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Abstract.—Gaussian processes such as Brownian motion and the Ornstein-Uhlenbeck process have been popu-1

lar models for the evolution of quantitative traits and are widely used in phylogenetic comparative methods.2

However, they have drawbacks which limit their utility. Here we describe new, non-Gaussian stochastic differ-3

ential equation (diffusion) models of quantitative trait evolution. We present general methods for deriving new4

diffusion models, and discuss possible schemes for fitting non-Gaussian evolutionary models to trait data. The5

theory of stochastic processes provides a mathematical framework for understanding the properties of current,6

new and future phylogenetic comparative methods. Attention to the mathematical details of models of trait7

evolution and diversification may help avoid some pitfalls when using stochastic processes to model macroevo-8

lution.9

(Keywords: Brownian Motion, Ornstein-Uhlenbeck, Stochastic Differential Equations, Diffusions, Continuous10

Traits, Comparative Methods)11
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“Brownian motion is a poor model, and so is Ornstein-Uhlenbeck, but just as democracy is the13

worst method of organizing a society “except for all the others”, so these two models are all we’ve14

really got that is tractable. Critics will be admitted to the event, but only if they carry with them15

another tractable model.” - J. Felsenstein, r-sig-phylo email list, 8th April 2008.16

The parametric estimation of phylogenies depends on having an appropriate model of character evolution17

(Posada and Crandal 2001). Molecular systematists are spoiled for choice in this regard. For example, the18

program jModelTest2 can fit 1624 models of DNA sequence evolution (Darriba et al. 2012). The situation for19

the comparative analysis of continuous traits is quite different. Here, we have mainly two analytical models in20

popular use: Brownian motion (BM) and the Ornstein-Uhlenbeck (OU) process. Other models such as “early21

burst” are also sometimes used (e.g. Blomberg et al. 2003; Ingram et al. 2012) and there have been several22

extensions to the OU model (see below). There are other approaches to phylogenetic comparative analyses23

that do not use explicit models of evolution (in terms of being able to write down the appropriate equations).24

Some non-analytical models can be used to estimate sampling distributions for regression parameters using25

computer simulation (Garland et al. 1993), and the evolutionary model for continuous traits can also be altered26

by applying branch-length transformations (e.g. Grafen 1989; Pagel 1999; Freckleton et al. 2002; Blomberg et al.27

2003). We do not consider these approaches to phylogenetic comparative analyses here. Instead, we focus on28

providing an approach to comparative analyses based on the theory of stochastic processes, which unites BM,29

OU and other processes in a common statistical and probabilistic framework.30

Starting with Bachelier (1900), the main application of stochastic processes has been in finance where models31

have been developed for stock prices, derivatives, options and other financial products. In that domain, the32

model of Black and Scholes (1973) has been particularly successful (in terms of citations), but research into the33

theory of stochastic processes is still thriving across a wide range of disciplines, especially the physical sciences34

(e.g. Uhlenbeck and Ornstein 1930; Einstein 1956; Freund and Pöschel 2000; Gardiner 2009). Although diffusion35

models are common in epidemiology and other life sciences (Fuchs 2013), applications in evolutionary biology are36

rare. The Wright-Fisher model and the Moran model in population genetics are well-known exceptions (Fisher37

1922; Wright 1931; Feller 1951; Moran 1958; Ewens 2004). Population geneticists have used these stochastic38

processes to model microevolution. Here we examine the possible uses of stochastic processes in studies of39

macroevolution, i.e. evolution above the species level (Simpson 1953; Rensch 1959; Stanley 1975; Benton 2015;40

Serrelli and Gontier 2015), with the aim to provide new models and methods for the phylogenetic comparative41

analysis of non-Gaussian traits. Such models are necessary because current evolutionary models for quantitative42

traits can have poor performance (Pennell et al. 2015).43

Mathematical Background44

In order to fully understand the mathematics of stochastic processes, some background is required. At least,45

some knowledge of Riemann-Stieltjes integrals, as well as some understanding of measure-theoretic probability46
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theory is necessary. Introductory books such as Øksendal (2007) or Klebaner (2012) can be helpful. Gardiner47

(2009) provides an excellent practical approach which largely ignores the measure-theoretic foundations, but48

concentrates mainly on applications in the physical sciences.49

Consider a sample space Ω consisting of discrete, elementary events ω, occurring over time such that:

Ω = {ω : ω = (x1, x2, x3, . . . , xT )}

where x1, . . . , xT are values of a (univariate) trait x at time = 1, . . . , T . Our trait may come from a good

palaeontological sequence, for example. Our knowledge about the evolution of the trait increases as we observe

more and more values of x as T increases. However, in general we only observe one possible x at each time

step. There could have been many other outcomes for the trait at each time, so we only have information on

the observed values A, a subset of Ω. We therefore know that the “true” state of the trait over all time must

be in A and not in that part of Ω that is not A. In set notation, Ω\A = Ā. Now define Ft as the information

available about the trait (ie the trait values) at all times up to time t, ie A. At t = 0 we have no information

about the trait so F0 = {∅,Ω} where ∅ is the empty set. At t = 1 we know x1, at t = 2 we know x1 and x2,

etc. We do not forget the previously gained information. Therefore each Ft contains the trait value at time t

plus all the Ft that have gone before. ie. F0 ⊂ F1 ⊂ F2 ⊂ . . . ⊂ FT . Each Ft is called a field or algebra. The

collection of all fields is called a filtration. ie.

