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Abstract

The conditions under which the Michaelis-Menten equation accurately cap-
tures the steady-state kinetics of a simple enzyme-catalyzed reaction is con-
trasted with the conditions under which the same equation can be used to
estimate parameters, K, and V, from progress curve data. The condi-
tions for the validity of the underlying assumptions leading to the Michaelis—
Menten equation are shown to be necessary, but not sufficient to guarantee
accurate estimation of Kj; and V. Detailed error analysis and numerical
“experiments” are used to show the required experimental conditions for the
independent estimation of both K); and V' from progress curve experiments.
It is found that, if the initial substrate concentration is of the same order of
magnitude as Kj;, the estimated values of the K,; and V will correspond
to their true values calculated from the microscopic rate constants of the
corresponding mass-action system.
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1 1. Introduction

2 The fundamental equation of enzyme kinetics is the Michaelis-Menten
s (MM) equation, which relates the rate of an enzyme-catalyzed reaction to
s+ the concentration of substrate [1, 2]. The MM equation is nowadays derived
s using the steady-state assumption as proposed by Briggs and Haldane [3]. It
s is characterized by two parameters: the Michaelis constant, K,;, which acts
7 as an apparent dissociation constant under the assumption of steady-state,
s and the limiting rate, V' (or the catalytic constant, ke, if the enzyme concen-
o tration is known) [4]. These parameters are often viewed as thermodynamic
10 properties of an enzyme-substrate pair, and hence depend on conditions
n such as pH and temperature, but not on time-dependent enzyme nor sub-
12 strate concentrations [5]. As a result, measuring K, and V' are essential to
13 characterizing enzymatic reactions [6]. However, the treatment of K, and
1V as constants with respect to enzyme and substrate concentrations relies
15 on simplifying assumptions relating to the quasi-steady-state of the interme-
16 diate complex formed by the enzyme and substrate [7]. If conditions for the
17 reaction lie outside the range for which the simplifying assumptions are valid,
18 Ky becomes dependent on the concentration of the substrate, and hence, on
19 time. Experiments to estimate K, must be conducted under conditions for
20 which the MM equation is valid [7, 8]. This can be problematic since it is
a1 generally necessary to know K, a priori in order to insure the experimental
2 conditions meet the requirements for the using MM equation. Additionally,
23 values of Kj; and V measured under valid experimental conditions can only
2 be transferred to cases that also meet the requirements. Since this is often
»s not the case in vivo, using values of Kj; and V measured in vitro to predict
% the activity of an enzyme in living organisms can often be seriously unreliable
2 [9].

28 The range of substrate and enzyme concentrations over which the MM
2 equation can be applied has long history of theoretical investigation [see 8,
» for a recent review|, and requires two assumptions be valid. The first, called
a1 the steady-state assumption, implies that the timescale for the formation of
» the intermediate complex is much faster than that of the conversion of the
13 substrate into product [10]. The second, called the reactant-stationary as-
s sumption, implies that the fast, transient period in which the steady-state
55 population of intermediate complex first forms, depletes only a negligible
s amount of substrate [11]. It has been shown that the reactant-stationary as-
» sumption is more restrictive and, if valid, the reaction velocity (after the ini-
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s tial transient period) will follow the MM equation and be well-characterized
» by the parameters K, and V' [10, 12, §].

40 At first sight, it is tempting to assume that, when the MM equation is
n valid, experimental data should also yield accurate estimates of K,; and V
2 [13, 14]. However, the conditions for the validity of the steady-state and
i3 reactant-stationary assumptions are based on a forward problem, i.e. one in
s which the parameters are known. Estimating parameters from experimental
s data, on the other hand, is an inverse problem [15]. Extracting true values of
s parameters from data requires a stable and unique inverse mapping that is
« mnot guaranteed by the existence of a solution to the forward problem [see 16,
s for example]). Hence, even in cases where the assumptions underlying the
s MM equation are valid, and the MM equation accurately fits an experimental
so progress curve, the values of Kj; and V estimated from the data may differ
51 significantly from their true values.

52 In this work, we seek to address the issue of estimating parameters from
53 progress curves of single-substrate, single-enzyme-catalyzed reactions quanti-
s« tatively. In Section 2, we review the validity of the steady-state and reactant-
55 stationary assumptions, and quantify errors incurred by making these as-
ss sumptions. In Section 3, we discuss the inverse problem associated with
57 estimating parameters based on the MM equation. Numerical experiments
ss are then conducted in Section 4 to verify and quantify the range of exper-
so imental conditions that allow for veracious estimations of Ky and V. We
o0 conclude with a discussion of the results in Section 5.

