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Abstract

HIV is notorious for its capacity to evade immunity and anti-viral drugs through rapid sequence
evolution. Knowledge of the functional effects of mutations to HIV is critical for understanding this
evolution. HIV’s most rapidly evolving protein is its envelope (Env). Here we use deep mutational
scanning to experimentally estimate the effects of all amino-acid mutations to Env on viral replication
in cell culture. Most mutations are under purifying selection in our experiments, although a few sites
experience strong selection for mutations that enhance HIV’s growth in cell culture. We compare our
experimental measurements of each site’s preference for each amino acid to the actual frequencies
of these amino acids in naturally occurring HIV sequences. Our measured amino-acid preferences
correlate with amino-acid frequencies in natural sequences for most sites. However, our measured
preferences are less concordant with natural amino-acid frequencies at surface-exposed sites that are
subject to pressures absent from our experiments such as antibody selection. We show that some
regions of Env have a high inherent tolerance to mutation, whereas other regions (such as epitopes of
broadly neutralizing antibodies) have a significantly reduced capacity to tolerate mutations. Overall,
our results help disentangle the role of inherent functional constraints and external selection pressures
in shaping Env’s evolution.

Introduction

HIV evolves rapidly: the envelope (Env) proteins of two viral strains within a single infected host
diverge as much in a year as the typical human and chimpanzee ortholog has diverged over ∼5-million
years [1–4]. This rapid evolution is essential to HIV’s biology. Most humans infected with HIV
generate antibodies against Env that effectively neutralize viruses from early in the infection [5–7].
However, Env evolves so rapidly that HIV is able to stay ahead of this antibody response, with new
viral variants escaping from antibodies that neutralized their predecessors just months before [5–7].
Env’s exceptional evolutionary capacity is therefore central to HIV’s lifestyle.

A protein’s evolutionary capacity depends on its ability to tolerate point mutations. Detailed
knowledge of how mutations affect Env is therefore key to understanding its evolution. Many studies
have estimated the effects of mutations to Env. One strategy is experimental: numerous studies have
used site-directed mutagenesis or alanine scanning to measure how specific mutations affect various
aspects of Env’s function [8–17]. However, these experiments have examined only a small fraction of
the many possible mutations to Env. Another strategy is computational: under certain assumptions,
the fitness effects of mutations can be estimated from their frequencies in global or intra-patient HIV
sequences [18–22]. However, these computational strategies are of uncertain accuracy and cannot
separate the contributions of inherent functional constraints from those of external selection pressures
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such as antibodies. Therefore, a more complete and direct delineation of how every mutation affects
Env’s function would be of great value.

Recently it has become possible to make massively parallel experimental measurements of the
effects of protein mutations using deep mutational scanning [23–25]. These experiments involve
creating large libraries of mutants of a gene, subjecting them to bulk functional selections, and
quantifying the effect of each mutation by using deep sequencing to assess its frequency pre- and
post-selection. Over the last few years, deep mutational scanning has been used to estimate the effects
of all single amino-acid mutations to a variety of proteins [26–38]. However, deep mutational scanning
has not yet been comprehensively applied to any HIV protein, although it has been used to measure
the effects of several thousand single-nucleotide mutations spread across the viral genome [39].

Here we use deep mutational scanning to experimentally estimate how all amino-acid mutations
to the ectodomain and transmembrane domain of Env affect viral replication in cell culture. At
most sites, our measurements correlate with the frequencies of amino acids in natural HIV sequences.
However, there are large deviations at sites where natural evolution is strongly shaped by factors
(e.g., antibodies) that are absent from our experiments. Our results show that site-to-site variation
in Env’s inherent capacity to tolerate mutations helps explain why some portions of Env evolve so
rapidly while other regions are much more conserved. Overall, our work helps elucidate how inherent
functional constraints shape Env’s evolution, and demonstrates a powerful experimental approach for
comprehensively mapping how mutations affect HIV phenotypes that can be selected for in the lab.

Results

Deep mutational scanning of Env

We used the deep mutational scanning approach in Fig 1A estimate the effects of all single amino-acid
mutations to Env. We applied this approach to Env from the LAI strain of HIV [40]. LAI is a
CXCR4-tropic subtype B virus isolated from a chronically infected individual and then passaged in
human T-lymphocytes. We chose this strain because LAI and the closely related HXB2 strain have
been widely used to study Env’s structure and function [8–11,41–43], providing extensive biochemical
data with which to benchmark our results. LAI’s Env is 861 amino acids in length. We mutagenized
amino acids 31-702 (throughout this paper, we use the HXB2 numbering scheme [44]). We excluded
the N-terminal signal peptide and the C-terminal cytoplasmic tail, since mutations in these regions
can alter Env expression in ways that affect viral infectivity in cell culture [45–47]. The region of
Env that we mutagenized spanned 677 residues, meaning that there are 677× 63 = 42, 651 possible
codon mutations, corresponding to 677× 19 = 12, 863 possible amino-acid mutations.

To create plasmid libraries containing all these mutations, we used a previously described PCR
mutagenesis technique [31] that creates multi-nucleotide (e.g, gca→CAT) as well as single-nucleotide
(e.g, gca→gAa) codon mutations. We created three independent plasmid libraries, and carried each
library through all subsequent steps independently, meaning that all our measurements were made
in true biological triplicate (Fig 1B). We Sanger sequenced 26 clones to estimate the frequency of
mutations in the plasmid mutant libraries (S1 Fig). There were an average of 1.4 codon mutations
per clone, with the number of mutations per clone roughly following a Poisson distribution. The deep
sequencing described in the next section found that at least 79% of the ≈ 104 possible amino-acid
mutations were observed at least three times in each of the triplicate libraries, and that 98% of
mutations were observed at least three times across all three libraries combined. The plasmid libraries
therefore sampled most amino-acid mutations to Env.

We produced virus libraries by transfecting each plasmid library into 293T cells. The viruses in
the resulting transfection supernatant lack a genotype-phenotype link, since each cell is transfected
by many plasmids. We therefore passaged the transfection supernatants twice in SupT1 cells at an
MOI of 0.005 to create a genotype-phenotype link and select for functional variants. Importantly,
neither 293T nor SupT1 cells express detectable levels of APOBEC3G [48,49], which can hypermutate
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Fig 1. Deep mutational scanning workflow. (A) We created libraries of HIV proviral
plasmids with random codon mutations in env, and generated mutant viruses by transfecting these
plasmid libraries into 293T cells. Since cells receive multiple plasmids, there may not be a link
between viral genotype and phenotype at this stage. To establish this link and select for functional
variants, we passaged the viruses twice at low multiplicity of infection (MOI) in SupT1 cells. We
deep sequenced env before and after selection to quantify the enrichment or depletion of each
mutation, and used these data to estimate the preference of each site for each amino acid. Each
mutant library was paired with a control in which cells were transfected with a wildtype HIV proviral
plasmid to generate initially wildtype viruses that were passaged in parallel with the mutant viruses.
Deep sequencing of these wildtype controls enabled estimation of the rates of apparent mutations
arising from deep sequencing and viral replication. (B) We performed the entire experiment in
triplicate. Additionally, we passaged the replicate-3 transfection supernatant in duplicate (replicate
3b). We also performed the second passage of replicate 3b in duplicate (replicates 3b-1 and 3b-2).

