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 2

ABSTRACT 1 

Predicting how species will respond to the rapid climatic changes predicted this century is an 2 

urgent task.  Species Distribution Models (SDMs) use the current relationship between 3 

environmental variation and species’ abundances to predict the effect of future environmental 4 

change on their distributions.  However, two common assumptions of SDMs are likely to be 5 

violated in many cases: (1) That the relationship of environment with abundance or fitness is 6 

constant throughout a species’ range and will remain so in future, and (2) That abiotic factors 7 

(e.g. temperature, humidity) determine species’ distributions.  We test these assumptions by 8 

relating field abundance of the rainforest fruit fly Drosophila birchii to ecological change 9 

across gradients that include its low and high altitudinal limits. We then test how such 10 

ecological variation affects the fitness of 35 D. birchii families transplanted in 591 cages to 11 

sites along two altitudinal gradients, to determine whether genetic variation in fitness responses 12 

could facilitate future adaptation to environmental change.  Overall, field abundance was 13 

highest at cooler, high altitude sites, and declined towards warmer, low altitude sites.  By 14 

contrast, cage fitness (productivity) increased towards warmer, lower altitude sites, suggesting 15 

that biotic interactions (absent from cages) drive ecological limits at warmer margins.  In 16 

addition, the relationship between environmental variation and abundance varied significantly 17 

among gradients, indicating divergence in ecological niche across the species’ range.  18 

However, there was no evidence for local adaptation within gradients, despite greater 19 

productivity of high altitude than low altitude populations when families were reared under 20 

laboratory conditions.  Families also responded similarly to transplantation along gradients, 21 

providing no evidence for abiotic fitness trade-offs that would favour local adaptation.  These 22 

findings highlight the importance of (1) measuring genetic variation of key traits under 23 

ecologically relevant conditions, and (2) considering the effect of biotic interactions when 24 

predicting species’ responses to environmental change.  25 
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 3

INTRODUCTION 1 

 2 

Understanding the factors that determine species’ distributions and local abundances is a 3 

central goal of ecology, and is essential for predicting how populations, species and ecological 4 

communities will respond to environmental change (Ehrlén &  Morris, 2015).  Species’ 5 

distribution models (also known as ecological niche or bioclimatic envelope models) are used 6 

to relate species’ abundances to environmental variables, and to predict shifts in their 7 

distributions based on future climatic conditions (Elith &  Leathwick, 2009, Guisan &  8 

Thuiller, 2005, Pearson &  Dawson, 2003, Thomas et al., 2004).  Such models typically assume 9 

that the association between the environment and a species’ abundance (i.e. its niche) does not 10 

vary across the species’ geographical range, and will remain stable in the future (but see 11 

Kearney et al., 2009).  However, spatial variation in environmental tolerances is observed 12 

across many species’ ranges, demonstrating local niche differentiation (Banta et al., 2012, 13 

Kelly et al., 2012).  In addition, genetic variation within populations may generate rapid 14 

evolutionary responses to environmental change in situ, allowing population persistence 15 

beyond current ecological limits (Bridle &  Vines, 2007, Hoffmann et al., 2015, Hoffmann &  16 

Sgrò, 2011).   17 

 18 

Ignoring variation in a species’ ecological niche within populations, or between populations 19 

across its geographical range, will have two contrasting consequences: (1) we may 20 

overestimate the geographical distribution of a species if tolerances are assumed to be constant 21 

throughout the species’ range (i.e. that all populations can tolerate all currently occupied 22 

conditions: Hampe, 2004, Kelly et al., 2012); and (2) we may underestimate the potential for 23 

species to persist through evolutionary change, where extinction would be predicted based on 24 

current distributions (Davis et al., 2005, Hoffmann &  Sgrò, 2011, Kearney et al., 2009).  25 
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 4

Understanding the potential for rapid adaptation generated by standing genetic variation in 1 

fitness, both among and within populations, is therefore crucial when predicting the impacts of 2 

environmental change on population persistence, and the future geographical distributions of 3 

species (Atkins &  Travis, 2010, Chevin et al., 2010, Hampe, 2004, Holt, 2009, Lavergne et al., 4 