61 2. The forward problem: the Michaelis—Menten equation and the
62 conditions for its validity

In the simplest, single-enzyme and single-substrate reaction, the enzyme
E reacts with the substrate S to form and intermediate complex C', which
then, under the action of the enzyme, forms a product P and releases the

enzyme,
kl kcat
E+S =C — E+P (1)
k_1

where ki and k_; are microscopic rate constants, and k¢, is the catalytic
constant [4]. Applying the law of mass action to reaction mechanism (1)
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yields four rate equations

e = —kies + k_1c + keatc
$=—kies+ k_ic

¢ =kies — k_ic — kearC (2¢
P = KeatC, (2d

&3 where lowercase letters represent concentrations of the corresponding up-
s« percase species. Typically, in test tube enzyme binding assays the initial
ss conditions are taken to be

(G,S,C,p) |t=0 = (60780’070) ’ (3>

Additionally, the system obeys two conservation laws, the enzyme and sub-
strate conservation laws,

e(t)+c(t) =ep (4a)
s(t)+c(t)+p(t) = so. (4b)

Using (4a) to decouple the enzyme concentrations, the redundancies in the
system (2) are eliminated to yield

$=—ki(eg—c)s+k_qc (5a)
¢=Fki(eg—c)s— (k_1+kea)c (5b)

s where e(t) and p(t) are readily calculated once s(t) and c(t) are known. If,
ez after an initial, rapid buildup of ¢, the rate of depletion of ¢ approximately
s equals its rate of formation, ¢ is assumed to be in a quasi-steady state [3],
6 1.e.

¢~0 for t>t,., (6)

where t. is the timescale associated with the initial transient buildup of ¢
[10]. The steady-state assumption (6), in combination with (5), leads to

. €oS
C_—KM+3 (Ta)
Vs
._ Vs b
e ()
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0 where V = keyeg and Kyy = (k_1 + keat) /k1. Hence, the system (2) is re-
7 duced to an algebraic-differential equation systems with one single differen-
2 tial equation for s. However, since (7) is only valid after the initial transient
73 time period, t., a boundary condition for s at t = ¢, must be supplied. To
72 do this, it is assumed that very little substrate is consumed during the initial
75 transient period (the reactant-stationary assumption) such that

S(t < tc) ~ S0, (8>

76 which provides an initial condition for (5a) under the variable transformation
7t — t—t.. Substituting (7a) into (2d), one obtains, the rate of the reaction (1)

Vs
_KM-FS’

p=v (9)
7 relating the rate of product formation to the substrate concentration. Equa-
79 tions (9) is the MM equations, and the system of equations (7a ), (7b), and
9o (9) govern the dynamics the complex, substrate, and product, respectively,
s under the steady-state assumption.

82 The conditions under which the steady-state assumption (6) and reactant-
83 stationary assumption (8) are valid have been extensively studied. Segel [10]
s« showed that the steady-state assumption is valid so long as

€o KS So
_— 14+ — 14— 10
KM+50<<(+K)(+KM)’ (10)

ss where Kg = k_1/ky, and K = kea/k1. For the reactant-stationary assump-
s tion to be valid, they derived the condition

€o So
— 14+ — 11
e < ( + KM)’ (11)

&z which is more stringent than condition (10), and hence dictates the conditions
ss under which the MM equation can be applied. Interestingly, it has been
o shown that condition (11) is independent from (10) [11].

w 2.1. Quantitative analysis of the errors induced by the steady-state and reactant-
o1 stationary assumptions

9 To gain a quantitative understanding of the inequalities expressed in (10)
i3 and (11), an accurate assessment of the difference between the solution to
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u system (5) and the reduced equations (7) is required. For our analysis, we
s compare progress curves of the substrate calculated with numerical solutions
s to the exact law of mass action system (5a) and the reduced equation (7b)
o under the steady-state assumption. Note that the reduced rate equation (7b)
e is effectively the MM equation for the substrate depletion. The concentration
e error as a function of time is calculated as

S(t) — SMM(t)

error(t) = , (12)

w0 where sy, is the substrate concentration calculated using the reduced equa-
1 tion (7b) and || denotes the absolute value. To form a scalar measure of
102 the error, we use the maximal value of the concentration error over the time
13 course of the reaction. Contours of the maximum concentration error in the
104 plane of initial enzyme and substrate concentrations (normalized by Kjy) are
s shown in Fig. 1. Additionally, conditions (10) and (11) are plotted for the
s cases when the right-hand sides are ten times the left-hand sides to represent
107 the much less condition numerically. For all values of k = k_1 /keay = K/ K,
s condition (11) is sufficient to guarantee small errors when using the MM
w0 equation. However, Fig. 1A shows that when x is small — implying the
1o reverse step in reaction (1) is negligible — small values of so/ K}, yield small
m errors, regardless of the initial enzyme concentration.