F = {F0,F1, . . . ,Ft, . . . ,FT } Ft ⊂ Ft+1

The above explanation of fields is limited to the discrete time case. We would also like to model probability50

as a continuous function of time. The definition of fields in the continuous time case is more tiresome but51

can be found in any textbook on measure-theoretic probability (e.g. Pollard 2002). The most important field52

in measure-theoretic probability theory is the Borel σ-field (B). A probability (Lebesgue) measure, P can be53

defined for a process that generates a σ-field. Hence, a probability space is defined as the triple (Ω,F ,P). A54

random variable X on {Ω,F} is a measurable function from (Ω,F) to (R,B), where B is the Borel σ-field on55

the real number line. A stochastic process is a collection of random variables {X(t)}. A stochastic process is56

said to be adapted to a filtration F if for all t, X(t) is a random variable on Ft. We will only be considering57

stochastic processes that are adapted to a filtration. This is not really a limitation, as a major property of58

adapted processes is that they are unable to anticipate the future, which does not appear to be a very limiting59

assumption for a macroevolutionary model.60

Brownian Motion61

Brownian motion (BM) is named for the movement of pollen grains suspended in water, as first observed by62

the botanist Robert Brown in 1837, but it is observed in many other multi-particle settings. The mathematics63

of BM were first analysed by Bachelier (1900), who anticipated almost all the mathematical results of Einstein’s64

work in 1905 in the context of molecular movement (see Einstein 1956). Wiener (1923) was the first to rigorously65
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characterise BM as a stochastic process, and hence BM is sometimes also known as the Wiener process. BM66

was first proposed as a model of character evolution for phylogeny estimation by Felsenstein (1973), who also67

introduced this model into phylogenetic comparative regression analyses (Felsenstein 1985).68

Let B(t) be the trait value of a BM process at time t. BM has the following defining properties (e.g. Klebaner69

2012). BM has independent increments. B(t)−B(s) for t > s is independent of the past B(u) where 0 ≤ u ≤ s.70

The increments are also Gaussian. B(t) − B(s) has a Normal (Gaussian) distribution with a mean µ = 0 and71

variance σ2 = t− s. This means we can use all the powerful mathematical machinery appropriate to Gaussian72

distributions.73

Further, the sample paths of a BM process B(t) have the following properties, for almost every sample path74

(i.e. other than those of Lebesgue measure zero): B(t) is a continuous function of t. Hence, BM can be used to75

model continuous traits in continuous time. B(t) is not monotone in any time interval, no matter how small the76

interval. BM paths are jagged at all time scales. Despite being continuous, B(t) is nowhere differentiable. This77

property makes it difficult to estimate rates of evolution from sample paths, although σ2 is usually associated78

with the rate of evolution. The quadratic variation of B(t) = t. That is, the variance of B(t) increases linearly79

with t. There doesn’t seem to be any biological reason why the variance of a trait should increase linearly with80

time. Further, this property implies that there are no bounds to evolution and that traits have no physical81

limits. This is unlikely to be true for any trait (e.g. McGhee 2015) but see Conway Morris et al. (2015); Vermeij82

(2015, ibid.).83

BM is useful as a simple model of trait evolution. Its simplicity is due to the above properties, as well as to84

the fact that it has the Markov property. Further, BM is a martingale, which means that the expectation of85

the process at time t + s is the value of the process at time t. That is, E(B(t + s)|Ft) = B(t). The Markov86

and martingale properties simplify the mathematics of working with BM processes. BM lends itself to two87

evolutionary interpretations. Either it is a model implying no selection and evolution occurs just by random88

drift, or it can be viewed as a model of very strong selection in a randomly varying environment (see Hansen89

and Martins 1996). These interpretations cannot be simultaneously correct, and both are likely to be wrong for90

any real quantitative trait.91

The Ornstein-Uhlenbeck Process92

The OU process was introduced as an improved model for physical Brownian motion, which incorporates the93

effect of friction (Uhlenbeck and Ornstein 1930). It also has a long history in evolutionary biology. It can be94

derived from the consideration of stabilising selection and genetic drift (Lande 1976). Its use in phylogenetic95

comparative methods has been promoted by many authors (Felsenstein 1988; Hansen and Martins 1996; Hansen96

1997; Martins and Hansen 1997; Butler and King 2004; Hansen et al. 2008; Beaulieu et al. 2012). It has the97
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following form:98

X(t) = µ+ e−αt
(
X(0)− µ+ σ

∫ t

0

eαsdB(s)

)
(1)

where µ is the mean of the process. Note that X(t) in (1) depends on B(s). That is, BM is one building99

block of the OU process. The biological interpretation of the OU process is controversial. Most authors have100

interpreted α as the strength of a restraining force corresponding to stabilizing selection, and the sample paths101

as trajectories of evolution of organisms’ traits (e.g. Beaulieu et al. 2012; Butler and King 2004). However,102