2010). 5 

 6 

Studies testing for local adaptation and genetic variation in environmental tolerances in the 7 

context of predicting responses to environmental change are rare for animals, where attention 8 

has focused on the evolution of traits in single populations (e.g. Charmantier &  Gienapp, 9 

2014, Kruuk et al., 2008).  These data are more widely available in plants, and have been used 10 

to project future responses to environmental change.  For example, Banta et al. (2012) 11 

modelled the niche breadth of Arabidopsis thaliana genotypes that varied in flowering time, 12 

and found a more than four-fold difference between genotypes in the size of their potential 13 

distributions.  Similarly, studies of local adaptation in forest trees reveal genetic divergence in 14 

phenology and other ecological traits that are associated with their broad geographical 15 

distributions (e.g. Alberto et al., 2013, Kremer et al., 2012).   In the few cases where genetic 16 

variation in ecological traits has been estimated across multiple populations in animals, this has 17 

typically been done under controlled conditions in the laboratory, rather than under field 18 

conditions, which will vary far more in time and space, meaning that selection may act on 19 

many more traits simultaneously, or at different points in time.  Because environmental 20 

conditions affect the heritability of many traits (Charmantier &  Garant, 2005, Hoffmann &  21 

Merilä, 1999, Kruuk et al., 2008), laboratory assays of genetic variance in traits or fitness may 22 

not predict evolutionary trajectories in natural populations (Pemberton, 2010).  These issues 23 

mean there is an urgent need for data on genetic variation in fitness across a range of naturally 24 
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 5

varying environments, to determine how the relationship between the environment and fitness 1 

varies due to local adaptation, or in relation to genetic variation within populations.  2 

 3 

Drosophila birchii is endemic to the tropical rainforests of north-eastern Australia and Papua 4 

New Guinea (Schiffer &  McEvey, 2006).  Laboratory assays of environmental tolerance traits 5 

in this species have revealed genetic divergence along both latitudinal (Griffiths et al., 2005, 6 

Hoffmann et al., 2003, van Heerwaarden et al., 2009) and some altitudinal (Bridle et al., 2009) 7 

gradients, consistent with local adaptation to temperature and humidity variation.  In addition, 8 

laboratory assays have revealed lower levels of genetic variation in ecologically important 9 

traits associated with tolerance of climatic stresses within populations close to the species’ 10 

range margin, which may constrain adaptation (e.g. Hoffmann et al., 2003, Kellermann et al., 11 

2006). These results suggest that ecological tolerances vary substantially throughout the range 12 

of D. birchii, and that the potential for adaptation to environmental change also varies among 13 

populations.  However, genetic variation in fitness under field conditions has not previously 14 

been measured, therefore it is not known how predictions of evolutionary potential based on 15 

genetic variation in traits measured in the laboratory relate to fitness variation in the more 16 

variable field environment, where biotic interactions are common and complex, and are 17 

themselves mediated by variation in abiotic factors. 18 

 19 

In this study, we examine the relationship between local abundance of D. birchii and 20 

environmental variation along four altitudinal gradients. These altitudinal gradients represent 21 

local ecological limits of this species, and show temperature and humidity variation across 22 

distances of 4-16 km of a similar magnitude to that observed across hundreds of kilometres of 23 

latitudinal range (see Table S1). In addition, we transplanted families of laboratory-reared D. 24 

birchii in cages along two altitudinal gradients and tracked their fitness under naturally-varying 25 
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environmental regimes, in order to: (i) determine the effect of environmental change (simulated 1 

by movement along an environmental gradient) on fitness of D. birchii, (ii) test for local 2 

adaptation across these gradients, and (iii) estimate genetic variation in fitness, both overall, 3 

and in response to movement along the gradient (i.e., genetic variation in the ‘reaction norms’ 4 

of fitness).  By transplanting virgin flies, we ensured that courtship, mating, reproduction, and 5 