HIV genomes [50, 51]. This is a crucial point: although HIV encodes a protein that counteracts
APOBEC3G, a fraction of viruses will lack a functional version of this protein and so have their
genomes hypermutated in APOBEC3G-expressing cells. For each library, we passaged 5 × 105

infectious particles in order to maintain library diversity. We used Illumina deep sequencing to
quantify the frequency of each mutation before and after passaging, using molecular barcodes to
increase sequencing accuracy as in [37]. We sequenced the plasmids to assess the initial mutation
frequencies, and sequenced non-integrated viral DNA [52] from infected SupT1 cells to assess the
mutation frequencies in the viruses. Each mutant library was paired with a control in which we

3

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 2, 2016. ; https://doi.org/10.1101/067470doi: bioRxiv preprint 

https://doi.org/10.1101/067470
http://creativecommons.org/licenses/by/4.0/


generated wildtype virus from unmutated plasmid, enabling us to estimate the rates of sequencing
and viral replication errors. Overall, these procedures allowed us to implement the deep mutational
scanning workflow in Fig 1.

Most mutations are under purifying selection, but a few sites experience
selection for cell-culture adaptation mutations

Our deep mutational scanning experiments require that selection purge the virus libraries of non-
functional variants. As an initial gene-wide measure of selection, we analyzed how different types of
codon mutations (nonsynonymous, synonymous, and stop-codon mutations) changed in frequency
after selection. In these analyses, we corrected for background errors from PCR, sequencing, and
viral replication by subtracting the mutation frequencies measured in our wildtype controls from

Fig 2. Selection purged mutations in most of env, but favored mutations at a few
sites. (A) For each replicate, we deep sequenced the initial plasmids (DNA) and the viruses after
two rounds of passaging (P2). Bars show the per-codon mutation frequency averaged across sites
after subtracting error rates determined from the wildtype controls (S2 Fig). When mutation
frequencies are averaged across all sites, selection purged stop codons to <1% of their frequency in
the initial DNA. Selection only slightly reduced the average frequency of nonsynonymous mutations;
however, this average results from two distinct trends. For ≈4% of sites, the frequency of
nonsynonymous mutations in the twice-passaged viruses (fP2) increased >3-fold relative to the
frequency in the initial plasmid DNA (fDNA). For all other sites, the frequency of nonsynonymous
mutations decreased substantially after selection. (B) The sites at which the error-corrected
mutation frequency increased >3-fold are similar between replicates, indicating consistent selection
for tissue-culture adaptation at a few positions. The left Venn diagram shows the overlap among
replicates in the sites with a >3-fold increase. The right Venn diagram shows the expected overlap if
the same number of sites per replicate are randomly drawn from Env’s primary sequence. This
difference is statistically significant, with P < 10−4 when comparing the actual overlap among all
three replicates to the random expectation. Another summary view of selection on env is provided
by S4 Fig and S5 Fig.
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Fig 3. Sites of recurrent cell-culture mutations mapped on Env’s structure. The 25
sites from Fig 2B where the mutation frequency increased >3-fold in at least two replicates after
cell-culture passage. (A) Trimeric Env (PDB 5FYK [94]) with one monomer in grey and the others
in white, oriented so the membrane-proximal region is at the bottom. Sites of cell-culture mutations
are shown as spheres, colored red-to-blue according to primary sequence. Most of these sites fall in
one of three clusters. Mutations in the first cluster disrupt potential glycosylation sites at Env’s
apex. The second cluster includes or is adjacent to sites where mutations are known to affect Env’s
conformational dynamics [95,96]. (B) The third cluster is near the co-receptor binding surface. This
panel shows an apex-down view of monomeric gp120 (grey) in complex with CD4 (green) (PDB
3JWD [42]). Sites of recurrent cell-culture mutations are shown as spheres colored according to
primary sequence as in panel A. The black bar indicates cropping of CD4. (C) The same view as
panel B, but the spheres now show sites known to affect binding to CXCR4 [10] or CCR5 [97]. Note
the extensive overlap between the spheres in this panel and panel B.

those measured in the mutant libraries (S2 Fig).
Stop-codon mutations are expected to be uniformly deleterious. Indeed, after correcting for

background errors, stop codons were purged to <1% of their initial frequency in the twice-passaged
viruses for each replicate, indicating strong purifying selection (see the data for “all sites” in Fig 2A).
The second viral passage is important for complete selection, as stop codons remain at about ≈16%
of their initial frequency in viruses that were only been passaged once (S3 Fig).

Interpreting the frequencies of nonsynonymous mutations is more nuanced, as different amino-acid
mutations have different functional effects. However, a large fraction of amino-acid mutations are
deleterious to any protein [53–55]. Therefore, one might expect that the frequency of nonsynonymous
mutations would decrease substantially in the twice-passaged mutant viruses. But surprisingly, even
after correcting for background errors, the average frequency of nonsynonymous mutations in the
passaged viruses is ≈90% of its value in the mutant plasmids (see the data for “all sites” in Fig 2A).
However, the average masks two disparate trends. In each library, a few sites exhibit large increases
in the frequency of nonsynonymous mutations, whereas this frequency decreases by nearly two-fold
for all other sites (see the data for the subgroups of sites in Fig 2A).

An obvious hypothesis is that at a few sites, amino-acid mutations are favored because they
are adaptive for viral replication in cell culture. Consistent with this hypothesis, the sites that
experienced large increases in mutation frequencies are similar among the three replicates (Fig 2B),
suggestive of reproducible selection for mutations at these sites. Moreover, these sites are spatially
clustered in Env’s crystal structure in regions where mutations are likely to enhance viral growth in
cell culture (Fig 3 and S1 Table). One cluster of mutations disrupts potential glycosylation sites at
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Fig 4. Selection depleted multi-nucleotide codon mutations in the Rev-response
element (RRE). This plot shows a 51-codon sliding-window average of the fold change in
per-codon multi-nucleotide mutation frequency after two rounds of viral passage, with data plotted
for the center point in each window. The strongest depletion of both synonymous and
nonsynonymous mutations occurred in the RRE, which is an RNA secondary structure important for
viral replication.

the trimer apex (Fig 3A), and could be beneficial in cell culture since glycans that shield Env from
antibodies in nature [6,56] are often expendable or even deleterious for viral growth in the lab [57–59].
A second cluster overlaps sites where mutations influence Env’s conformational dynamics, which
are commonly altered by cell-culture passage [60,61]. A third cluster is at the co-receptor binding
interface (Fig 3B), where mutations may enhance viral entry in cell culture. Therefore, while most
of Env is under purifying selection against changes to the protein sequence, a few sites are under
selection for cell-culture adapting amino-acid mutations.

The average error-corrected frequency of synonymous mutations changes little after selection (an
average decrease to 96% of the original frequency; see the data for “all sites” in Fig 2A). This overall
trend is consistent with the fact that synonymous mutations usually have smaller functional effects
than nonsynonymous mutations. However, synonymous mutations can sometimes have substantial
effects [21,62–64], particularly in viruses like HIV that are under strong selection for RNA secondary
structure and codon usage [65, 66]. To assess selection on synonymous mutations on a more site-
specific level, we examined the change in frequency of multi-nucleotide codon mutations across env ’s
primary sequence (Fig 4). The rationale behind examining only multi-nucleotide codon mutations is
that they are not appreciably confounded by errors from PCR, deep sequencing, or de novo mutations
from viral replication (S2 Fig, S4 Fig). In a region roughly spanning codons 500 to 600, selection
strongly purged both synonymous and nonsynonymous multi-nucleotide codon mutations (Fig 4).
This region contains env ’s Rev-response element (RRE) [67], a highly structured region of RNA that
is bound by the Rev protein to control the temporal export of unspliced HIV transcripts from the
nucleus [68, 69]. The finding of strong selection on the nucleotide as well as the amino-acid sequence
of the RRE region of Env therefore agrees with our biological expectations.