112 The observed errors can be understood by considering the influence of
us small k and s/ Ky on the system (5). When k < 1, reaction (1) strongly
s favors the production for P from C as opposed to the disassociation of C' back
us to E and S. This reduces the reaction mechanism (1) to the van Slyke-Cullen
s mechanism [17] as Ky; ~ K. The requirement sq/Kjy; > 1 implies that the
u7  formation of C' is slow compared to the formation P and the disassociation of
us (. Taken together, these two requirements provide an ordering of timescales
uo such that the formation of C' is slow compared to the action of the enzyme
120 to form P, but fast compared to the disassociation of the intermediate com-
o1 plex, effectively reducing the rate equation for the substrate depletion (5a) to
12§ &~ —kjegs. Similarly, under the same condition, the MM equation for sub-
123 strate (7b) reduces to the same expression. Hence, under these conditions,
12« the MM equation accurately represent the system dynamics, even though
15 condition (11) is violated.

126 The condition for the validity of the reactant-stationary assumption (11)
127 is a sufficient condition for the MM equation to be valid. In essence, this says
s that for a known set of parameter values, if the reactant-stationary assump-
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1o tion is valid, the dynamics of the reduced system (7) will closely approximate
1o the dynamics of the full system (5). However, the MM equation is often used
1 to estimate Ky and V' from experimental data, which requires solving an
12 inverse problem. Solutions to the forward problem do not guarantee the
133 existence or uniqueness of the inverse problem, hence it is not clear that
134 the conditions for the validity of the reduced forward problem correspond to
15 the conditions required to accurately estimate rate constants. This issue is
136 investigated in the following section.

137 3. The inverse problem: Estimation of K,; and V

138 The experimental estimation of the parameters Kj,; and V is used to
130 characterize enzyme-catalyzed reactions. In general, Kj; and V can be esti-
1o mated through either initial rate experiments [see 18, for a recent review| or
11 direct analysis of time course data [19]. In initial rate experiments, a series
12 of enzyme assays with differing substrate concentrations are performed and
13 initial reaction rates are calculated from the linear portion of the progress
e curve (after the initial fast transient, ¢., and before substrate depletion be-
115 comes influential). The MM equation for either substrate or product is then
us fit to the initial rates as a function of initial substrate concentration, yielding
wr K and V. When time course data is used, the integrated implicit [20] or
s closed-form [21] of the MM equations are fit directly to time series through
1o nonlinear regression, providing estimates for K, and V. Although initial rate
150 experiments are more commonly used, they require numerous assays with dif-
151 ferent substrate concentrations to determine Kj»; and V. Alternatively, time
12 course analyses have the advantage that Kj,; and V' can be estimated from
153 a single experiment, making them potentially much cheaper when expensive
15« reactants are required, and less time consuming [22, 23, 24, 7]. Hence, in
155 this work, we consider the problem of parameter estimation directly from
156 progress curves, specifically, those for the concentration of substrate.

157 Inverse problems are typically formulated in terms of an operator, F,
153 mapping the space of parameters, (), to the space of observations, Y, i.e.
F(q) =y, (13)

150 where ¢ € @ is a vector of parameters, and y € Y is a vector of observed
1o quantities. In general, FF = G o H is a composite of the solution operator
e S, which maps a parameter vector ¢ to a solution vector ¥ of the underlying
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12 ordinary differential equation for the rate equations, and and the observation
163 operator R, which takes g to the observable y [25]. For example, if fluorescent
s markers are used to tag substrate molecules, and fluorescent intensity is
165 measured at times ¢;, GG is then the mapping between the fluorescent intensity
16 at times t; and substrate concentration, and H is the solution to the rate
167 equations (7). G effectively samples the solution to the rate equation model at
s the observation times and converts those concentrations to the experimental
19 Observables.