the development and survival of offspring occurred entirely under field conditions, and 6 

therefore captured all of these important components of fitness variation.  Flies in cages 7 

experienced abiotic conditions similar to those outside cages, but were not exposed to biotic 8 

interactions.  Therefore, by comparing the change in fitness of D. birchii in cages as a result of 9 

movement along environmental gradients with the change in its field abundance, we were also 10 

able to test the degree to which abiotic environmental conditions alone determine species’ 11 

distributions.  Furthermore, by transplanting flies from multiple populations and families, we 12 

were able to evaluate the role of among-population divergence in mediating this relationship, 13 

and the potential for rapid changes in ecological tolerances in the future through adaptation.  14 

Finally, by comparing laboratory estimates of genetic variation in fitness with those made in 15 

the field, we provide one of the first tests of how trait genetic variation estimated in the 16 

laboratory predicts the potential for evolutionary responses to environmental change under 17 

more ecologically realistic conditions. 18 

 19 

 20 

MATERIALS AND METHODS 21 

 22 

Predicting the local abundance of D. birchii from environmental variables  23 

 24 

Estimating D. birchii abundance along altitudinal gradients 25 
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 7

Adult D. birchii were collected between February-May in 2010-2012 from a total of 94 sites, 1 

comprising 10-30 sites along each of four altitudinal gradients (Paluma, Kirrama, Mt Edith and 2 

Mt Lewis) in northern Queensland, Australia.  Gradients were between 16°30’S and 19°00’S 3 

latitude (a distance of ~300 km), and spanned altitudes from 23 - 1233m above sea level (a.s.l.), 4 

over distances of 3.7 - 16.3 km (Figure 1; Table S1).  At each site, 5 - 20 buckets of mashed 5 

banana (> 1 day old) were placed at least 5m apart for 5 - 10 days. Flies were sampled from 6 

each bucket twice daily using a sweep net; captured flies were then sorted under CO2 7 

anaesthesia to identify D. birchii, and to isolate D. birchii females for isofemale line generation 8 

(see below). 9 

 10 

Estimates of local abundance were the mean number of D. birchii males captured per site per 11 

day, as used by Bridle et al. (2009). We used the number of males captured (rather than total 12 

number of flies) because female D. birchii cannot be distinguished from closely-related species 13 

in the serrata species complex, D. serrata and D. bunnanda, whereas males can be identified 14 

by examining their genital bristles (Schiffer &  McEvey, 2006).  We estimated abundance at 48 15 

sites along two gradients sampled in 2010 (Kirrama and Mt Lewis) and 46 sites along three 16 

gradients in 2011 (Paluma, Mt Edith and Mt Lewis) (Figure 1; Table S1).  There was no 17 

significant variation in the magnitude or distribution of abundance between the two years of 18 

sampling at Mt Lewis (the only gradient sampled in both years; see Table S1), therefore 19 

abundance data at sites along this gradient were combined across years.   20 

 21 

Measuring environmental predictors of D. birchii abundance 22 

Tinytag dataloggers were attached to trees at 10 - 30 sites along each altitudinal gradient to take 23 

hourly measurements of temperature (°C) and relative humidity (%) between February 2010 24 
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 8

and June 2012.  This included the sampling period, as well as the duration of the cage 1 

transplant experiments.  In addition, the abundance of the other serrata complex species, D. 2 

bunnanda and D. serrata, was estimated at each site based on numbers of males captured in 3 

traps.  This variable was included to provide a measure of the frequency of interspecific 4 

interactions at different points along gradients.  These species are closely related to D. birchii, 5 

use similar resources, and have partially overlapping geographical distributions, although their 6 

local abundances show different patterns with respect to environmental conditions (Schiffer &  7 