The preference for each amino acid at each site in Env

The previous section examined broad trends in selection averaged across many sites. But our data
also enable much more fine-grained estimates of the preference for every amino-acid at every position
in Env. We define a site’s preference for an amino acid to be proportional to the enrichment or
depletion of that amino acid after selection (correcting for the error rates determined using the
wildtype controls), normalizing the preferences for each site so that they sum to one. We denote the
preference of site r for amino acid a as πr,a, and compute the preferences from the deep-sequencing
data as described in [70]. Since we mutagenized 677 residues in Env, there are 677× 20 = 13, 540
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Fig 5. Env’s site-specific amino-acid preferences. The amino-acid preferences averaged
across replicates and re-scaled to account for differences in the stringency of selection between our
experiments and natural selection. The height of each letter is proportional to the the preference for
that amino acid at that site, and letters are colored according to hydrophobicity. The overlay bar
indicates the gp120 variable loops, other regions of gp120, and gp41. Black dots indicate sites where
mutations are known to disrupt CD4 binding (Table 1). Sites are numbered using the HXB2
scheme [44]. Numerical values of the preferences before and after re-scaling are in S1 File and
S2 File, respectively.

preferences. If selection in our experiments exactly parallels selection in nature and there are no
shifts in mutational effects as Env evolves, then these preferences are the expected frequencies of each
amino acid at each site in an alignment of Env sequences that have reached evolutionary equilibrium
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Table 1. Our experimental estimates are mostly concordant with existing knowledge
about the effects of mutations to functionally or structurally important parts of Env.

Env function Site (HXB2 numbering)
Mutation(s) known
to disrupt function

Citation
Amino-acid preferences
from our experiments

Disulfide bond

C at 54, 74, 119, 126,
131, 157, 196, 205, 218,
228, 239, 247, 296, 331,
385, 418, 598, 604

A [43]
Preference for C at each
of these sites is >30-fold
higher than for A

CD4 binding D368 P, R, N, K, E [8]
Preference for D is >10-fold
higher than for these other
amino acids

CD4 binding E370 Q, R [8]
Preference for E is >100-
fold higher than for these
other amino acids

CD4 binding W427 V, S [8, 9]
Preference for W is >100-
fold higher than for these
other amino acids

CD4 binding D457 A [8]
Preference for D is >100-
fold higher than for A

Co-receptor
binding

R298 A [10]
Preference for A is actually
higher than for R

Co-receptor
binding

R308 A [10]
Preference for R is >100-
fold higher than for A

Co-receptor
binding

R315 A [10]
Preference for R is >100-
fold higher than for A

Co-receptor
binding

F317 A [10]
Preference for F is >100-
fold higher than for A

Co-receptor
binding

K421 A [10]
Preference for K is >100-
fold higher than for A

Co-receptor
binding

Q422 A [10]
Preference for A is actually
higher than for Q

Protease cleav-
age site

R511 T [11]
Preference for R is >100-
fold higher than for T

The preferences listed in the last column are the average from all replicates, re-scaled by the
stringency parameter in Table 2.

under a mutation process that introduces each amino acid with equal probability [31,71].
Fig 5 shows Env’s site-specific amino-acid preferences after averaging across replicates and re-

scaling to account for the stringency of selection in our experiments (details of this re-scaling are in
the next section). As is immediately obvious from Fig 5, sites vary dramatically in their tolerance
for mutations. Some sites strongly prefer a single amino acid, while other sites can tolerate many
amino acids. For instance, site 457, an important receptor-binding residue [8], has a strong preference
for aspartic acid. However, this site is adjacent to a variable loop (sites 460-469) where most sites
tolerate many amino acids. Another general observation is that when sites tolerate multiple amino
acids, they often prefer ones with similar chemical properties. For instance, sites 225 and 226 prefer
hydrophobic amino acids, while sites 162 to 164 prefer positively charged amino acids.

To confirm that our experiments captured known constraints on Env’s function, we examined
mutations that have been characterized to affect key functions of Env. Table 1 lists mutations known
to disrupt an essential disulfide bond, binding to receptor or co-receptor, or protease cleavage. In
almost all cases, the deleterious mutation introduces an amino-acid that our experiments report as
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Fig 6. The amino-acid preferences are modestly correlated among experimental
replicates, but the preferred amino acids have highly similar hydrophobicities. (A)
Correlations between the site-specific amino-acid preferences from each replicate. (B) Correlations
between the preference-weighted hydrophobicities. For each site r, the preference-weighted
hydrophobicity is

∑
a πr,a ×Xa where πr,a is the preference of r for amino acid a, and Xa is the

Kyte-Doolittle hydropathy [98] of a. The fact that the hydrophobicities are more correlated than the
amino-acid preferences means that when different amino acids are preferred at a site in different
experimental replicates, the chemical properties of the preferred amino acids are similar. Each plot
shows the Pearson correlation coefficient and associated P-value. Similar data for replicates 3b-1 and
3b-2 are in S6 Fig.

having a markedly lower preference than the wildtype amino acid. Therefore, our measurements
largely concord with existing knowledge about mutations that affect key aspects of Env’s function.

A crucial aspect of any high-throughput experiment is assessing the reproducibility of independent
replicates. Fig 5 shows the average of the preferences measured in each replicate. Fig 6A shows
the correlations among the 13,540 site-specific amino-acid preferences estimated from each of the
three replicates. The correlations are modest, indicating substantial replicate-to-replicate noise. In
principle, this noise could arise from differences in the initial plasmid mutant libraries, bottlenecks
during the generation of viruses by transfection, bottlenecks during viral passage, or bottlenecks
during the sequencing of proviral DNA from infected cells. Analysis of technical replicates of the first
or second round of viral passaging indicates that most of the noise arises from bottlenecks during
the viral passaging or sequencing steps. Specifically, measurements from replicate 3 are no more
correlated to those from replicates 3b-1 or 3b-2 (which are repeated passages of the same transfection
supernatant, Fig 1B) than they are to those from totally independent replicates (compare Fig 6
and S6 Fig). However, replicates 3b-1 and 3b-2 (which shared the first of the two viral passages,
Fig 1) do yield more correlated measurements than independent replicates (S6 Fig). The existence of
bottlenecks during viral passage is also suggested by the data in S4 Fig and S5 Fig. Therefore, the
experimental reproducibility could probably be increased by passaging more infectious viruses at
each step.
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If bottlenecks cause each replicate to sample slightly different mutations, then perhaps in each
replicate there will be selection for similar amino acids even if the exact mutations differ. To test
this hypothesis, we quantified the extent that each site preferred hydrophobic or hydrophilic amino
acids. We did this by computing a site-specific hydrophobicity score from the amino-acid preferences.
Fig 6B shows that these preference-weighted hydrophobicities are more correlated between replicates
than the preferences themselves. Therefore, even though there is replicate-to-replicate noise in the
exact amino acids preferred at a site, the preferred amino acids have similar chemical properties
among replicates.