Hansen et al. (2008) interpret the sample paths as paths of an evolutionary optimum itself, subject to an overall103

central tendency with strength α and stochastic perturbations.104

The properties of OU are well known (e.g. Insua et al. 2012; Klebaner 2012). The OU process is a Gaussian105

process with continuous paths. It has the Markov property and it is stationary, provided the initial distribution106

is the stationary distribution N(µ, σ
2

2α ). It is the only stochastic process which has all three properties (Gaussian,107

Markov, stationarity) (Breiman 1968; Klebaner 2012). OU is not a martingale. The Gaussian property of both108

BM and OU makes them relatively simple to work with, for example, (Hansen 1997; Butler and King 2004)109

used likelihood methods to fit models with different α values on different branches of the phylogeny. Beaulieu110

et al. (2012) extend this idea by allowing σ to vary with time.111

Note that the stochastic integral in (1) is with respect to “white noise”, implying that B(t) is differentiable,112

whereas one of the properties of BM is that it is not differentiable. The meaning of such integrals is therefore113

not straight forward. In fact, it requires a new definition for integration. The definition adopted here is that of114

Itô (1944, 1946). There are other approaches to stochastic integration, most notably the Stratonovich integral115

(e.g. Gardiner 2009). Turelli (1977) has discussed situations in which one definition may be preferred over the116

other. In practice, the Itô integral is the most widely used:117

∫ t

t0

f(s)dBs = ms-lim
n→∞

{ n∑
i=1

f(ti−1)[B(ti)−B(ti−1)]

}
(2)

where ms-lim means the mean square limit (Gardiner 2009, p. 41).118

The main drawback of both BM and OU that we wish to highlight is the Gaussian nature of both stochastic119

processes. While analytically and computationally useful, this assumption limits the application of the models120

to traits that are Normally-distributed. Of course, one could transform the response variable so that it is then121

approximately Gaussian, such as using the logit(x)probit(x), or Sin−1
√
x transformations for proportions, or122

the log(x) transformation for counts, and then use Gaussian process models (Ives 2015; Warton et al. 2016).123

However, shoe-horning data using transformations can make interpretation of model outputs more difficult.124

Instead, we suggest that the direct modelling of non-Gaussian evolutionary processes provides a much more125

elegant view of the evolutionary process. There is a strong analogy with the development of Generalized Linear126
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Models, which greatly extended the analysis of non-Gaussian linear models (McCullagh and Nelder 1989). Here127

we outline a generalized method of constructing new stochastic process models for continuous trait evolution.128

Diffusions as Models of Trait Evolution129

Consider the stochastic differential equation (SDE):130

dXt = b(Xt, t)dt+ σ(Xt, t)dBt (3)

Such SDEs are termed “diffusion” equations and arise as solutions to the Fokker-Planck equation (Gardiner131

2009). The left-hand side of the equation represents a small change in trait variable Xt at time t. The right-132

hand side has two terms. The first term is the deterministic part of the model. b(Xt, t) is termed the drift133

coefficient. The differential of the first term is dt, which denotes a differential with respect to (continuous)134

time. Note the difference in usage of the term compared to its use in population genetics, where drift implies135

a stochastic process. We will retain the traditional mathematical terminology. The second term is stochastic,136

as the differential is dB(t), “white noise”. σ(Xt, t) is termed the diffusion coefficient. In financial statistics,137

σ(Xt, t) is termed the “volatility”(Mikosch 1998). Note that both b and σ can depend on both Xt and t in some138

arbitrary way. It is important that the only meaning of (3) is with respect to the Itô definition of the integral139

(2). Stochastic processes of this type are termed “Itô diffusions.”140

The Ornstein-Uhlenbeck diffusion process can be defined by the following SDE:141

dXt = α(µ−Xt)dt+ σdBt (4)

for α, µ and σ as real, positive constants. Here, α represents the restraining force of stabilising selection. µ142

represents the mean trait value (at stationarity). The drift coefficient here is a linear function of Xt. The form143

of the drift is significant, as it is this expression that controls the forcing of the trait Xt back towards µ. OU is144

thus said to be “mean-reverting”: Xt tends to return to µ over time. However, the property of mean reversion145

is not limited to the OU process. Any simple diffusion model with a drift coefficient of the form in (4) will146

exhibit mean reversion. It is also clear that (4) is time-homogeneous since neither b nor σ depend on t. The147

process is also ergodic. That is, given enought time, the time average for any particular species’ trait is equal to148

the average trait value across species (Lebowitz and Penrose 1973). These properties suggest that a stationary149

distribution exists for this process. Figure 1 shows a sample evolution along a 5-species tree for the OU model.150
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Figure 1: Ornstein-Uhlenbeck evolution along a 5-species tree. µ is the mean of the process, α is the strength

of the restraining force, and σ is the diffusion coefficient. Large dots are nodes and tips.
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New Evolutionary Models152

The key to the construction of new models for evolution is the solution of the Fokker-Planck (Kolmogorov153

Forward) equation (Risken 1996). In one dimension it takes the form:154

∂f(x, t)

∂t
= − ∂

∂x
[b(x, t)f(x, t)] +

1

2

∂2

∂x2
[σ2(x, t)f(x, t)] (5)

(5) governs the time evolution of the underlying probability law f(x, t). It is a partial differential equation in155

x and t. Note that it is not stochastic. If the stochastic process is time-homogeneous, (5) can be written as:156

d

dx
[b(x)f(x)]− 1

2

d2

dx2
[σ2(x)f(x)] = 0 (6)