McEvey, 2006).  Drosophila serrata has a much broader latitudinal range than D. birchii, and 8 

is considered a habitat generalist.  Drosophila bunnanda, like D. birchii, is a rainforest 9 

specialist and has a more restricted distribution, with a southern border more than 500 km north 10 

of that of D. birchii.  Neither of these species was present at Mt Edith, but they were found at 11 

some sites at Paluma, Kirrama and Mt Lewis.  At the sites sampled, D. bunnanda was much 12 

more common than D. serrata (determined by genotyping field-caught males at the diagnostic 13 

locus Eip 75B), and numbers of D. serrata captured were too low to be used as an independent 14 

predictor of D. birchii abundance. We therefore combined estimates of the abundances of D. 15 

bunnanda and D. serrata as a single measure.   16 

 17 

Temperature and humidity data from Tinytag dataloggers and estimates of the abundance of 18 

other species of the serrata species complex were used to produce six environmental predictors 19 

of D. birchii abundance: (a) Abundance of non-D. birchii serrata-complex species 20 

(NONBIRCH), (b) Mean daily minimum temperature (MDTmin), (c) Mean daily temperature 21 

(MDT), (d) Mean daily maximum temperature (MDTmax), (e) Mean daily temperature range 22 

(MDTdiff), and (f) Mean daily humidity (MDH).   23 

 24 
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Linear regression revealed that most of the six environmental variables were strongly correlated 1 

with both latitude and altitude (Table S2). The environmental variables were also all highly 2 

correlated with one another (Table S3). To avoid collinearity of factors in models predicting 3 

abundance, we identified a set of uncorrelated variables by conducting a Principal Components 4 

Analysis (PCA) using the prcomp function in R v3.1.2 (R Core Team, 2014), with all variables 5 

standardised to a mean of 0 and standard deviation of 1. Temperature and humidity data 6 

collected over the full two-year measurement period were used in the PCA.  These values were 7 

highly correlated with those seen over the sampling periods, and over the course of the caged 8 

transplant experiments.  The first two Principal Components (PCs) together accounted for 89% 9 

of the total variation in the environmental variables (Table S4), and were included as factors in 10 

linear models predicting D. birchii abundance.  The first Principal Component (PC1) captured 11 

the majority (76.8%) of variation in the environmental variables, with relatively even loadings 12 

of all six variables, whereas PC2 was dominated by the abundance of other serrata-complex 13 

species (Table S4).  The positions of sites at each gradient with respect to PC1 and PC2 are 14 

shown in Figure 1.   15 

 16 

A linear model was fitted using the full set of abundance data across all gradients, with mean 17 

D. birchii abundance at each site as the response variable, and the following terms included as 18 

predictors: gradient (categorical variable with four levels corresponding to the four altitudinal 19 

gradients), linear and polynomial (quadratic) terms for PC1 and PC2 (continuous variables), 20 

and interactions of gradient with each of the linear and quadratic PC terms. Abundance data 21 

were weighted by the number of sampling days at each site in the linear model.  We fitted an 22 

additional set of models for each gradient separately, to explore environmental predictors found 23 

to differ among gradients in their relationship with D. birchii abundance in the full model.  24 

Linear models were fitted using the lm function in R v3.1.2 (R Core Team, 2014).  25 
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 1 

 2 

Testing for genetic variation in responses to environmental change: cage transplant 3 

experiment 4 

 5 

In March-May 2012, 35 isofemale lines from two sites at the top and bottom of both the Mt 6 

Edith and Paluma gradients were collected, and reared through two generations to large 7 

numbers under laboratory conditions.  They were then subjected to a line-cross design within 8 

collecting sites (see below and Figure S1), and virgin males and females from the lines 9 

generated were transplanted into 591 cages at multiple sites along the altitudinal gradient from 10 

which they were originally sampled (Figure S2).  Total productivity was assessed for each 11 

cage, allowing tests for local adaptation and estimates of genetic variation in fitness at each 12 

gradient under naturally-varying environmental conditions.  Because virgin flies were placed in 13 

cages in situ at field sites, all courtship, mating, egg-laying and larval and pupal development 14 

occurred under naturally varying conditions.  Despite being similar lengths, the steepness and 15 

altitudinal ranges of the gradients differ.  Paluma is much steeper than Mt Edith, covering twice 16 

the altitudinal range, and a much broader range of temperatures, humidity, and abundance of 17 

serrata-complex species (Table S1), as captured by the first two PCs (Figure 1). The design of 18 

the experiment is illustrated in Figure S2; details of the experimental procedures are given 19 

below. 20 

 21 

Establishment of isofemale lines 22 

Individual field-mated D. birchii females collected from two high and two low altitude sites at 23 