170 For the present study, we assume the concentrations are observed directly,
i hence G is simply a sampling of the integrated rate equations (5). Specifically,
12 we consider the case in which the concentration of the substrate is measured
13 at discrete times t; and H is the solution to (7). The inverse problem consists
s of finding a parameter vector ¢ solving (13). However, (13) is generally ill-
s posed due to experimental noise. Even in the absence of experimental error,
e the inverse problem will be ill-posed, because the MM equation only approx-
7 imates the mass action rate equations (5), even when the steady-state and
s reactant-stationary assumptions are valid. The exact inverse problem must
e then be reformulated as a least-squares optimization problem to minimize
1o the function

ly = F(a)lly, (14)

;1 where || - ||y is the Ly norm on Y. The sensitivity of (14) to changes in
1.2 parameter values is measured by the local condition number for the first
13 order optimality condition. The condition number is given by the ratio of
18« the maximum and minimum eigenvalues of the matrix

J* (Q*) J (Q*) . (15>

185 In the above expression, J is the Jacobian of the mapping F', ¢, is the
16 “true” parameter vector and J* denotes the conjugate transpose of J. Ill-
157 conditioning implies small errors in the data (or model) can result in large
18 errors in the estimated parameters. Although many features of a problem
1o can affect the conditioning (such as proper choice of units) [26], of particular
1o importance when fitting the MM equation is the correlation of the parame-
1 ters. When the parameters are highly correlated the model is incapable of
12 uniquely determining the parameters because, as the correlation coefficient
13 tends toward 1, the parameters become linearly dependent. In this case,
104 at least one column of J will be approximately a linear combination of the
105 others, and hence not invertible.
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196 Effectively, this dictates when the mass action model (5), which depends
w7 on three parameters (ki,k_j,kcat), reduces to the MM model (7) with pa-
ws rameters (Kj7,V). Under experimental conditions for which the reactant
199 stationary assumption is valid, it is not possible to estimate all three rate
200 constants from the mass action model using time course data. Similarly,
20 within the region of validity for the reactant stationary assumption, there
200 are sub-regions in which rank(J)= 1, and hence prohibit estimation of both
203 K and V from time course data. To see where this rank deficiency occurs
200 we consider two regions in the so/Ky—€o/ Ky plane. In both, the conditions
205 for the validity of the reactant stationary assumption are met. Additionally,
206 in the first case s < K. Since s < sq for all ¢, we can expand (5a) in
201 powers of s/K . Truncating this expansion at order two leads to

SZ_%%(l_fb>' (16)

28 To lowest order, s depends only on the ratio of V' to Kj;, and hence the
200 inverse problem of finding both parameters from time course data will become
20 extremely ill-conditioned at small substrate concentrations (see, Fig. 2A).
211 Next, consider the case in which the substrate is in great excess, i.e.
a2 5o > K. Initially, s & sg, allowing for an expansion of § in powers of
23 K /so, which, to second order, gives

sz—v<1—5¥>. (17)

S

2 Hence, so long as s > K, the substrate concentration will decrease linearly
25 with rate —V. Eventually, the progress curve must deviate from the initial
216 linearity, and presumably, this curvature should contain information about
a7 Ky, allowing for both parameters to be estimated. However, if the time over
218 which the progress curve is nonlinear is small, or equivalently, the initial linear
219 Tegime very nearly approaches substrate depletion, parameter estimation will
20 fail. Large so/Kj can be shown to imply this by comparing the timescale
a1 for significant substrate depletion, tg, with the timescale of high curvature
22 tgo. The substrate depletion timescale is given by [10]

_ As Ky + 50
C Smax|

ts (18)
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223 The high-curvature timescale can be estimated with the aid of the second
226 derivative of the substrate concentration,
V2K MS

§= R (19)

25 ¢ is defined as the ratio of the total change in velocity of the reaction to the
»6 maximum acceleration. The maximum acceleration, found by equating (19)
27 with zero, occurs when s = K, /2 for sg > K);/2, and sy otherwise. Since
»s the present analysis concerns high sg/K);, the high-curvature timescale is
29 given by

. AV 2TK)ysg
@ ‘§|5:KM/2 4V(KM+80)’

20 where AV is the change in reaction velocity through the region of curvature
an and is equal to V. Estimation of parameters from time course data will not
22 be possible when tg < tg, or, upon substitution of (18) and (20), when

27 (1420
Kur

23 Therefore, as the initial substrate concentration is increased, the proportion
234 of the time course that can yield information about Kj; decreases, and mea-
235 surements will require greater resolution in both time and concentration.
26 Fig. 2B shows the condition number and the ratio of the substrate deple-
27 tion timescale to the high-curvature timescale for a large range of so/ K.
23 At small values of so/K)y, ill-conditioning makes parameter extraction in-
20 tractable, while at large so/Kjs, measurements must be increasingly precise.
a0 Thus, substrate concentrations close to K, are desirable when determining
241 parameters.