The amino-acid preferences correlate with amino-acid frequencies in HIV
sequence alignments at most sites, but deviate at positions subject to
selection pressures absent from our experiments

In the previous section, we showed that our experimentally measured amino-acid preferences captured
the constraints on Env’s biological function for sites with known mutational effects (Table 1). If this
is true across the entire protein, then our measurements should correlate with the frequencies of
amino acids in natural HIV sequences. Table 2 shows that there is a modest correlation (Pearson’s
R ranging from 0.29 to 0.36) between the preferences from each experimental replicate and the
frequencies in an alignment of HIV-1 group-M sequences (a phylogenetic tree of these sequences is in
Fig 7A). Since each replicate suffers from noise due to partial bottlenecking of the viral diversity,
we hypothesized that averaging the preferences across replicates should make them more accurate.
Indeed, averaging the replicates increased the correlation to R = 0.4 (Table 2).

The concordance between deep mutational scanning measurements and natural sequence variation
is improved by accounting for differences in the stringency of selection in the experiments compared to
natural selection [71,72]. Specifically, if the measured preference is πr,a and the stringency parameter

is β, then the re-scaled preference is (πr,a)
β
/
[∑

a′ (πr,a′)
β
]
. A stringency parameter of β > 1 means

that natural evolution favors the same amino acids as the experiments, but with greater stringency.
Table 2 shows that for all replicates, the stringency parameter that maximizes the correlation is
> 1. Therefore, natural selection prefers the same amino acids as our experiments, but with greater
stringency.

After averaging across replicates and re-scaling by the optimal stringency parameter, the Pearson
correlation is 0.44 between our experimentally measured preferences and amino-acid frequencies in
the alignment of naturally occurring HIV sequences (Fig 7B). Is this a good correlation? At first

Table 2. Correlation of amino-acid preferences with amino-acid frequencies in nature.

correlation
replicate preferences rescaled preferences stringency parameter (β)

1 0.32 0.33 1.7
2 0.31 0.32 1.6
3 0.29 0.29 1.4

3b-1 0.36 0.37 1.5
3b-2 0.35 0.36 1.5

average 0.40 0.44 2.1

Pearson correlation between experimentally measured amino-acid preferences and frequencies of
amino acids in an alignment of HIV-1 group-M sequences. Correlations are shown for both raw
preferences and preferences re-scaled by the stringency parameter that maximizes the correlation.
The correlation is highest when the preferences are averaged across replicates and re-scaled by a
stringency parameter > 1.
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Fig 7. Correlations between amino-acid preferences and frequencies in natural HIV
sequences. (A) Phylogenetic tree of the HIV-1 group-M sequences in the alignment. (B)
Correlation between alignment frequencies and preferences. The preferences are the replicate
averages re-scaled by the stringency parameter in Table 2. (C) The correlation if evolution is
simulated along the phylogenetic tree assuming that the preferences correctly describe the actual
selection. (D) There is no correlation in a control simulation in which preferences are randomized
among sites. (E), (F) Correlation between preferences and alignment frequencies as a function of
relative solvent accessibility (RSA). Red lines show the actual correlation. Dark and light gray show
the range of correlations in the middle 80% and 100% of 100 simulations. For both plots, data are
shown until the subset of sites that meets the RSA cutoff becomes less than 10% of all sites in Env;
this is why neither x-axis extends all the way from 0 to 1. Correlation coefficients are Pearson’s R.

glance, a correlation of 0.44 seems unimpressive. But we do not expect a perfect correlation even if
the experiments perfectly concord with selection on Env in nature. The reason is that natural HIV
sequences are drawn from a phylogeny (Fig 7A), not an ideal ensemble of all possible Env sequences.
The frequencies of amino acids in this phylogeny reflect evolutionary history as well as natural
selection. For instance, if several amino acids are equally preferred at a site, one is likely to be more
frequent in the alignment due to historical contingency. Additionally, natural evolution is influenced
by the genetic code and mutation biases: a mutation from the tryptophan codon TGG to the valine
codon GTT is extremely unlikely even if valine is more preferred than tryptophan. Therefore, the
correlation will be imperfect even if the preferences completely concord with natural selection – the
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question is how the actual correlation compares to what is expected given the phylogenetic history
and mutation biases.

To determine the expected correlation, we simulated evolution along the phylogenetic tree in
Fig 7A under the assumption that the experimentally measured preferences exactly match natural
selection. Specifically, we used pyvolve [73] to simulate evolution using the experimentally informed
site-specific codon substitution models described in [72], which define mutation-fixation probabilities
in terms of the amino-acid preferences. In addition to the preferences and the stringency parameter
β = 2.1 from Table 2, the substitution models in [72] require specification of parameters reflecting
biases in the mutation process. We estimated nucleotide mutation bias parameters of φA = 0.55,
φC = 0.15, φG = 0.11, and φT = 0.18 from the frequencies at the third-nucleotide codon position in
sequences in the group-M alignment for sites where the most common amino acid had 4-fold codon
degeneracy. We used the transition-transversion ratio of κ = 4.4 estimated in [74].

The correlation between the preferences and amino-acid frequencies in a representative simulated
alignment is shown in Fig 7C. As this plot illustrates, the expected correlation is only about 0.46 if
the experimentally measured preferences exactly describe natural selection on Env under our model.
As a control, we also simulated evolution using substitution models in which the preferences have
been randomized among sites (Fig 7D); as should be the case, there is no correlation in these control
simulations. So the actual correlation is nearly as high as expected if natural selection concords with
the preferences measured in our experiment.

We next investigated if there are parts of Env for which there is an especially low correlation
between our experimentally measured preferences and natural amino-acid frequencies. For instance,
antibodies exert selection on the surface of Env in nature [6, 7, 75,76]. We therefore examined the
actual and simulated correlations between the preferences and frequencies as a function of solvent
accessibility (Fig 7E,F). For all sites (right side of Fig 7E, left side of Fig 7F), the actual correlation
is only slightly lower than the range of correlations in 100 simulations. For more buried sites, both
the simulated and actual correlations increase (Fig 7E), presumably because sites in the core of Env
tend to have stronger preferences for specific amino acids. But as sites become more surface-exposed,
the actual correlation drops below the value expected from the simulations (Fig 7F). Therefore, our
experiments provide a relatively worse description of natural selection on Env’s surface than its
core – probably because the evolution of the protein’s core is shaped mostly by inherent functional
constraints that are effectively captured by our experiments, whereas the surface is subject to selection
pressures (e.g., antibodies) that are not modeled in our experiments.

Comparing disulfide-bonded cysteines and glycosylation sites vividly illustrates this dichotomy
between inherent functional constraints and external selection pressures. Env has 10 highly conserved
disulfide bonds, most of which are essential for the protein’s inherent function [43]. Env also has
numerous N-linked glycosylation sites, many of which are also highly conserved in nature, where
they help shield the protein from antibodies [6, 56]. Fig 8 shows that our experimentally measured
preferences are highly correlated with natural amino-acid frequencies at the sites of the disulfides,
but not at the glycosylation sites. This result can easily be rationalized: the disulfides are inherently
necessary for Env’s function, whereas the glycosylation sites are important largely because of the
external selection imposed by antibodies. Our experiments therefore accurately reflect the natural
constraints on the former but not the latter.