Paluma and Mt Edith were placed in 40 ml glass vials with 10 ml standard Drosophila media 24 

(agar, raw sugar, inactive yeast, propionic acid and methyl-4-hydroxybenzoate), supplemented 25 
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 11

with live yeast, and left to oviposit for four days to initiate isofemale lines. These mothers were 1 

transferred to a fresh food vial every four days until they no longer produced offspring. 2 

Offspring of the same mother were then mixed across vials to found the next generation.  Five 3 

isofemale lines were established for each site (four sites per gradient; 20 lines in total per 4 

gradient), and each isofemale line was maintained across 2–4 vials in a constant temperature 5 

(CT) room at 25 °C on a 12:12 hour light:dark cycle.   6 

 7 

Breeding flies for cage transplant experiment 8 

Isofemale lines collected from field sites were maintained in the laboratory for two generations 9 

after collection from the field in order to standardise maternal environment effects.  Following 10 

this, we established crosses between lines from the same site to ensure rapid generation of large 11 

numbers for field transplants (Figure S1).  We paired virgin females from each line with virgin 12 

males from each of the other lines from the same site (i.e. excluding within-line crosses), with 13 

three replicates per line-cross combination.  The crossing scheme used to generate flies for cage 14 

transplants is summarised in Figure S1. 15 

 16 

Each pair was left to mate and lay for five days and then discarded.  Offspring emerging from 17 

these crosses were counted and sexed on eclosion (± 12 hrs) each day until emergence was 18 

complete, and flies held separately by sex (up to 10 flies per vial) for up to 10 days before 19 

being transplanted to field cages.  We then pooled offspring from the same maternal isofemale 20 

line, keeping the sexes separate to ensure all flies were unmated prior to establishing cages.  21 

Flies transplanted into cages therefore ranged in age from 3 – 10 days, but mixing together flies 22 

from the same maternal isofemale line meant that their distribution across cages and sites was 23 
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random with respect to age.  We used this approach to avoid excluding lines with low fecundity 1 

from being tested in the field.  Transplanting ‘maternal isofemale lines’ (hereafter referred to as 2 

‘lines’) rather than generating mass bred lines for each site allowed us to maintain 3 

representation in our experiment of as many maternal lines as possible, as well as (crucially) 4 

enabling partitioning of among-line (genetic) variation in fitness under field conditions.   5 

 6 

Establishment of field transplant cages 7 

The cages used for field assays of line fitness were 600 ml clear plastic bottles with two 135 8 

mm x 95 mm windows cut out, covered with 2 mm fly wire mesh and 30-denier nylon stocking 9 

material, which allowed movement of air through the cages. Each cage was encased in 20 mm 10 

wire mesh to prevent attack by birds and mammals.  This cage construction allowed the 11 

survival and productivity of flies to be monitored, while exposing them to temperature and 12 

humidity that were as close to naturally-varying conditions as possible.  We dispensed 90 ml of 13 

media (as described above) directly into the bottom of each cage.  This volume of food was 9 14 

times that used to rear offspring of the same number of flies at low density in the laboratory 15 

