry, 2014). Reference 450k array datasets exist for whole blood, cord blood
and prefontal cortex (Reinius et al., 2012; Bakulski et al., 2016; Guintivano, Aryee, and
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Kaminsky, 2013) and have been made available via the Bioconductor packages “Flow-
Sorted.Blood.450k”, “FlowSorted.CordBlood.450k” and “FlowSorted.DLPFC.450k”, re-
spectively.

The function estimateCellCounts in minfi allows users to estimate the cell-type pro-
portions in their dataset using the reference datasets listed above. To take advantage of
the existing 450k datasets for the cell-type composition estimation in EPIC arrays, we
adapted the estimateCellCounts to the EPIC array. Briefly, if an EPIC array dataset
is provided, it is first converted to a 450k dataset by removing probes that differ between
the two arrays, and then combined with the reference 450k dataset by considering only
probes in common. This results in a virtual 450k array dataset that contains 7% less probes
than an common 450k dataset.

In order the evaluate how removing 7% of probes from the 450k platform impacts the
cell-type composition estimation, we estimated the cell-type proportions for the 20 PBMC
samples from the 450k-Esteller dataset, before and after removing the probes that differ
between the 450k and EPIC arrays. We estimated the proportions for the cell types CD8T,
CD4T, NK, BCell, Mono and Gran using the package FlowSorted.Blood.450k as a
reference dataset. Both the reference dataset and the 450k-Esteller dataset were normal-
ized together using quantile normalization. We note that other choices of normalization
can be applied as well. This yielded very good results; for each cell type, the correla-
tion of the cell type proportions between the full dataset and the probe-reduced dataset
is higher than 0.99, with a negligible average difference of 0.001 between the two sets of
proportions.

Discussion

We have described our work to support EPIC and 27k arrays in the widely used minfi
package. Our primary contribution has been to develop software which easily handles
and combines data from the different arrays. We also evaluated standard normalization
procedures and shown that they perform as expected for the EPIC array, based on the
literature on the 450k array. And finally, we have modified the noob method to be a true
single sample normalization method.

By combining data from the EPIC and the 450k array at the probe level, we have made
it possible to jointly process data from the two platforms together, using state of the art
methods. In addition, it allows users to estimate cell type proportions for samples assayed
on the EPIC array using reference datasets measured on the 450k array.

For normalization, we conclude that the single sample noob method is superior for joint
analysis of EPIC and 450k data, followed by functional normalization and quantile nor-
malization. We show that care We show that care must be taken if the two array types are
normalized separately and later combined.
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Our evaluation of different normalization procedures is limited by the fact that the avail-
able EPIC data is 3 technical replicates of an lymphoblastoid cell line. Forthcoming stud-
ies with biological specimens, where material from each subject was run on each gener-
ation of Infinium array, will provide a basis to evaluate the generality of our findings.
However, we stress that our results fit expectations based on our general understanding
of normalization procedures, and we therefore expect these results to hold under further
evaluations.

Methods

Data

Data sources used in this paper are listed in Table 2.

Table 2. Methylation datasets.

Dataset Cell type n Type Replicates Platform Accession Reference

EPIC-LCL LCL (GM12878) 3 Technical EPIC - Illumina website, also available in
minfiDataEPIC (Fortin and Hansen, 2016)

450k-Esteller PBMC 20 Biological 450k GSE36369 Heyn et al. (2013)
LCL 256 Biological 450k GSE36369 Heyn et al. (2013)

450k-ENCODE LCL (GM12878) 1 - 450k GSE40699 ENCODE Project Consortium (2004)
LCL (Others) 4 Biological 450k GSE40699 ENCODE Project Consortium (2004)
Others 58 Biological 450k GSE40699 ENCODE Project Consortium (2004)

Normalization Assessment

Normalization on separate arrays. For each normalization method, we normalized the
EPIC and 450k data separately. We then combined the two normalized array datasets
at the CpG level, resulting in a matrix of Beta values BSep with 453,093 rows and 342
columns (loci only measured on the EPIC was discarded for our assessment).

Normalization on virtual array. We combined the unnormalized EPIC and 450k data at
the probe level to create a virtual array. We then normalized the data jointly by applying
each normalization method to the combined virtual array, resulting in a matrix of Beta
values BComb with 453,093 rows and 342 columns.

Median distance of the 450k samples relative to the EPIC array. For both BSep and
BComb, we compute the average methylation Beta value profile of the GM12878 cell line
assayed on the EPIC array by taking the mean of the three technical replicates, resulting
in the two vectors of Beta values BSep

EPIC and BComb
EPIC . For each normalized 450k sample BSep

i
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and BComb
i , we calculate the median distances mSep

i and mComb
i with respect to the EPIC

array as follows:

mSep
i = median[(BSep

EPIC − BSep
i )2]

mComb
i = median[(BComb

EPIC − BComb
i )2].

The median distance values mSep
i and mComb

i quantify the similarity of each 450k sample
with respect to the cell line GM12878 sample assayed on the EPIC array. We present the
ordered values mSep

i and mComb
i in Figures 4 and 3 respectively. These barplots are colored

by tissue type.