Env has a high inherent mutational tolerance in its variable loops, and a
low mutational tolerance in broadly neutralizing antibody epitopes

Different sites in Env evolve at different rates in natural HIV sequences. These differences arise from
two factors. First, some sites are inherently better at tolerating mutations without disrupting Env’s
essential functions. Second, some sites are under immune selection that favors rapid change. However,
since Env is under selection both to maintain its function and escape immunity, it is difficult to
deconvolve these factors.
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Our experiments estimate each site’s inherent tolerance for mutations under selection purely for
Env’s function in cell culture, without the confounding effects of immune selection (for the remainder
of this section, we define a site’s mutational tolerance as the Shannon entropy of its amino-acid
preferences shown in Fig 5). We can therefore assess whether regions of Env that evolve rapidly
or slowly in nature also have unusually high or low inherent tolerance to mutations. We focused
on two regions of Env: the portions of the protein classified as “variable loops” due to extensive
variation in nature [77, 78], and the epitopes of antibodies that broadly neutralize many HIV strains.
We hypothesized that the variable loops would have a high inherent mutational tolerance, whereas
broadly neutralizing antibody epitopes would have a low mutational tolerance.

In testing this hypothesis, it is important to control for other properties known to affect mutational
tolerance. This can be done by using multiple linear regression to simultaneously analyze how
several independent variables affect the dependent variable of mutational tolerance. Relative solvent
accessibility (RSA) is the strongest determinant of mutational tolerance in proteins [79], so we

Fig 8. The correlation between the experimentally measured preferences and
amino-acid frequencies in natural sequences is low at glycosylation sites, but high at
disulfide-bonded cysteines. (A) The logo plots show the frequencies of amino acids in the
group-M alignment or the amino-acid preferences from our experiments at a subset of potential
N-linked glycosylation sites (see S7 Fig for all 30 sites). The glycosylation sites are conserved in
nature, but tolerant of mutations in our experiment. The scatter plot shows that there is a poor
correlation between the preferences and natural amino-acid frequencies at all 22 alignable
glycosylation sites: red triangles represent the first position in each glycosylation site, whereas gray
circles represent all other sites. (B) There is much better concordance between the preferences and
natural amino-acid frequencies for Env’s disulfide-bonded cysteines. The logo plots show each pair of
cysteines for a subset of disulfides (see S7 Fig for all 10 disulfides). The scatter plot shows that there
is a strong correlation between the preferences and natural amino-acid frequencies at all
disulfide-bonded cysteines.
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Table 3. Broadly neutralizing antibody epitopes have significantly lower mutational
tolerance than other sites in Env

variable coefficient 95% confidence interval
RSA 1.40 1.07 to 1.71
RRE -0.81 -0.98 to -0.63

variable loop 0.07 -0.09 to 0.23
bNAbs -0.19 -0.30 to -0.07

Multiple linear regression of mutational tolerance against relative solvent accessibility (RSA),
whether a site is in the RRE, whether a site is in a variable loop, and the number of the anti-CD4
binding site broadly neutralizing antibody (bNAb) epitopes in which it is found. Positive coefficients
indicate an association with increased mutational tolerance; negative coefficients indicate an
association with reduced mutational tolerance.

included RSA as a variable in the regression. The region of env that contains the RRE is under strong
nucleotide-level constraint [67–69, Fig 4], so we also included being in the RRE as a binary variable
in the regression. We defined the variable loops as indicated in Fig 5, and included being in one of
these loops as a binary variable in the regression. Finally, we used crystal structures to delineate
broadly neutralizing antibody epitopes. We focused on broadly neutralizing antibodies targeting the
CD4 binding site, since most other broadly neutralizing antibodies target either glycans (which are
subject to pressures that are not well-modeled in our experiments; Fig 8A) or a membrane-proximal
region of gp41 that is not fully resolved in crystal structures of trimeric Env making it impossible to
correct for RSA. Specifically, we analyzed the three antibodies with the greatest breadth from [80]:
VRC01 (PDB 3NGB [81]), 12A21 (PDB 4JPW [82]), and 3BNC117 (PDB 4JPV [82]). We defined a
site as part of an epitope if it was within a 4Å inter-atomic distance of the antibody, and included
the number of epitopes in which a site is found as a discrete variable in the regression.

The results of the multiple linear regression are in Table 3. As expected, increased solvent
accessibility is strongly associated with increased mutational tolerance, whereas presence in the
RRE is strongly associated with decreased mutational tolerance. After correcting for these effects,
sites in broadly neutralizing epitopes have significantly reduced mutational tolerance. Sites in the
variable loops have higher mutational tolerance, although this effect is not statistically significant
after controlling for solvent accessibility (mutational tolerance is significantly elevated in the variable
loops if solvent accessibility is not corrected for; S2 Table). Overall, this analysis provides statistical
confirmation of something that is widely assumed in the study of HIV: broadly neutralizing antibodies
are unique because they target regions of Env that are inherently intolerant of mutations.

Discussion

We have used deep mutational scanning to experimentally estimate the effects of all amino-acid
mutations to most of HIV Env. Our experiments select for Env variants that enable HIV to undergo
multi-cycle replication in a T-cell line. The broad trends in our data are consistent with what is
expected from general considerations of how gene sequence maps to protein function: stop codons are
efficiently purged by selection, many but not all nonsynonymous mutations are selected against, and
synonymous mutations are less affected by selection except at regions where the nucleotide sequence
itself is known to be biologically important. We also find a few sites where nonsynonymous mutations
are strongly favored by selection in our experiments, probably because they adapt the virus to cell
culture by affecting Env’s conformational dynamics, co-receptor binding, and glycosylation.

We use our experimental data to estimate the preference of each site in Env for each amino acid.
We show that these preferences correlate with amino-acid frequencies in natural HIV sequences nearly
as well as would be expected if the experimentally measured preferences capture the true selection
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on Env in nature. The strongest deviations between our measurements and amino-acid frequencies
in HIV sequences occur at sites on the surface of the virus that in nature are targeted by pressures
(such as antibodies) that are not present in our experiments.

The ability to identify deviations between our measurements and amino-acid frequencies in nature
points to a powerful aspect of our approach: it can de-convolve the role of inherent functional
constraints and external selection pressures in shaping Env’s evolution. For instance, it is known that
some regions of Env regions are conserved in nature, and so can be targeted by broadly neutralizing
antibodies. To what extent are these patterns of conservation shaped by Env’s inherent capacity to
evolve versus the fact that immune selection targets some parts of the protein more strongly than
others? By measuring inherent mutational tolerance at each site under functional selection alone, we
show that the epitopes of broadly neutralizing antibodies indeed have a reduced capacity to tolerate
mutations irrespective of the action of immune selection.

More generally, our experiments provide high-throughput experimental data that can augment
computational efforts to infer features of HIV’s fitness landscape [18–20,22,83]. Such data will aid in
efforts to understand viral evolutionary dynamics both within and between patients. Additionally,
our experimental approach can be extended to comprehensively examine the effects of mutations on
other HIV phenotypes that can be selected in the lab. We anticipate that future experiments could
build on the work here to map how mutations affect phenotypes such as cell tropism or sensitivity to
antibodies.
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Materials and Methods

Data and computer code

The computer code to analyze the sequencing data and generate the figures is provided in a series
of IPython notebooks in S3 File. Illumina sequencing data are available from the Sequence Read
Archive (http://www.ncbi.nlm.nih.gov/sra) under the accession numbers in S10 File.

Sequence numbering

We use the HXB2 numbering system [44] unless otherwise noted. The “variable loop” definitions
were taken from http://www.hiv.lanl.gov/, not including the flanking disulfide-bonded cysteines
as part of the loops.