(20)

<1 (21)

22 4. Numerical experiments

243 To demonstrate and quantify the regions in which the conditioning of the
24 inverse problem is poor, and the necessary measurements become intractable,
us  we present a systematic numerical analysis of progress curve experiments in
26 this section.

10
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a7 4.1. Methodology for numerical progress curve experiments

248 Numerical experiments consist of first generating progress curve data from
29 the mass action rate equations with a known set of rate constants. Then, the
0 values of Ky and V' corresponding to those rate constants are estimated by
1 fitting the MM equations to the progress curve. To generate experimental
252 progress curves it is necessary to choose a set of rate constants (ki, k_1, kcat),
53 and experimental protocol. The experimental protocol consists of defining
254 initial conditions, (s, €o, o, Po), & time span for the experimental observation,
25 Lops, and a sampling frequency w. The system of equations (5) are integrated
26 numerically from ¢ € [0, tops] and substrate concentrations are recorded every
7w time units, leading to to,s w data points {s; (¢;)}.

The data is then fit using the numerically integrated form of (5a). The
nonlinear regression used to calculate the parameters (K7, V') is performed
using the Levenberg-Marquardt algorithm as implemented in SciPy (version
0.17.1, http://www.scipy.org). In many cases, supplying good initial condi-
tions for the optimizer used for the regression is crucial to finding accurate
parameter estimates. Since, in actual experiments the values of K,; and V
are not known a priori, we attempt to roughly estimate their values from
the time course data to provide initial conditions for the optimization. To
do this, {s; (t;)} is differentiated numerically by central differences to give
approximate rates {s; (¢;)}. Then, using (5a), data at any two time points,
t; and ?; can be used to estimate the parameters through

Ky, — B Si)siss (22)

SiSj — SjSi

V= (KM +1). (23)

Si

s In theory, any two points can be used to estimate K,; and V', however, it
0 1S best to use data for which the velocity is changing at that greatest rate.
20 Hence, we additionally numerically calculate {§; (¢;)} and choose the times
261 directly on either side of the maximum to substitute into (22) and (23). To
»%2 avoid using data points in the transient regime before the system reaches a
23 quasi-steady state, we consider only the regime for which s(¢;) < so/2. For
xs  actual experiments, noise can make calculations of derivatives subject to large
%5 errors, hence smoothing techniques must be used. Additionally, numerous
x6  pairs of data points can be used to generate a distribution of estimates, which
»7 can then be averaged to give initial conditions for the optimization, similar to

11
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268 [27]. Once the initial conditions for the optimization routine are established,
x0  the best-fit values of K); and V' can be systematically estimated.

270 We note that when experimental conditions do not lie in a region for
on - which the reactant stationary assumption is valid, the above technique will
o2 naturally provide poor estimates for K, and V. In these regions, we have
;3 also used the true values K, and V, calculated from the known rate con-
o stants, as initial conditions. Both methods provide qualitatively similar re-
s sults throughout the regions of parameter space investigated here, and quan-
o titatively agree in the region for which the reactant stationary assumption is
a7 valid.

as 4.2. Errors in parameter estimates can be large even when the reactant sta-
279 tionary assumption is valid

280 Despite the validity of the reactant stationary assumption being sufficient
21 for the MM equation model to closely align with the solution to the mass
282 action governing equations, the inverse problem does not provide accurate
283 estimates for parameters within the same range. Fig. 3 shows errors in esti-
20 mates of Ky and V for a wide range of eq/ Ky and so/ K. Below and above
25 the range plotted for sq/ Ky, the solutions become numerically unstable due
286 to the conditioning problems discussed in Section 3. It is clear however, that
27 even within the range defined by large and small values of sq/ Ky, signif-
28 icant errors are present. At high sq/K); and eg/ Ky, V can be accurately
280 determined, but K, begins to show significant deviation. This is anticipated
20 from the high-so/ K, approximation of the substrate rate equation, which
21 depends only on V. Additionally, when so/K); < 1, the error contours fol-
22 low a line for which ey &~ sy. The condition that enzyme concentration is
203 small relative to that of the substrate was one of the earliest conditions for
20 the validity of the MM equations derived from singular perturbation theory
205 [28]. For the forward problem, Segel [10] showed this condition to be overly
206 Testrictive, yet it appears to be appropriate for the inverse problem.