Solving for f(x) gives the following formula for the construction of the stationary distribution (Appendix 1):157

f(x) =
C

σ2(x)
exp

(∫ x

x0

2b(y)

σ2(y)
dy

)
(7)

where C is a constant of integration found by solving
∫
f(x)dx = 1. (7) is sometimes known as Wright’s158

equation (Wright 1938; Cobb 1998).159

Consider the following diffusion equations:

dXt = α(µ−Xt)dt+
√
εXtdBt (8)

dXt = α(µ−Xt)dt+
√
εXt(1−Xt)dBt (9)

The drift terms in (8) and (9) are of the same form as in (4). Hence, these processes are both mean-reverting,

and will be driven by a central tendency towards µ, with a restraining force α. The difference between these

two processes and OU is in the diffusion coefficient. With a mean-reverting process, the form of the diffusion

coefficient determines the distribution of the stationary distribution. The stationary distributions for each

process described by (8) and (9) are derived in Appendix 2. While the notation for calculating with diffusion

models is powerful and elegant, stochastic processes come alive when visualised using simulation. We provide

example plots of paths mapped onto a phylogeny with five species (Figs.2 and 3). (8) has as its stationary

distribution:

f(x|µ, δ) =
(x
δ

)−1+µ
δ e−

x
δ

Γ(µδ )
, δ =

ε

α
.

Γ is the Gamma function. That is, f(x|µ, δ) is a density of a Gamma distribution with mean = µ, mode = µ−δ,160

and variance= δµ: x ∼ Gamma(µδ ,
1
δ ). In fact, (8) is the Cox, Ingersoll and Ross (CIR) model commonly used161

in finance (Cox et al. 1985). See Figure 2.162
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Figure 2: Cox-Ingersoll-Ross evolution along a 5-species tree. Large dots are nodes and tips. µ is the mean of

the process, α is the strength of the restraining force, and ε is the scaling constant for the diffusion coefficient.

Large dots are nodes and tips.

163

The stationary distribution of the process described by(9) is:

f(x) =
1

B(µδ ,
(1−µ)
δ )

x
µ
δ−1(1− x)

(1−µ)
δ −1, δ =

ε

α

B is the Beta function. That is, f(x|µ, δ) is the density of a Beta distribution with x ∼ Beta(µδ ,
(1−µ)
δ ) (Fig 2).164

The analysis of (8) and (9) and several other examples have been provided by Cobb (1998). It is interesting165

that in both cases, the substitution δ = ε
α was necessary in order to correctly recognise the distributions as166

Gamma or Beta. This suggests that the separate estimation of ε and α is difficult if estimation is based solely167

on the stationary distribution. The same stationary distributions occur for arbitrary α and ε, so long as their168

ratio (δ) remains constant. A sample evolutionary path from this Beta process is presented in Figure 3.169
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Figure 3: Beta evolution along a 5-species tree. µ is the mean of the process, α is the strength of the restraining

force, and ε is the scaling constant for the diffusion coefficient. Large dots are nodes and tips.

170

Stochastic Differential Equations from Stationary171

Distributions172

Reversing the procedure, that is deriving an SDE given a stationary distribution, is more difficult since the173

correspondence between SDEs and their stationary distribution (if it exists) is not unique. The problem has174

been addressed by Cai and Lin (1996). Extra information is needed, specifically the form of the spectral density175

of the process, which affects the structure of the drift coefficient in the SDE. Unfortunately for models of trait176

evolution, we rarely have detailed information on the evolutionary trajectory of a trait (ie the true historical177

realisation of the process) and hence we cannot analyse the spectral density of the trajectory in order to infer178
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a good model for the drift coefficient. We need to make extra assumptions. Fortunately, if we assume that the179

spectral density is of the low-pass filter type:180

ΦXX(ω) =
αδ2

π(ω2 + α2)
(10)

where ΦXX is the spectral density at frequency ω, δ2 is the mean-square value of the process X(t), then the181

drift coefficient will be of the mean-reverting OU type in (4), with α in (10) being identical to α in (4). The182

low-pass filter assumption implies that the drift coefficient is determined mainly by the low frequency (long183

wavelength) characteristics of the evolutionary trajectory. That is, the form of the drift is mainly determined184

by long-lasting, slow deviations from µ and short-term (high-frequency) excursions are less important. To our185

knowledge, this assumption has never been made explicit in the literature on the application of the OU model186

in phylogenetic comparative methods.187

Calculation of the diffusion coefficient comes directly from the application of the time-homogeneous Fokker-

Planck equation (6), except instead of solving for f(x), we now solve for σ(x) (Cai and Lin 1996). The expression

for σ2(x) becomes:

σ2(x) = − 2α

f(x)

∫ x

yf(y)dy.