Codon mutant libraries

We created the codon mutant libraries in the context of the pro-viral genomic plasmid pLAI, which
encodes the LAI strain of HIV [40]. This plasmid was obtained from the lab of Michael Emerman.
The plasmid sequence is in S4 File.

We created codon mutant libraries of env using the PCR mutagenesis technique described in [31]
(see also [32,37]) except that we performed two total rounds of mutagenesis rather than the three
rounds in [31]. The codon tiling mutagenic primers are in S5 File. The end primers were: 5’-
ttggaatttctggcccagaccgtctcatgagagtgaaggagaaatatcagcacttg-3’ and 5’-catctgctgctggctcagc-3’. We
created three replicate libraries by performing all the steps independently for each replicate starting
with independent plasmid preps.

We cloned the PCR mutagenized env amplicons into the LAI plasmid with high efficiency to create
plasmid mutant libraries. To seamlessly clone the PCR products into the proviral plasmid, we created
a recipient version of the plasmid that had env replaced by GFP flanked by restriction sites for BsmBI,
which cleaves outside its recognition sequence. We named this recipient plasmid pLAI-δenv-BsmBI;
its sequence is in S6 File. We digested both this recipient plasmid and the gel-purified PCR amplicons
with BsmBI (there are BsmBI sites at either end of the PCR amplicon), gel purified the digested
PCR products, and ligated them into the plasmid using a T4 DNA ligase. We column purified the
ligation products, electroporated them into competent cells (Invitrogen,12033-015), and plated the
transformed cells on LB plates supplemented with 100 µg/mL ampicillin. For each of the three
replicate libraries, we performed enough transformations to yield >1.4 million unique colonies as
estimated by plating dilutions of each transformation on separate plates. Control ligations lacking an
insert yielded at least 10-fold fewer colonies. The transformed cells were scraped from the plates,
grown in liquid LB-ampicillin at 37◦C for ∼4 hours, and mini-prepped to obtain the plasmid mutant
libraries. For the wildtype controls, we prepped three independent cultures of the wildtype LAI
proviral plasmid.

Generation and passaging of viruses

We generated the mutant virus libraries by transfecting the mutant plasmid libraries into 293T cells.
For each replicate, we transfected two 12-well tissue-culture plates to increase the diversity of the
generated viruses. Specifically, we plated 293T cells at 2.4×105 cells/well in D10 media (DMEM
supplemented with 10% FBS, 1% 200 mM L-glutamine, and 1% of a solution of 10,000 units/mL
penicillin and 10,000 µg/mL streptomycin). The next day, we transfected each well with 1 µg plasmid
using BioT (Bioland Scientific LLC, B01-01). For the three wildtype controls we used the same
process but with only a single 12-well plate per replicate. At one day post-transfection, we aspirated
the old media, replacing it with fresh D10. At ∼60 hours post-transfection, we filtered the transfection
supernatants through 0.4 µm filters. To remove residual plasmid DNA from the transfection, we
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then treated the filtrate with DNase-I (Roche, 4716728001) at a final concentration of 100 U/mL in
the presence of 10 mM magnesium chloride (Sigma, M8266) at 37◦C for 20-30 minutes. We froze
aliquots of the DNase-treated supernatant at -80◦C. Aliquots were thawed and titered by TZM-bl
and TCID-50 assays as described below.

We passaged the transfection supernatants in SupT1 cells obtained from the NIH AIDS Reagent
Program [84]. SupT1 cells were maintained in a media identical to the D10 described above except
that the DMEM was replaced with RPMI-1640 (GE Healthcare Life Sciences, SH30255.01). Before
infecting cells, for replicates 1, 2, and 3 (but not replicate 3b), we first filtered thawed transfection
supernatants through a 0.2 µm filter in an effort to remove any large viral aggregates. We then
infected 108 SupT1 cells with 5× 105 TZM-bl units of the mutant library transfection supernatant in
a final volume of 100 mL SupT1 culture medium in a vented tissue-culture flask (Fisher Scientific,
14-826-80). In parallel, we passaged 105 TZM-bl units of transfection supernatant for each wildtype
control in 20 million SupT1 cells in a final volume of 20 mL. At one day post-infection, we pelleted
cells at 300×g for 4 minutes and resuspended in fresh media to the same volume as before. At two
days post-infection, we added fresh media equal to the volume already in the flask to dilute the
cells and provide fresh media. We harvested virus at three days post-infection (for replicates 1, 2,
and 3) or four days post-infection (for replicate 3b) by pelleting cell debri at 300×g for 4 minutes
and then collecting the viral supernatant for storage at -80◦C. To remove residual culture media
and plasmid DNA from the cell pellets, we washed pellets two times in PBS. The washed cells were
resuspended in PBS to a final concentration of 107 cells/mL, and aliquots were frozen at -80◦C for
DNA purification.

We conducted a second passage by infecting new cells with the passage-1 viral supernatants. The
second passage differed from the first passage in the following ways: Before infecting cells, we filtered
passage-1 supernatant of replicate 3b-2 through a 0.2 µm filter but did not filter any of the other
replicates. We also had to modify the passaging conditions for some replicates due to low titers
of the passage-1 supernatants. For viruses in which the passage-1 supernatant was at too low a
concentration to infect at an MOI of 0.005 in the volumes indicated above, we added additional
passage-1 supernatant, and then reduced the volume to that indicated above during the day-one
media change.

Virus titering by TCID50 and TZM-bl assays

We measured viral titers using TZM-bl reporter cells [85]. Specifically, we added 2×104 cells in 0.5
mL D10 to each well of a 12-well plate. We made dilutions of viral inoculum and infected cells with
100 uL of each dilution. At 2 days post-infection, we fixed cells in a solution of 1% formaldehyde
and 0.2% glutaraldehyde in PBS for 5 minutes at room temperature, washed with PBS to remove
the fixing solution, and stained for beta-galactosidase activity with a solution of 4 mM potassium
ferrocyanide, 4 mM potassium ferricyanide, and 0.4 mg/mL X-gal in PBS at 37◦C for 50 minutes.
After washing cells with PBS to remove the staining solution, we used a microscope to count the
number of blue cells per well, computing the viral titer as the number of blue cells per mL of viral
inoculum.

We were concerned that the infectious titer in SupT1 cells might differ from the TZM-bl titers.
We therefore also performed TCID50 assay to directly measure infectious titers in SupT1 cells. To do
this, we made dilutions of viral transfection supernatant in a 96-well tissue-culture plate and added
SupT1 cells at a final concentration of 2.5×105 cells/mL in a final volume of 180 µL/well. At 4 and
8 days post-infection, we passaged supernatant 1:10 into fresh media to prevent cells from becoming
over confluent. At 12 days post-infection, we measured the titer of culture supernatants using the
TZM-bl assay to determine which SupT1 infections had led to the production of virus. Based on
binary scoring from these TZM-bl assays, we calculated titers using the Reed-Muench formula [86]
as implemented at https://github.com/jbloomlab/reedmuenchcalculator. At least for the LAI
strain used in our experiments, the SupT1 TCID50 titers were approximately equal to the TZM-bl
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titers. Therefore, we used only the less time-consuming TZM-bl assay for all subsequent titering.

Generation of samples for Illumina sequencing

We purified non-integrated viral DNA from aliquots of frozen cells using a mini-prep kit (Qiagen,
27104) with ∼ 107 cells per prep. In some cases, we then concentrated the purified DNA using
Agencourt AMPure XP beads (Beckman Coulter, A63880) using a bead-to-sample ratio of 1.0 and
eluting with half of the starting sample volume.