207 An explanation for the condition ey < s¢ can be found by comparing the
208 integrated form of the MM substrate equation with an exponential progress
200 curve that is the limiting solution to the MM equations as so/ K s approaches
20 zero. The integrated closed-form of (7b), known as the Schnell-Mendoza
;1 equation [21], can be written explicitly in terms of the Lambert-W function

12
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302 [29]

» (il)
ﬂ:<S—°) w2\ B ) (24)

s Expanding the above expression about zero and truncating at first order

s4  leads to
kcateot 50
S(t) - KM - kcateot

— e

50

, (25)

35  where we have used the definition of V' to explicitly show the dependence on
6 €g. The exponential solution takes the form

kcat €0t

ex t -
Sow () _ "Ry (26)
S0

37 Comparing (25) and (26) shows that the correction provided by the MM so-
58 lution over the exponential progress curve becomes decreasingly significant
20 as eg/sy becomes large. Fig 4A compares the mean concentration errors
s between the best fit solutions and the “true” solutions for both the MM
su  equation and an exponential fit. At small values of eq/sg, the MM equation
sz provides a distinctly better fit than the exponential solution, allowing both
a3 Ky and V' to be estimated from a single progress curve. As eg/sg increases,
s the two fitting functions eventually provide the identical fits. This corre-
a5 sponds to an exponential increase in the variance of the estimated parame-
us  ters (Fig. 4B), and indicates that only the ratio V/ K, can be determined
a7 in this range.

sis 4.3, Fitting the initial substrate concentration does not significantly alter es-
319 timates of Ky and V

320 Even when the reactant stationary assumption is valid, a small amount
;1 of substrate will be consumed in the initial transient period. Hence, know-
»2 ing the substrate concentration at the start of the reaction may not exactly
23 correspond to that at the start of the quasi-stead-state phase. Although this
224 difference is small, it is not clear whether this can noticeably alter the esti-
»s mation of K, and V. Additionally, time course measurements often employ

13
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16 optical techniques to collect concentration data. Without time consuming
w7 calibration curve experiments to relate the fluorescent intensity to concen-
w8 tration directly, only relative concentrations are known. For these reasons,
120 So can be treated as an additional unknown parameter for the regression
30 analysis [30].

331 Fig. 5 shows error contours for estimates of Kj;, V and sy for different
sz experimental conditions. Similar to when s( is assumed known, the errors
s in K and V follow lines of constant eg/sy at low substrate concentration.
14 Additionally, Fig. 5C shows that the best-fit value of sy corresponds to
35 the true value of the initial substrate concentration for conditions where the
136 reactant stationary assumption is valid. These results indicate that including
s So as a free parameter can yield similar information about the constants Ky,
ss and V', even in those cases when no definite concentrations are known.

130 4.4. Data noise further reduces the range of conditions providing accurate
340 estimates of Ky and V'

341 In any physical experiment, some finite amount of measurement error will
sz be present. To understand how signal noise affects the estimation of Kj; and
13V, we add noise to the numerically-calculated solution of (5a) such that the

4 data becomes
{si(ti)}s = {si(t:)} =n(9), (27)

s where 7 is a pseudo-random number drawn from a Gaussian distribution of
s mean zero and standard deviation 6. The data is then fit as described in
w7 Section 4.1. However, the noise in the data precludes the use of the method
us  described for estimating good initial conditions for the solver. Without a
19 smoothing procedure, the difference formulas (22) and (23) can lead to large
30 errors. In order to eliminate possible uncertainty arising from the determi-
1 nation of good initial guesses from experimental data, we chose the “true”
2 values of K, and V' as the starting point for the optimization algorithm.

353 Contour plots of the errors in the estimated values of K, and V for the
34 case of 0 = 0.01 are shown in Fig. 6. Qualitatively, they exhibit the same
35 behavior as the noise-free error contours (Fig. 3), yet the magnitude of the
16 error increases, shrinking the range of initial conditions for which the error
37 will be below a given threshold. A meaningful characterization of the quality
s of a fit is the variance in the estimated model parameters. To calculate the
9 variance of K, and V, the covariance matrix is first calculated as

Cov = (JTJ)™", (28)

14
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w0 where J is the Jacobian evaluated numerically at the terminal point of the
s1 - optimization. The variance for K,; and V are then the diagonal elements
2 of Cov. As shown in Fig. 7, the range of experimental conditions leading
13 to precise estimates of K, becomes significantly constrained when even a
s« small amount of measurement error is present. Only in the region where
35 So/ K ~ 1 and eg/K); < 1 are the estimated K, values robust. At larger
w6 initial substrate concentrations, the noise in the data sufficiently smears the
s7 sharply curved region of the substrate progress curve, making extraction
s Of Ky prone to uncertainty. At small initial substrate concentrations, the
30 added noise reduces the distinction between the exponential and MM solution
s branches shown in Fig. 4 A, making independent determination of K, and V'
sn more difficult. Hence, even with only slight measurement error the reliability
s of estimated parameters falls significantly as the ratio so/K; departs from
573 unity.