(see methods of line maintenance above), to prevent food becoming a limiting resource during 16 

this experiment, and to minimize density-dependent competition among larvae.  Cages were 17 

suspended from tree branches between 1.5–1.8 m above the ground.  We placed iButton 18 

temperature loggers (Maxim integrated Products, San Jose, CA, USA) inside five of the cages 19 

at each site to record temperature hourly, to test that temperatures within cages were consistent 20 

with those measured outside by the TinyTag data loggers, and to assay temperature variation 21 

among cages within sites.  The iButtons revealed low variability in temperature within, relative 22 

to between sites (90% of variation in mean temperature was between compared to within sites), 23 

and Tinytag and cage temperature measurements were highly correlated (R2 = 0.88, P <0.001).  24 
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Figure S3 shows a comparison between iButton measurements inside cages and Tinytag 1 

measurements outside cages for mean daily temperature (MDT), mean daily minimum 2 

temperature (MDTmin) and mean daily maximum temperature (MDTmax).  Linear models 3 

comparing the two measures revealed no significant difference between measures inside and 4 

outside of cages for MDT or MDTmax, although measurements of MDTmin were, overall, lower 5 

inside cages than outside at field sites (Figure S3).  There was no significant difference between 6 

the two measures for the change in MDT, MDTmin or MDTmax in relation to altitude along 7 

gradients (Figure S3).   The iButtons did not measure humidity, therefore it was not possible to 8 

compare humidity inside and outside cages.  While it is likely that humidity in cages was 9 

increased relative to the outside air, mean daily humidity was high at all sites (> 74%, and 10 

usually >88%; Table S1), and is therefore unlikely to be a limiting factor for survival and 11 

reproduction of D. birchii. 12 

 13 

Lines were transplanted only to sites along their gradient of origin, not between gradients.  At 14 

each gradient, cage locations included the two high and two low altitude sites from which the 15 

lines were collected, as well as sites at intermediate altitudes (Figure S2).  At Mt Edith, 15 lines 16 

(9 from low altitude, 6 from high altitude sites) were transplanted along the gradient.  At 17 

Paluma, 20 lines (10 from each end of the gradient) were transplanted.  However, due to 18 

variation in fecundity of lines in the laboratory, there were insufficient flies to transplant all 19 

lines to all sites at each gradient.  At Mt Edith, between 9 – 15 lines were transplanted at each 20 

site, and this always included both high and low altitude lines (Figure S2).  At Paluma low 21 

altitude lines had much lower fecundity than high altitude lines (see below and Figure S4).  To 22 

maximise power to detect local adaptation (see below), Paluma lines from both high and low 23 

altitude populations were transplanted to cages at the two high and two low altitude sites from 24 

which lines were sourced (18 – 19 lines per site; Figure S2), but only high altitude lines were 25 
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transplanted to intermediate sites (6 – 8 lines per site; Figure S2).  We established 325 cages at 1 

nine sites at Mt Edith (mean = 36.1 cages/site), and 266 cages at ten sites at Paluma (mean = 2 

26.6 cages/site) (Figure S2). Five virgin male and female flies from the same line were placed 3 

in a given cage.  At each site there were 2 - 4 cages per line.  Exact numbers of lines and cages 4 

transplanted to each site along each gradient are shown in the table within Figure S2. 5 

 6 

Estimates of cage fitness 7 

We monitored each cage daily for five days after establishment and recorded the number of 8 

surviving adult flies each day.  On the fifth day, we removed all surviving flies to ensure they 9 

were not included in offspring counts used to measure productivity (see below).  We then left 10 

cages in situ for another 25 days (30 days total) to allow offspring to pupate and hatch, even at 11 

the coolest sites.  After 30 days, all cages were taken to the laboratory, where they were held 12 

for five days at 25°C to ensure that all offspring had emerged from that generation.  The first 13 

offspring did not emerge until after 20 days at any site, while the majority of offspring had 14 

emerged at all sites by day 30, therefore the emerging offspring were all from a single 15 

generation.  Total productivity (number of offspring emerging) was used as a measure of 16 

fitness for each cage.  This includes the effects of parental survival, however mean survival was 17 

high (Mt Edith = 75.2%; Paluma = 80.8%) and did not vary significantly along either gradient, 18 

or among lines, therefore the majority of productivity variation was driven by variation in 19 

reproductive success.  While fitness variation may become evident at later life history stages, 20 