We next generated PCR amplicons of env to use as templates for Illumina sequencing. We created
these amplicons from plasmid or mini-prepped non-integrated viral DNA by PCR using the primers
5’-agcgacgaagacctcctcaag-3’ and 5’-acagcactattctttagttcctgactcc-3’. PCRs were performed in 20 µl or
50 µl volumes using KOD Hot Start Master Mix (71842, EMD Millipore) with 0.3 µM of each primer
and 3 ng/µl of mini-prepped DNA or 0.3 ng/µl of plasmid as template. The PCR program was:

1. 95 ◦C, 2 minutes
2. 95 ◦C, 20 seconds
3. 70 ◦C, 1 second
4. 64.3 ◦C, 10 seconds (cooling to this temperature at 0.5 ◦C/second)
5. 70 ◦C, 1 minute 48 seconds
6. Go to 2, 27 times
7. hold at 4 ◦C

For replicate 3b, there were a few modifications: the annealing temperature was 64.9 ◦C, the extension
time was 54 seconds, and we performed only 25 cycles. To quantify the number of unique template
molecules amplified in each PCR, we performed standard curves using known amounts of template
env in pro-viral plasmid, and ran the the bands on an agarose gel alongside our amplicons for visual
quantification. We performed a sufficient number of PCR reactions to ensure that amplicons from
plasmid were coming from > 106 unique template molecules, and amplicons from viral DNA were
coming from ∼ 2× 105 template molecules. All PCR products were purified with Agencourt beads
(using a sample-to-bead ratio of 1.0) and quantified by Quant-iT PicoGreen dsDNA Assay Kit (Life
Technologies, P7589).

We deep sequenced these amplicons using the strategy for barcoded-subamplicon sequencing
in [37], dividing env into six subamplicons (this is a variation of the strategy originally described
in [87–89]). The sequences of the primers used in the two rounds of PCR are in S9 File. Our
first-round PCR conditions slightly differed from [37]: our 25 µL PCRs contained 12.5 µL KOD Hot
Start Master Mix, 0.3 µM of each primer, and 5 ng of purified amplicon. For replicates 1, 2, and 3,
the first-round PCR program was:

1. 95 ◦C, 2 minutes
2. 95 ◦C, 20 seconds
3. 70 ◦C, 1 seconds
4. 60 ◦C, 10 seconds (cooling to this temperature at 0.5 ◦C/second)
5. 70 ◦C, 10 seconds
6. Go to 2, 10 times
7. 95 ◦C, 1 min
8. hold 4 ◦C

For replicate 3b, we used the same program, but with 9 PCR cycles instead of 11. Prior to the second
round PCR, we bottlenecked each subamplicon by diluting it to a concentration that should have
yielded between 3 and 5 ×105 unique single-stranded molecules per subamplicon per sample. We
purified the second-round PCR products using Agencourt beads, quantified with PicoGreen, pooled
in equimolar amounts, and purified by agarose gel electrophoresis, excising DNA corresponding to
the expected ∼500 base pairs in length. We sequenced the purified DNA using multiple runs of an
Illumina MiSeq with 2×275 bp paired-end reads.
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Analysis of deep-sequencing data

We used dms tools (http://jbloomlab.github.io/dms_tools/), version 1.1.dev13, to filter and
align the deep-sequencing reads, count the number of times each codon mutation was observed both
before and after selection, and infer Env’s site-specific amino-acid preferences using the algorithm
described in [70]. The code that performs this analysis is in S3 File. Figures summarizing the results
of the deep sequencing are also in this supplementary file.

Alignment of group-M env sequences

We downloaded the 2014 filtered web alignment of env from http://www.hiv.lanl.gov/, including
all subtypes for HIV-1/SIVcpz. We then curated this alignment in the following ways. First, we
removed sequences differed in length from HXB2 (including gap characters) or contained a premature
stop codon, ambiguous residue, or frame-shift mutation. Next, we removed columns in the alignment
for which we lacked deep mutational scanning data, columns that had >5% gap characters, or
columns in variable loops that appeared poorly aligned by eye. Finally, we randomly selected 30
sequences per subtype for group-M subtypes A, B, C, D, F, and G, for a total of 180 sequences. The
resulting alignment is in S7 File. The phylogenetic tree in Fig 7 was inferred using RAxML [90] with
the GTRCAT substitution model.

Computing relative solvent accessibilities

We computed absolute solvent accessibilities based on the PDB structure 4TVP (including all three
Env monomers after removing antibody chains) using DSSP [91,92]. We normalized absolute solvent
accessibilities to relative ones using the maximum accessibilities provided in the first table of [93].
The relative solvent accessibilities are listed in S8 File.
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Supporting Information

S1 Table. Sites of mutations recurrently selected in cell culture.
error-corrected

mutation frequency
(P2:DNA)

hydropathy

sites 1 2 3 wildtype wildtype preferences difference RSA entropy of preferences

48 3.4 2.1 3.4 A 1.8 -0.4 2.2 0.2 2.9

62 1.6 4.2 8.2 D -3.5 -1.6 -1.9 0.6 3.6

64 14.4 6.8 10.3 E -3.5 -1.6 -1.9 0.6 2.8

65 1.3 3.3 3.1 V 4.2 -2.1 6.3 0.6 3.3

66 6.1 3.0 13.7 H -3.2 -0.2 -3.0 0.6 3.5

81 4.1 4.5 4.1 P -1.6 -1.9 0.3 0.6 2.9

105 2.2 3.1 7.0 H -3.2 0.7 -3.9 0.0 3.0

162 11.2 4.9 1.2 S -0.8 -2.6 1.8 0.2 2.7

188 5.8 2.9 4.8 T -0.7 -2.1 1.4 0.5 2.9

203 -8.6 6.7 5.4 Q -3.5 0.0 -3.5 0.0 2.5

207 15.6 19.2 21.1 K -3.9 2.7 -6.6 0.5 2.7

212 5.2 -27.2 9.8 P -1.6 -0.3 -1.3 0.2 3.4

377 10.5 1.1 3.9 N -3.5 -2.7 -0.8 0.2 2.2

420 3.0 3.8 4.8 I 4.5 -1.7 6.2 0.0 2.8

433 7.2 7.2 8.4 A 1.8 2.2 -0.4 0.0 2.2

436 3.1 2.8 5.2 A 1.8 1.1 0.7 0.0 2.4

443 -5.4 4.2 3.2 I 4.5 -0.9 5.4 0.1 3.4

557 4.7 11.4 5.6 R -4.5 0.6 -5.1 nd 3.5

558 2.9 6.0 3.8 A 1.8 -0.7 2.5 nd 2.2

560 5.9 5.2 6.0 E -3.5 0.7 -4.2 nd 3.2

564 42.5 6.3 -4.0 H -3.2 -0.8 -2.4 nd 4.1

588 9.4 11.4 11.2 K -3.9 1.5 -5.4 0.2 3.0

591 6.2 4.2 5.0 Q -3.5 2.2 -5.7 0.0 2.3

653 1.6 3.4 3.2 Q -3.5 1.7 -5.2 0.5 3.1

655 10.8 8.2 4.7 K -3.9 1.5 -5.4 0.1 3.3

The 25 sites (HXB2 numbering) from Fig 2B for which the error-corrected mutation frequency
increased by >3-fold in at least two replicates upon two rounds of passaging in cell culture. We
report the change in mutation frequency for each site as a ratio of mutation frequency post- vs. pre-
selection (P2:DNA). Negative ratios arise when the mutation frequency in the wildtype control is
greater than in the mutant plasmid or virus library. For many sites, there is a large difference
between the hydropathy of the wildtype amino acid and the hydropathy averaged across the site’s
amino-acid preferences, suggesting pressure to change the chemical character of the amino-acid. We
also report the relative solvent accessibility for each site as computed using PDB structure
4TVP [99]. Adaptation at each site could occur through a single highly beneficial amino-acid change
or though numerous roughly equally beneficial changes. For many sites, we observe the latter
scenario, as indicated by the entropy of the preferences, which ranges from 2.2-4.1 in this list of 25
sites, compared to 0.5-4.3 for all sites.
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S2 Table. Mutational tolerance is higher for variable loops when relative solvent ac-
cessibility is not taken into account.