For each normalization method, we use the median distances as predictor of cell type
(LCL or not LCL) for the 450k samples, and use an ROC curve to summarize the speci-
ficity and sensitivity of each normalization method (Figure 2).

Software

The results in this manuscript were produced using minfi version 1.19.10, minfiDataEPIC
version 0.99.3, IlluminaHumanMethylationEPICmanifest version 0.3.0, and IlluminaHu-
manMethylationEPICanno.ilm10b2.hg19 version 0.3.0. Scripts describing our reproducible
analysis are available at https://github.com/hansenlab/EPIC450k_repro.

Acknowledgements

Funding: Research reported in this publication was supported by the National Cancer
Institute of the National Institutes of Health under award number U24CA180996. Dr.
Triche gratefully acknowledges support from the Leukemia & Lymphoma Society Quest
for Cures program, the Tower Cancer Research Foundation, the St. Baldrick’s Foundation
Pathway Directed Treatment for Refractory AML Consortium grant, and the Jane Anne
Nohl Hematology Research Support Fund.
Disclaimer: The content is solely the responsibility of the authors and does not necessarily
represent the official views of the National Institutes of Health.
Conflict of Interest: None declared.

Bibliography

Aryee, M. J., A. E. Jaffe, H. Corrada-Bravo, C. Ladd-Acosta, A. P. Feinberg, K. D. Hansen,
and R. A. Irizarry (2014). “Minfi: a flexible and comprehensive Bioconductor pack-
age for the analysis of Infinium DNA methylation microarrays”. Bioinformatics 30.10,
pp. 1363–1369. DOI: 10.1093/bioinformatics/btu049.

10

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 23, 2016. ; https://doi.org/10.1101/065490doi: bioRxiv preprint 

https://github.com/hansenlab/EPIC450k_repro
http://dx.doi.org/10.1093/bioinformatics/btu049
https://doi.org/10.1101/065490
http://creativecommons.org/licenses/by/4.0/


Bakulski, K. M., J. I. Feinberg, S. V. Andrews, J. Yang, S. Brown, S. L McKenney, F. Witter,
J. Walston, A. P. Feinberg, and M. D. Fallin (2016). “DNA methylation of cord blood
cell types: Applications for mixed cell birth studies”. Epigenetics 11.5, pp. 354–362. DOI:
10.1080/15592294.2016.1161875.

Bibikova, M., B. Barnes, C. Tsan, V. Ho, B. Klotzle, J. M. Le, D. Delano, L. Zhang, G. P.
Schroth, K. L. Gunderson, J.-B. Fan, and R. Shen (2011). “High density DNA methyla-
tion array with single CpG site resolution”. Genomics 98.4, pp. 288–295. DOI: 10.1016/
j.ygeno.2011.07.007.

Birney, E., G. D. Smith, and J. M. Greally (2016). “Epigenome-wide Association Studies
and the Interpretation of Disease -Omics”. PLoS Genetics 12.6, e1006105. DOI: 10.1371/
journal.pgen.1006105.

Cancer Genome Atlas Research Network (2013). “Comprehensive molecular characteri-
zation of clear cell renal cell carcinoma”. Nature 499.7456, pp. 43–49. DOI: 10.1038/
nature12222.

ENCODE Project Consortium (2004). “The ENCODE (ENCyclopedia Of DNA Elements)
Project”. Science 306.5696, pp. 636–640. DOI: 10.1126/science.1105136.

Fortin, J.-P., E. Fertig, and K. Hansen (2014). “shinyMethyl: interactive quality control of
Illumina 450k DNA methylation arrays in R”. F1000Research 3, p. 175. DOI: 10.12688/
f1000research.4680.2.

Fortin, J.-P. and K. D. Hansen (2015). “Reconstructing A/B compartments as revealed by
Hi-C using long-range correlations in epigenetic data”. Genome Biology 16, p. 180. DOI:
10.1186/s13059-015-0741-y.

Fortin, J.-P. and K. D. Hansen (2016). minfiDataEPIC: Example data for the Illumina Methyla-
tion EPIC array. R package version 0.99.3. URL: http://www.bioconductor.org/
packages/minfiDataEPIC.

Fortin, J.-P., A. Labbe, M. Lemire, B. W. Zanke, T. J. Hudson, E. J. Fertig, C. M. Greenwood,
and K. D. Hansen (2014). “Functional normalization of 450k methylation array data
improves replication in large cancer studies”. Genome Biology 15.12, p. 503. DOI: 10.
1186/s13059-014-0503-2.

Gentleman, R. C., V. J. Carey, D. M. Bates, B. Bolstad, M. Dettling, S. Dudoit, B. Ellis,
L. Gautier, Y. Ge, J. Gentry, K. Hornik, T. Hothorn, W. Huber, S. Iacus, R. Irizarry, F.
Leisch, C. Li, M. Maechler, A. J. Rossini, G. Sawitzki, C. Smith, G. Smyth, L. Tierney,
J. Y. H. Yang, and J. Zhang (2004). “Bioconductor: open software development for com-
putational biology and bioinformatics”. Genome Biology 5.10, R80. DOI: 10.1186/gb-
2004-5-10-r80.