the short lifespan and relatively low population density of D. birchii means that mating 21 

opportunities are likely to be a major factor limiting the lifetime fitness of D. birchii. This, 22 

combined with the high and uniform survival of flies in cages along altitudinal gradients, 23 

means that early fertility is likely to be a very important component of fitness variation in this 24 

species.  Therefore, while further data would be required to evaluate fitness variation at later 25 
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life history stages, we argue that within the logistical constraints of such a large experiment, 1 

focusing on this measure of fitness is justified.   2 

 3 

Analysis of fitness variation in field cages 4 

We fitted generalised linear mixed models (GLMMs) analysing variation in fitness 5 

(productivity) in cages along each gradient to: (1) test for local adaptation, and (2) estimate 6 

genetic variation in fitness, and in the effect of movement along a gradient on fitness (‘reaction 7 

norms’ in fitness of lines), in order to estimate the potential for adaptive responses to 8 

environmental change.   9 

 10 

To test for local adaptation, we used the ‘sympatric-allopatric’ (SA) contrast proposed by 11 

Blanquart et al. (2013).  This method compares the fitness of sympatric populations 12 

(populations transplanted back to their site of origin) with that of allopatric populations 13 

(populations transplanted to a different site from their site of origin), while controlling for 14 

variation due to habitat (i.e., environmental variation among transplant sites) and source 15 

population (i.e., due to genetic differences in fitness among source populations) (Blanquart et 16 

al., 2013).  This comparison has greater power to detect local adaptation than other more 17 

restrictive definitions of local adaptation (e.g., the ‘home vs away’ and ‘local vs foreign’ 18 

comparisons described by Kawecki and  Ebert (2004)) (Blanquart et al., 2013).  By maximising 19 

the number of transplants to gradient ends (where flies were sourced), we obtained the largest 20 

possible number of sympatric-allopatric comparisons, which increased our power to detect 21 

local adaptation (Blanquart et al., 2013).   22 

 23 
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GLMMs included as fixed effects: (1) environmental variables (a subset of PC1, PC2, (PC1)2, 1 

and (PC2)2.  Terms were sequentially removed and models compared to determine whether 2 

each improved model fit; see results), to account for habitat variation among transplant sites, 3 

(2) ‘source population’, a categorical variable with four levels corresponding to the populations 4 

from which D. birchii were sourced within a gradient, and (3) a ‘local adaptation’ term 5 

indicating whether a cage was ‘sympatric’ or ‘allopatric’, as defined above.  Evidence for local 6 

adaptation is indicated by significantly higher fitness of sympatric cages than allopatric cages, 7 

after controlling for habitat and population effects. 8 

 9 

We included random intercept and slope terms for the effect of line (nested within source 10 

population) to estimate: (i) genetic variation in fitness (averaged across the whole gradient), 11 

and (ii) variation among lines in fitness responses to environmental change (“fitness reaction 12 

norms”), respectively.  Random slope terms tested for variation in the fitness responses of lines 13 

with respect to the same environmental variables as were included as fixed effects in the model 14 

(i.e. a subset of PC1, PC2, (PC1)2, and (PC2)2; see above and results). 15 

 16 

Productivity data were over-dispersed relative to the Poisson distribution generally used for 17 

modelling count data, and had an excess of zeroes due to over-representation of cages from 18 

which no offspring emerged. We therefore modelled productivity as a negative binomial 19 

distribution (Lindén &  Mãntyniemi, 2011), specifying zero-inflation, and used a log link 20 

function. GLMMs were fitted using the R package glmmADMB 0.8.0  (Fournier et al., 2012, 21 

Skaug et al., 2013).  Separate models were fitted for each gradient. 22 

 23 

Genetic variation in productivity in the laboratory 24 
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We assessed variation among lines and source populations from Paluma and Mt Edith in their 1 

productivity in the laboratory for comparison with genetic variation estimated from field cages.  2 