variable coefficient 95% confidence interval

RRE -0.70 -0.86 to -0.54

variable loop 0.16 0.01 to 0.31

bNAbs -0.11 -0.24 to 0.01

Same as Table 3, but not taking RSA into account.
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S1 Fig. Sanger sequencing of mutant plasmids shows a roughly uniform distribution
of codon mutations, with an average of 1.4 mutations per gene. We Sanger sequenced
26 clones sampled roughly evenly from the three replicate mutant plasmid libraries prior to any
functional selection. (A) We observed an average of 1.4 mutant codons per clone. The number of
mutant codons per clone closely followed a Poisson distribution. (B) Mutant codons had a mix of
single-, double-, and triple-nucleotide changes. (C) The nucleotide frequencies were fairly uniform in
the mutant codons. (D) Mutations were distributed roughly evenly along the portion of env that
we mutagenized (codons 31-707). (E) For clones with multiple mutations, we computed pairwise
distances between mutations in primary sequence and plotted the cumulative distribution of these
distances (red line). For comparison, we simulated the expected distribution of pairwise distances
if mutations occurred entirely independently (blue line). The difference between the actual and
expected distributions suggests our mutagenesis had a slight bias to introduce mutations closer
together than expected by chance.
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S2 Fig. Codon mutation frequencies of mutant libraries and wildtype controls. This
figure is similar to Fig 2 except that it shows the uncorrected mutation frequencies in the mutant
plasmid and mutant virus libraries, and the mutation frequencies in the wildtype controls that were
used to correct the mutation frequencies in Fig 2. Codon mutations are classified both by their
effect on the protein (synonymous, nonsynonymous, or stop codon) and by the number of nucleotides
they change in the codon (one, two, or three). The top panel shows data for all sites, whereas the
middle and lower panels show data for the indicated subsets of sites. This this plot, fmutvirus−p2

and fmutDNA refer to the nonsynonymous mutation frequency in the twice-passaged mutant viruses
and the initial mutant DNA, respectively.
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S3 Fig. Complete selection against stop codons requires two rounds of viral passage.
We deep sequenced the replicate 3 library after both one (P1) and two (P2) rounds of viral passaging.
This figure is similar to Fig 2, but shows data for both P1 and P2. Purging of stop-codon mutations
shows selection was only complete after two rounds of passaging. Whereas two rounds of passaging
purged stop-codon mutations to <1% their frequency in the initial library (DNA), one round of
passaging only purged stop-codon mutations to 16% their starting frequency (see the data for “all
sites”, where the red numbers above the bars for P1 and P2 indicate the percentage of stop codons
after each passage relative to the starting library).
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S4 Fig. Sampling of codon mutations in all replicates combined. (A) Each plot shows the
number of all (single and multi-nucleotide) codon mutations observed at least the indicated number of
times in the sequencing of all replicates combined. We observed almost all mutations in the starting
plasmid libraries (mutDNA), showing rich initial mutational diversity. Many mutations were depleted
in the mutant virus libraries after two rounds of passaging (mutvirus-p2), consistent with purifying
selection purging deleterious variants or bottlenecking diminishing library diversity. Examination of
mutation counts in the wildtype plasmid (DNA) and wildtype virus (virus-p2) controls revealed a
considerable fraction of mutations that were present at appreciable numbers due to errors from deep
sequencing and PCR or de novo mutations from viral replication. This observation underscores the
importance of using these wildtype controls to correct for background errors and de novo mutations.
(B) If we examine only multi-nucleotide codon mutations, then there are negligible background errors
in the wildtype controls. Similar data for each replicate individually are in S5 Fig.
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S5 Fig. Sampling of codon mutations in individual replicates. These plots are the same
as in S4 but show each replicate individually.
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S6 Fig. Correlation of site-specific amino-acid preferences between replicates, includ-
ing 3b-1 and 3b-2. (A) The correlation between replicate 3b-1 and replicate 1, 2, or 3. (B) The
correlation between replicate 3b-2 and replicate 1, 2, or 3. (C) The correlation between replicates
3b-1 and 3b-2.
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S7 Fig. Amino-acid frequencies and preferences for all potential N-linked glycosylation
sites and disulfide bonds. This figure is similar to Fig 8, but shows logo plots for all 30
glycosylation sites (defined using the N-GlycoSite tool [100] from the HIV sequence database,
http://www.hiv.lanl.gov/) and all 10 disulfide bonds [101] in LAI. (A) Most glycosylation sites
are highly conserved in natural sequences, but highly tolerant of mutations in our experiments.
Logo plots showing amino-acid frequencies in nature are replaced by grey boxes for sites in the
alignment of group-M sequences that were masked because the site had >5% deletions relative
to HXB2 or because the region looked unalignable by eye (for details, see IPython notebook
CurateLANLMultipleSequenceAlignment.ipynb within S3 File). (B) Disulfide-bonded cysteines
are absolutely conserved in nature, and most have a strong preference for cysteine in our experiments.
A previous study [43] found that only the C378-C445 disulfide bond tolerated alanine mutations at
individual cysteines while supporting robust viral replication in cell culture. In accordance with this
previous work, these cysteines are the most mutationally tolerant ones in our experiment.
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All Supplementary Files are included in a single ZIP archive

S1 File. Average of the amino-acid preferences measured in the replicates. Sites are
numbered using the HXB2 scheme. The same preferences re-scaled by the optimal stringency
parameter are in S2 File.

S2 File. Amino-acid preferences re-scaled by the optimal stringency parameter. The
preferences in S1 File re-scaled by the optimal stringency parameter of β = 2.1. These are the data
plotted in Fig. 5. However, preferences for stop codons are listed in this file, but not shown Fig 5.

S3 File. iPython notebooks that perform the data analysis steps described in this paper.

S4 File. A Genbank file with the sequence of the LAI pro-viral plasmid.

S5 File. The codon tiling primers used to construct the mutant libraries.

S6 File. The recipient pro-viral plasmid, which has env replaced by partial GFP and beta globin
genes flanked by BsmBI sites.

S7 File. The alignment of group M Env sequences.

S8 File. The relative solvent accessibilities of all sites in Env present in the crystal structure.

S9 File. The PCR primers used in the barcoded-subamplicon sequencing.

S10 File. The SRA accession numbers for deep sequencing data. Samples are named as follows:
mutDNA-1 denotes the mutant plasmid library for replicate 1; DNA-1 denotes the wildtype plasmid
for replicate 1; mutvirus-p2-1 denotes the twice-passaged mutant viral libraries for replicate 1;
virus-p2-1 denotes the twice-passaged wildtype virus for replicate 1.
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