Guintivano, J., M. J. Aryee, and Z. A. Kaminsky (2013). “A cell epigenotype specific model
for the correction of brain cellular heterogeneity bias and its application to age, brain
region and major depression”. Epigenetics 8.3, pp. 290–302. DOI: 10.4161/epi.23924.

Heyn, H., S. Moran, I. Hernando-Herraez, S. Sayols, A. Gomez, J. Sandoval, D. Monk,
K. Hata, T. Marques-Bonet, L. Wang, and M. Esteller (2013). “DNA methylation con-
tributes to natural human variation.” Genome Research 23.9, pp. 1363–1372. DOI: 10.
1101/gr.154187.112.

11

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 23, 2016. ; https://doi.org/10.1101/065490doi: bioRxiv preprint 

http://dx.doi.org/10.1080/15592294.2016.1161875
http://dx.doi.org/10.1016/j.ygeno.2011.07.007
http://dx.doi.org/10.1016/j.ygeno.2011.07.007
http://dx.doi.org/10.1371/journal.pgen.1006105
http://dx.doi.org/10.1371/journal.pgen.1006105
http://dx.doi.org/10.1038/nature12222
http://dx.doi.org/10.1038/nature12222
http://dx.doi.org/10.1126/science.1105136
http://dx.doi.org/10.12688/f1000research.4680.2
http://dx.doi.org/10.12688/f1000research.4680.2
http://dx.doi.org/10.1186/s13059-015-0741-y
http://www.bioconductor.org/packages/minfiDataEPIC
http://www.bioconductor.org/packages/minfiDataEPIC
http://dx.doi.org/10.1186/s13059-014-0503-2
http://dx.doi.org/10.1186/s13059-014-0503-2
http://dx.doi.org/10.1186/gb-2004-5-10-r80
http://dx.doi.org/10.1186/gb-2004-5-10-r80
http://dx.doi.org/10.4161/epi.23924
http://dx.doi.org/10.1101/gr.154187.112
http://dx.doi.org/10.1101/gr.154187.112
https://doi.org/10.1101/065490
http://creativecommons.org/licenses/by/4.0/


Hicks, S. C. and R. A. Irizarry (2015). “quantro: a data-driven approach to guide the choice
of an appropriate normalization method”. Genome Biology 16, p. 117. DOI: 10.1186/
s13059-015-0679-0.

Houseman, E. A., W. P. Accomando, D. C. Koestler, B. C. Christensen, C. J. Marsit, H. H.
Nelson, J. K. Wiencke, and K. T. Kelsey (2012). “DNA methylation arrays as surrogate
measures of cell mixture distribution”. BMC Bioinformatics 13, p. 86. DOI: 10.1186/
1471-2105-13-86.

Hovestadt, V. and M. Zapatka (2016). conumee: Enhanced copy-number variation analysis
using Illumina 450k methylation arrays. R package version 0.99.4. URL: http://www.
bioconductor.org/packages/conumee.

Huber, W., V. J. Carey, R. Gentleman, S. Anders, M. Carlson, B. S. Carvalho, H. C. Bravo,
S. Davis, L. Gatto, T. Girke, R. Gottardo, F. Hahne, K. D. Hansen, R. A. Irizarry, M.
Lawrence, M. I. Love, J. MacDonald, V. Obenchain, A. K. Oleś, H. Pagès, A. Reyes, P.
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Figure 1. Variances between 3 technical replicates assayed on the EPIC array. Data was
normalized using various normalization methods and a variance across the three
technical replicates was computed for each methylation loci. We show the distribution of
these variances.
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(a) Separate normalization
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(b) Combined normalization

Figure 2. Normalization assessment using ROC curves. The median distance between
LCLs measured on the EPIC array and a number of different samples measured using
the 450k array was used to predict whether a 450k sample was a LCL or not. Displayed
is an ROC curve showing the performance of the predictor. (a) EPIC and 450k samples
were combined into a virtual array and then subsequently normalized together. (b) EPIC
and 450k samples were normalized separately and then subsequently combined at the
methylation loci level.
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Figure 3. Median distance to EPIC array for normalization on combined virtual array.
The median distance between LCLs measured on the EPIC array and a number of
different samples measured using the 450k array. LCL samples are depicted in grey (261
in total), PBMC samples are depicted in blue (20 samples) and measurements of various
ENCODE cell lines are depicted in blue (58 samples). All samples (both EPIC and 450k)
were combined into a virtual array prior to normalization.
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Figure 4. Median distance between 450k samples and the average EPIC array sample
for normalization on separate arrays. As Figure 3, but EPIC and 450k data were
normalized separately and subsequently combined.
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Figure 5. Median distance between the 450k ENCODE GM12878 sample and the
average EPIC array sample for different normalizations. The full dots represent the
median distances for data normalized after the creation of a virtual array, while the
circles represent the median distances when the EPIC and 450k data are normalized
separately and subsequently combined.
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