188

Transition Distributions189

The stationary distribution is not the only distribution associated with a Markov diffusion process. The transi-190

tion, or conditional, distribution is important for simulation and likelihood calculations (Iacus 2008). It can be191

found as a solution to the Fokker-Planck equation (Klebaner 2012) and is defined as:192

P (y, t, x, s) = P (X(t) ≤ y|X(s) = x). (11)

Equation (11) defines the probability distribution of y, the value of X occurring at time t, given that the process193

X has reached x at time s, where s < t. Unfortunately, for most processes the transition distribution is unknown194

or intractable. For Gaussian processes, the conditional density is usually straightforward. Brownian motion195

has as its transition distribution the Normal distribution with mean µ = E(Xt|Xs = x) = x, by the martingale196

property. The conditional variance of BM is Var(Xt|Xs = x) = σ2t. That is, the variance is independent of the197

trait value and depends only on t.198

For the OU process (4) and t > s ≥ 0 the transition density is Gaussian with mean E(Xt|Xs = x) =

xe−α(t−s) + µ(1 − e−α(t−s)) and variance Var(Xt|Xs = x) = σ2

2α (1 − e−2α(t−s)). The complexity of transition

distributions increases quickly with the complexity of the corresponding SDE. Equation (8), the CIR model,

has the the following transition density (Cox et al. 1985):

f(s, x, t, y) = c
(u
v

) ν
2

exp(−(u+ v))Iν(2
√
uv)
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for t > s ≥ 0 where

c =
2α

ε2(1− e−α(t−s))
, u = cx−α(t−s), v = cy, ν =

2αµ

ε2
− 1.

Iν is the modified Bessel function of the first kind of order ν:

Iν(z) =
∞∑
k=0

(z
2

)2k+ν 1

k ! Γ(k + ν + 1)

where z ∈ R+ and Γ(·) is the Gamma function. The expectation and variance of this distribution are:

E(Xt|Xs = x) = 2
αµ

cε2
+ xe−α(t−s)

Var(Xt|Xs = x) =
2

c

(αµ
cε2

+ xe−α(t−s)
)

respectively. The transition density of equation (9) is even more complicated and involves infinite sums of199

hypergeometric functions (Abundo 1997). Transition densities are of extreme importance for phylogenetic200

comparative methods, as they determine the structure of the evolutionary covariance matrix and the relationship201

between branch lengths and covariances. Hence, approaches such as PGLS (Grafen 1989; Martins and Hansen202

1997; Blomberg et al. 2012) are intimately dependent on knowing transition densities. However, even quite203

simple models like the non-Gaussian models presented here are likely to present formidable problems with204

calculating evolutionary covariances, as the formulae for the transition densities for these models are extremely205

difficult to work with, if they are known at all.206

Discussion207

Fitting Models to Data208

To be useful, theory must be confronted with data (Hilborn and Mangel 2013). The evolutionary models209

discussed here (of which BM and OU are special cases) therefore require methods to fit them to comparative210

data in order to estimate parameters and test hypotheses about those parameters. For BM, OU and other211

Gaussian processes, we can use the machinery developed for Normal distributions. In particular, there are simple212

relationships between branch lengths on a phylogeny and covariances for linear, Gaussian processes (Hansen and213

Martins 1996). There are no such relationships for non-linear processes that have stationary and/or transition214

distributions that are non-Gaussian so we cannot use inference methods that rely on expected covariances among215

species. Methods have recently been proposed for the calculation of likelihoods for continuous characters on216

a tree, if the transition density of the evolutionary model is known (Hiscott et al. 2015). However, often the217

transition density is not known in closed form, or not known at all. If there was no phylogenetic dependence218

(that is, a star phylogeny), we could estimate model parameters, as the existence of a stationary distribution219

implies that at any time point independent samples will follow the stationary distribution. Unfortunately in220

the case of comparative data with “phylogenetic signal”, the data are not independent. We cannot make use of221

this result.222
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Simulation is currently the only option when the transition density of the process is intractable. Simulation223

based methods for estimating parameters for stochastic processes are widely available, largely based on theory224

developed for use in statistical finance (Iacus 2008). For example, stock prices may be observed every fraction225

of a second, resulting in a large amount of high-frequency data with which to make inferences. Methods to226

deal with missing data in the high-frequency setting have been developed (e.g Roberts and Stramer 2001). In227

this context the formidable problem is that data in comparative studies are only observed at the tips of the228

phylogeny. Rarely, internal branches may be calibrated with fossils. The entire evolutionary history of the229

trait for each species is thus missing and unknown. This is worse than “low-frequency” data (addressed by230

Fuchs 2013): it is almost “no-frequency” data. The simulation of the entire evolutionary history, except for231

the tip and fossil data, is necessary. However, we may be able to combine simulated and real data using data232

augmentation in a Bayesian framework which might permit the approximate estimation of model parameters233

(Tanner and Wong 1987; Papaspiliopoulos et al. 2013). An MCMC scheme that alternates between the update234

of simulated paths, and the sampling of parameters via data augmentation appears to be the most promising235

method (Fuchs 2013). Such an approach would require the use of bridge processes (e.g. Beskos et al. 2008;236

Bladt and Sørensen 2010; Lin et al. 2010) both to ensure that observed trait values are always part of the237

simulated trait evolutionary history and to iteratively update small sections of the simulated trait history at238

each iteration of an MCMC procedure. Acceptance rates during MCMC are higher when only small parts of the239

tree are updated at a time (Elerian 1999; Elerian et al. 2001; Roberts and Stramer 2001; Kalogeropoulos 2007).240

Methods exist for the updating of bridge processes in MCMC algorithms (Beskos et al. 2006, 2008, 2013).241