sz 5. Discussion

375 It is now well established that the MM equation accurately captures the
se  kinetics of simple enzyme-catalyzed reactions when the reactant-stationary
577 assumption holds true. However, as we have shown here, this fact does not
s imply that K,; and V can be obtained from experimental progress curves
sro - conducted within the range of validity for the reactant stationary assumption.
;0 ' This highlights an important problem encountered in parameter estimation.
1 Even when the MM equation very accurately fits the experimental data, the
;2 fitted parameters may not accurately represent their true values. Without
;3 a thorough analysis of the inverse problem, it is not possible to distinguish
s between good fits that provide poor parameter estimates, and good fits that
s accurately estimate parameter.

386 Most of the research done on the analysis of enzyme progress curves has
;7 focused on the nonlinear regression analysis and algorithms to fit progress
ss  curves data [31, 23, 19, 32]. Additional research has investigated the design of
39 progress curve experiments from a computational and theoretical standpoint
30 [33]. In these works, either experimental data is collected, or artificial data is
s generated by adding noise to numerical solutions the integrated MM equation
s2  for prescribed values of K, and V. Then, the artificial data is fitted in
33 order to estimate Kj; and V. Although this procedure can identify values
sa of Ky and V for which progress curves can be well-fit by the integrated
s MM equation, it makes no connection to the underlying microscopic rate

15
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w6 constants. Hence, these studies do not directly assess whether the predicted
so7 values of Ky and V' are connected to their microscopic definitions. In the
w8 present study we have addressed this issue by extracting data from numerical
300 solutions to the underlying mass-action system for prescribed microscopic
wo Tate constants, then comparing the predicted values of Kj; and V' with those
w1 derived from the prescribed values of ki, k_1, and k.q.

402 The detailed error analysis presented in this work provides guidelines for
w03 the ranges of experimental conditions allowing for true parameter estimation.
ws  Specifically, we see that, in order for both K,; and V to be derived from
ws substrate progress curve measurements:

406 e The initial substrate concentration must be within approximately an
407 order of magnitude of the Michaelis constant, that is so = O(Ky),
408 especially when significant noise is present in the data.

409 e When the initial substrate concentration is in great excess of the Michaelis
410 constant, that is so > K}, a linear fit to the initial velocity will yield
a11 V', but provide no information about K.

a12 e When the initial substrate concentration is small compared to the
413 Michaelis constant, that is sy < K}, an exponential fit to the progress
a14 curve will provide an estimate for the ratio of V' to Kj;, but neither
a15 parameter independently.

416 The recommendations presented here coincide with those of Duggleby

ar and Clarke [33], who recommend an initial substrate concentration of ap-
sis proximately 2.5K,;. However, we additionally provide error contours for
a0 parameters estimated from experiments conducted under conditions far from
w20 this optimal value. This analysis shows that reasonable estimates can be
o1 expected so long as the initial substrate concentration is within an order of
222 magnitude of 2.5K),;. Furthermore, noise in the data restricts this range to
23 be significantly smaller that the theoretical range for the validity of the MM
24 equation.

425 In general, since these requirements depend on K, they cannot be as-
w6 sessed before conducting an experiment. However, they do provide useful
w7 checks that can reduce the number of experiments required, especially when
w28 compared to parameter estimation based on initial rate experiments. If a
w9 progress curve for a given initial substrate concentration cannot be fit by an
w0 exponential, and has a curvature that can be resolved, nonlinear regression

16
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a1 of the progress curve will provide accurate estimates of both K, and V. If,
a2 say, the progress curve can reasonably be fit by an exponential, a second
a3 experiment with substantially larger initial substrate concentration should
s be performed. Then, the second progress curve, so long as the increase in
.35 initial substrate concentration is great enough to surpass the substrate range
a6 for with the kinetics are exponential, should yield either a curve from which
w7 both parameters can be estimated, or a curve from which V' can be esti-
.3 mated. Hence, the two experiments are sufficient to determine both K,
a0 and V. This is in contrast to initial rate experiments, which require a large
w0 number of experiments such that a curve of the initial reaction velocity as
a1 a function of sy can be produced. For accurate measurement of K;; and V/
a2 from initial rate experiments, both large and small values of the substrate
w3 (relative to Kjy) must be used [14, 18]. Hence, progress curve analysis will
us  always require fewer experiments than initial rate experiments. Additionally,
ws if initial rate experiments are used, progress curve analysis can be used as
as a check the accuracy of the estimates. Values of K, and V' obtained from
w7 fitting (5a) to the initial rate data should correspond to those values obtained
ws  from progress curve analysis of the experiments for which the initial rates are
wo intermediate between 0 and V.