The notion of using fossil phenotypes and dates to fix points in the trait-time space is attractive, but may242

contain grave difficulties. Cladistic criticisms of the use of fossils to establish ancestor-decendent relationships243

have never been refuted (Engelmann and Wiley 1977; Patterson 1981). The recent development of “tip dating”244

methods may avoid such criticism (Ronquist et al. 2012; O’Reilly et al. 2015). Instead we may have to be content245

to build quantitative trait models that incorporate ancestor-descendent relationships as ancilliary hypotheses,246

recognising that tests of such hypotheses may be impossible for any real dataset. However, simulation studies247

may be valuable in assessing the sensitivity of trait model parameter estimation to fossil placement (as an248

ancestor or as a sister taxon). It may be that inferring a fossil as a direct ancestor rather than as a close sister249

taxon will make little difference to parameter estimates for models of quantitative trait evolution. However,250

this has yet to be established.251

The Lamperti transformation may be used to improve the simulation of trait trajectories by transforming to a

unit diffusion coefficient (Lamperti 1962; Burnecki et al. 1997; Møller and Madsen 2010; Fuchs 2013). Consider

equation (3). The Lamperti transformation is Y = (Yt)t≥0 where:

Yt = g(Xt) =

∫ Xt du

σ(u)
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Provided the transformation g(·) exists and is invertible, Y fulfils the diffusion equation:

dYt =

(
b(g−1(Yt), t)

σ(g−1(Yt))
− 1

2

∂σ

∂x
(g−1(Yt))

)
dt+ dBt,

with Yt0 = g(x0).252

Transforming the model to remove any dependence of the diffusion coefficient on X(t) and on t makes the253

transformed process “more Gaussian” but at the cost of increasing the complexity of the drift coefficient (Iacus254

2008). However, there are grave difficulties even with fitting Gaussian models, where the transition density is255

known in closed form. OU has significant problems (Cooper et al. 2015), including problems with the identifi-256

ability of parameters (Ho and Ané 2014). Many simulated likelihood methods have been proposed for fitting257

models where the transition density is unknown (Brandt and Santa-Clara 2002; Durham and Gallant 2002;258

Sørensen 2004; Cano et al. 2006; Hurn et al. 2007; Kalogeropoulos 2007), including phylogenetic comparative259

methods (Kutsukake and Innan 2012). These methods often include a discretised, “locally Gaussian” approxi-260

mation method such as the Euler scheme or the Milstein scheme (Elerian 1998; Iacus 2008). Bayesian simulation261

methods for parameter estimation in non-Gaussian stochastic process models of evolution is a current topic of262

research.263

Stationarity264

The notions of stationarity and stationary distributions have been central to this study. In the absence of an265

excellent fossil record of trait evolution for most traits and most taxa, it seems to be a necessary assumption266

for evolutionary stochastic process models that are more complicated than BM. Indeed, the success of the OU267

process in evolutionary studies is almost as much based on its stationarity as its Gaussian properties. Several268

authors have constructed non-stationary evolutionary models based on OU (e.g. Bartoszek 2012; Beaulieu269

et al. 2012; Jhwueng and Maroulas 2014). Non-stationarity can arise because of time dependence in the drift270

coefficient, time dependence in the diffusion coefficient, or both. For mean-reverting processes, the mean of the271

process µ and/or the strength of the restraining force α may be time dependent (Beaulieu et al. 2012). σ might272

vary with time smoothly over the tree (Bartoszek 2012).273

Aside from the problem of overparameterisation (Bartoszek 2012), different parameters on different clades274

of the tree imply at least a short period of non-stationarity as species evolve from an ancestral evolutionary275

regime to the new conditions. Currently, OU based models assume immediate stationarity after the change in276

evolutionary regime (e.g. Beaulieu et al. 2012). If the old regime is almost the same as the new conditions,277

then stationarity in the new conditions may be achieved relatively quickly. However, if the old regime is very278

different from the new one, the length of the non-stationary period may be considerable and the underlying279

“instantaneous” stationary model will be wrong. Only fossil evidence can help in this regard because fossils can280

provide fixed points in the morphospace-time that can anchor the model, and provide evidence of non-stationary281

trait evolution or stasis. Of course, if the ancestral and derived stationary distributions are very similar so that282

stationarity is achieved quickly, it will be difficult to tell these two scenarios apart.283
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Model Extensions284

An obvious extension of univariate stochastic processes is to re-cast them in a multivariate or multidimensional285

framework. There has been some research into multivariate phylogenetic comparative methods, including several286

software packages, largely based on BM, OU, and early-burst models (Zheng et al. 2009; Klingenberg 2011;287

Bartoszek 2011; Bartoszek et al. 2012; Klingenberg and Marugn-Lobn 2013; Adams 2014a,b,c; Clavel et al. 2015).288

Certainly, multivariate diffusions are necessary to understand the correlation among characters (Bartoszek et al.289

2012). However, the properties of univariate diffusion models do not always carry over to the multivariate setting.290

In particular, there are well-known differences between the recurrence and transience properties of Brownian291

motion in multiple dimensions (Mörters and Peres 2010). The analysis of the properties of multivariate diffusion292

models for phylogenetically-correlated data is a topic of current research (Sherratt and Blomberg, in prep.).293

A further extension of diffusion models is to the case where evolution is not strictly continuous, but consists

of continuous evolution punctuated by “jumps” using Lèvy processes Landis et al. (2012). Lèvy processes are

stochastic processes with independent, stationary increments. They can be thought of as consisting of three

superimposed processes:

Xt = σBt + Jt +Mt

where Bt is a BM (possibly with drift), Jt is a compound Poisson point process, and Mt is a (square-integrable)294

martingale with jumps. Hence, simple BM is a special case of a Lèvy process with no discrete jumps. Note295

that OU is not a Lèvy process. Landis et al. (2012) estimate parameters for a Lèvy process fitted to data for296

body mass and brain volume in primates, and found evidence for some jumps in each trait, rejecting a simple297

BM model. The application of Lèvy processes to phylogenetic comparative data is promising, but given the298

difficulties and complexities of fitting Itô diffusions, it may pay to be wary of hidden pitfalls. Certainly the299

post hoc identification of jumps may not be of much use without a working hypothesis for why we may expect300

jumps at certain nodes on the tree, and models already exist for postulating a priori different rates of evolution301

in different parts of the tree (e.g. Butler and King 2004; O’Meara et al. 2006). It may be difficult to choose302

between “jump” models and models that estimate rapid changes of evolutionary rate (large differences in σ) for303

particular clades (e.g. Alfaro et al. 2009; Rabosky et al. 2013, 2014; Shi and Rabosky 2015). One may also object304

to “jump” models on theoretical grounds. Itô diffusions are continuous processes (although not differentiable),305

and as such represent the dictum, “Natura non facit saltus”. If we are to allow jumps in evolutionary history,306

we should be able to provide a mechanistic (genetic) explanation of how and why jumps occur, and how to307

distinguish jumps from rapid, continuous evolution.308

Evolutionary models for phylogenetic comparative analyses309

Scientific models may be developed with several different motivations. The scientist may build models to make310

a decision (e.g. to reject a null hypothesis), summarise evidence (e.g. calculate the likelihood of observing311
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the data, given a model) or quantify their beliefs (using Bayes Theorem). Another important property of a312

model is its predictive ability, and predictive models have long been the favourite approach in the physical313

sciences: models predict future observations which then test the validity of the model. Biologists, and especially314

evolutionary biologists, have never put much faith in predictive models (Hillis 1993). So many factors affect315

the evolution of organisms, and over such a long timespan, that one is tempted to give up hope of developing316

mathematical models that have any predictive value in the real world. And it is true that it would be foolish to317

make predictions of where in the phylomorphospace sensu Sidlauskas (2008) species will evolve to in some future318

deep time. We have no hope of making the necessary observations. Although we may not be able to predict the319

precise evolutionary trajectory of any particular species, we can perhaps predict (or postdict) the probability320

distribution of traits across species. Given the traits from a newly discovered species (fossil or extant), we can321

predict that the new trait values fit well within the distribution of the known species’ trait values, where the322

parameters of the distribution are estimated from extant species. If the values for the new species’ traits are323

more extreme so that they fall into the tails of the stationary distribution, we may reject our model of evolution324

for that set of species and traits. This “grey box” approach to model identification (Kristensen et al. 2004) gives325

up the possibility of knowledge of the microevolutionary processes leading to species diversification and trait326

evolution, and replaces it with a tractable stochastic process that summarises the evolution of the statistical327

distribution of trait values over deep time. Given the quality of most comparative data sets, this may be the328

best that can be achieved.329

The modelling approach and the new models described here involve a considerable amount of mathematical330

sophistication in their derivation and in the analysis of their properties. Computational skill is necessary331

in developing algorithms to fit the models to data. Critics may object that the approach outlined here is332

too complex or unnecessary, given the quality of data in most phylogenetic comparative analyses. However,333

diffusions are already the most popular model for phylogenetic comparative studies, in the form of BM and334

OU. The present author hopes simply to widen horizons and provide a unifying framework. It is true that,335

“All models are wrong, but some are useful” (Box 1976). Nevertheless, mathematics (and its sister taxon,336

computation) are the best tools we have in order to precisely describe both the nature of macroevolutionary337

phenomena and our assumptions about them. A small amount of precise mathematics can sometimes cut338

through imprecise verbal arguments. For example, the microevolutionary genetic theory developed by Fisher,339

Haldane and Wright effectively silenced the arguments between naturalists and Mendelians on the importance of340

natural selection and the nature of genetic variation, leading to the Evolutionary Synthesis (Mayr and Provine341

1998). A mathematical theory of macroevolution which unites stochastic models of trait evolution with models342

of phylogenesis, speciation and extinction may allow us to better statistically model the course of phenotypic343

evolution (e.g. Maddison et al. 2007; FitzJohn 2010; Goldberg et al. 2011), although estimating parameters for344

these models may be difficult without fossil trait data. Recent applications of trait-mediated diversification345

models based only on extant trait data may be misleading (Rabosky and Goldberg 2015). A more sophisticated346

understanding of the mathematics of diffusions and other stochastic processes may allow the critical appraisal347