450 In conclusion, this work both advocates and cautions the use of progress
1 curve analysis in determining kinetic parameters for enzymatic reactions.
2 Progress curve assays can greatly reduce the number of experiments (and
53 hence the cost and quantity of reagents) needed, while still providing accurate
s measurements. However, it is essential to not conflate an accurate fit with
5 an accurate estimate of K, and V. If this is kept in mind, progress curve
ss6  analysis has significant advantages over the use of initial rate experiments.
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Figure 1: Concentration error contours in the ey/Ky—so/K)s plane. The maximal
concentration errors are plotted in the plane of initial enzyme and substrate concentrations,
normalized by Kj,;. The dashed black line corresponds to the condition for steady-state
assumption (10), while the solid black line corresponds to the reactant stationary condi-
tion (11). Each panel shows different values of Kg and K, while Kj; = 1 for all cases.
Panel A: Kg =0.1, K =0.9; Panel B: Kg = 0.5, K = 0.5; Panel C: Kg =0.9, K =0.1.
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Figure 2: (A) Substrate progress curves for high, intermediate and low initial
substrate concentrations. Substrate concentrations for differing values of So/Kjs are
plotted as a function of time. When the initial substrate concentration is large (red
dotted line) the substrate depletion is linear until nearly all substrate has been depleted.
With low initial substrate concentration (blue dashed line), the depletion follows a simple
exponential. At intermediate values, the concentration follows the full hyperbolic rate
law and both Kj; and V' can be uniquely identified through regression. For all curves,
V =10"2 M sec™!. (B) Condition number (solid line) and timescale ratio tg/tq
as functions of the sg/K);. At small values of sq/Kjs, the inverse problem becomes
ill-conditioned. At large values of so/Kjs, the region of the progress curve providing
information about Kj; becomes increasingly small.
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Figure 3: Error contours of the estimated values Kj; and V. Errors in the predicted
values of K; and V for different initial substrate and enzyme concentrations are shown to
deviate from the conditions for the validity of the reactant stationary assumption (shown
as the solid line). The dashed line corresponds to condition (10). For sg/Kjps values
lower than 1072 and greater than 102, the fitting algorithm becomes unstable. Note
that the color bar scale is logarithmic, showing errors can be significant. In this figure,
Kg =K =10.
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Figure 4: (A) Mean concentration error, and (B) Mean variance in estimated
parameters for the Michaelis—Menten equation and an exponential model. For
initial enzyme concentrations smaller than initial substrate concentrations, the Michaelis—
Menten equation provides a noticeably better approximation of the true progress curve
than does the exponential model, allowing for both V and Kj; to be uniquely deter-
mined. Parameters for the case shown are: (ki,k_1,kcat) = (1.0,0.5,0.5), tops = 3ts,
w = tobs/1000, so = 1.
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Figure 5: Error contours when initial substrate concentration, sy, is estimated
from data. K); and V prediction errors (panels A and B, respectively) are qualitatively
the same as those found when sg is known a priori. The error in estimating sg follows the
reactant stationary condition, as well as providing accurate estimates when initial enzyme
concentration is high and initial substrate concentration is low. Parameters for the case
shown are: (k1,k_1,kcat) = (1.0,0.5,0.5), tops = 3ts, w = tobs/100.
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Figure 6: Error contours for data with Gaussian noise. When noise is added to the
simulated data (6 = 0.01), errors in the estimated parameters worsen compared to noise-
free data. Parameters for the case shown are: (k1,k_1,kcat) = (1.0,0.5,0.5), tobs = 3ts,
w = tops/1000.
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Figure 7: Computed parameter variance for noisy and noise-free data. Estimated
variance in the parameters K, (Panels A and C) and V (Panels B and D) for cases with
d = 0.01 (A and B) and no noise (C and D). Even a small amount of noise restricts the
range of conditions providing robust parameter estimates. Parameters for the case shown
are: (k1,k—1,kcat) = (1.0,0.5,0.5), tops = 3ts, w = tobs/1000.
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