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 2, 2016. ; https://doi.org/10.1101/067363doi: bioRxiv preprint 

https://doi.org/10.1101/067363


of macroevolutionary models for biological phenomena in deep time.348

Conclusion349

Currently popular models of trait evolution rely heavily on Gaussian processes and their useful mathematical350

properties. However, non-Gaussian models are possible and may have some advantages over Gaussian models in351

certain situations where the data are likely to be non-Normal. The present study describes new, non-Gaussian352

models of trait evolution, together with methods for building new models, and a discussion of the mathematical353

and computational difficulties in working with diffusion models in a more generalised setting. Several new354

avenues for investigation are suggested. In particular, the role of fossils in improving the identifiability of355

models and the extension of models to multivariate trait space seem especially timely. These areas are not356

without challenges. Including fossils as ancestors, rather than as sister taxa has been a difficult problem for357

many years, as the early cladists were well aware. The extension of univariate models to multivariate trait358

space is likely to be more difficult than expected, as even the simplest evolutionary model, BM, has different359

properties in multiple dimensions. Another important research direction is to establish the expected covariances360

for traits in terms of the transition distributions for non-Gaussian models. This is likely to be difficult but would361

pay off immensely, allowing the the construction of a new Generalized Phylogenetic Model, by analogy with362

Generalized Linear Models. Nevertheless, research into the application of stochastic process (diffusion) models363

to the evolution of quantitative traits appears to hold great promise. Critics may now be admitted to the event.364
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Appendix 1: Derivation of Wright’s Equation592

Consider the Fokker-Planck equation for an Itô diffusion Xt (5). Alternatively, (5) can be re-written as (Risken593

1996):594

∂

∂t
f(x, t) = LFP f(Xt, t),

LFP = − ∂

∂x
b(Xt, t) +

1

2

∂2

∂x2
σ(Xt, t)

(A1.1)

Further, equations (A1.1) can be written as:595

∂f(Xt, t)

∂t
+
∂S

∂x
= 0,

S(Xt, t) =

[
b(Xt, t)−

1

2

∂

∂x
σ(Xt, t)

]
f(Xt, t)

(A1.2)

S(Xt, t) can be interpreted as a probability flow. For natural boundary conditions minx = −∞ and maxx =∞,

and assuming time-homogeneity, S(Xt, t) = S(Xt) = 0. Letting x = Xt we have the following first-order linear

differential equation:

1

2

d

dx

[
σ2(x)f(x)

]
− b(x)f(x) = 0

Let m(x) = σ2(x)f(x), implying f(x) = m(x)
σ2(x) then596

dm(x)

dx
− 2

b(x)m(x)

σ2(x)
= 0 (A1.3)

Equation (A1.3) can be solved using the method of integrating factors. Let I = e
−2

∫ x b(y)

σ2(y)
dy

. Multiplying both

sides of equation (A1.3) by I:

e
−2

∫ x b(y)

σ2(y)
dy dm

dx
− 2

b(x)m(x)

σ2(x)
e
−2

∫ x b(y)

σ2(y)
dy

= 0

Integrating both sides and using the product rule on the LHS,597

e
−2

∫ x b(y)

σ2(y)
dy
m(x) = C (A1.4)

where C is a constant of integration. Substituting m(x) = σ2(x)f(x) and rearranging, we have:598

f(x) =
C

σ2(x)
e
2
∫ x b(y)

σ2(y)
dy

(A1.5)

which is Wright’s formula.599

Appendix 2: Derivation of Stationary Distributions600

CIR model601

Let b(x) = α(µ− x), σ =
√
εx. Substituting into Wright’s formula (7):

f(x) =
C

εx
exp

[∫ x

−∞

2α(µ− s)
εs

ds

]
=
C

εx
exp

[
µ log(x)− x

ε/α

]
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Let δ = ε
α . Then:602

f(x) = Cx−1x
µ
δ e

−x
δ

= Cx
µ
δ−1e

−x
δ

(A2.1)

Equation (A2.1) can be recognised as the kernel of a Gamma density, with shape µ
δ and scale δ, and with

normalising constant C. Therefore,

C =
1

Γ(µα )δ
µ
δ

where Γ(·) is the Gamma function. i.e.

f(x|µ, δ) =
1

Γ(µα )δ
µ
δ

x
µ
δ−1e

−x
δ

or x|µ, δ ∼ Gamma(µδ , δ).603

Beta model604

Let b(x) = α(µ− x), σ =
√
εx(1− x). Substituting into Wright’s formula (7):

f(x) =
C

εx(1− x)
exp

[∫ x

−∞

2α(µ− s)
εs(1− s)

ds

]
=

C

εx(1− x)
e(
α
ε µ log x+α

ε (1−µ) log(1−x))

=
C

εx(1− x)
x
αµ
ε (1− x)

α(1−µ)
ε

Setting δ = ε
α and simplifying further, we have:605

f(x) = Cx
µ
δ−1(1− x)

1−µ
δ −1 (A2.2)

Equation (A2.2) is the kernel of a Beta distribution with shape parameters µ
δ and (1−µ)

δ , and normalising

constant C. Hence, the density can be written as:

f(x|µ, δ) =
1

B(µδ ,
(1−µ)
δ )

x
µ
δ−1(1− x)

(1−µ)
δ −1

where B(·, ·) is the Beta function. More succinctly, x|µ, δ ∼ Beta(µδ ,
(1−µ)
δ ).606
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