Productivity was measured as the number of offspring emerging from crosses established to 3 

generate flies for the caged transplant experiment (see above), therefore it included the same set 4 

of lines as in analyses of cage fitness variation. We again fitted GLMMs using glmmADMB, 5 

using the same distribution as in analyses of cage fitness variation (see above).  We included 6 

source population as a fixed predictor, and maternal isofemale line (nested within source 7 

population) as a random factor.  To assess whether lines with high productivity under 8 

laboratory conditions also performed well in the field, we compared the rank order of lines for 9 

productivity in the laboratory and in the field using a Spearman’s rank correlation test, 10 

implemented using the cor.test function in R v3.1.2 (R Core Team, 2014).  Separate models 11 

were fitted for each gradient in both sets of analyses. 12 

 13 

 14 

Predicting local abundance of D. birchii from variation in cage fitness 15 

 16 

We fitted linear models to test how well cage fitness predicted local abundance of D. birchii at 17 

the gradients where caged transplants were undertaken (Paluma and Mt Edith). We used mean 18 

productivity in field cages as a measure of fitness at each site. Fitness and abundance data were 19 

both standardised to a mean of 0 and standard deviation of 1 so that they were on the same 20 

scale.  We fitted linear models with the lm function in R v3.1.2 (R Core Team, 2014), using 21 

standardised productivity as the predictor variable, and standardised abundance of D. birchii as 22 

the response variable.  Separate models were fitted for each gradient. 23 

 24 

 25 
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RESULTS 1 

 2 

Predicting local abundance of D. birchii from environmental variables 3 

 4 

At all gradients except Mt Lewis, the first Principal Component (PC1) from the PCA of 5 

environmental variables was a significant predictor of D. birchii abundance (Table 1; Figure 6 

1C).  However, the strength and shape of the relationship between PC1 and abundance varied 7 

substantially between gradients (Table 1; Figure 1C).  Abundance of D. birchii increased with 8 

PC1 at Mt Edith (indicating increased abundance at higher temperatures/lower altitudes), and 9 

decreased with PC1 at Paluma (Table 1; Figure 1C).  At Mt Edith and Kirrama, model fit was 10 

improved by the addition of a quadratic term for PC1 (Table 1).  Given that the four gradients 11 

span different altitude and temperature ranges (Table S1), these different patterns reflect, in 12 

part, variation in the range of values of PC1 present within each gradient (Figure 1B).  13 

However, differences are still evident when gradients are compared over equivalent values of 14 

PC1 (Figure 1C).  PC2 did not improve the fit of the model of D. birchii abundance overall 15 

(Table 1), or of models of D. birchii abundance within each gradient. 16 

 17 
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Figure 1. A. Locations of the altitudinal gradients where D. birchii was sampled, with the length of each gradient given in brackets.  Thick black 1 

line on top map indicates the extent of D. birchii’s distribution in Australia.  B. Plot showing the position of sites along each of the four 2 

altitudinal gradients with respect to the first two Principal Components (PC1 and PC2) from a Principal Components Analysis of six 3 

environmental variables. The loading of each environmental variable on these PCs is shown in Table S4. C. Mean abundance of D. birchii 4 

against PC1 for each of the four altitudinal gradients (see legend in B for interpretation of symbols).  Fitted curves from linear models of mean 5 

abundance on PC1 are shown for gradients where this relationship was significant (P < 0.05; see Table 1): Mt Edith (dotted line), Kirrama 6 

(dashed line) and Paluma (dash-dot line). The solid line is the fitted relationship from a model including the full data set (R2 = 0.10, F1,90 = 10.68, 7 

P = 0.002).8 
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Table 1. Predicting D. birchii abundance along four altitudinal gradients based on 1 

environmental variation.  Environmental variation is represented by the first two principal 2 

components (PC1 and PC2) of the ordination analysis (see text and Figure 1B).  For the overall 3 

analysis, gradient and interactions of gradient with linear and quadratic terms for each predictor 4 

were included. Factors showing a significant interaction with gradient (PC1 and PC12) were 5 

then included in models for each gradient individually. Model statistics indicating the fit of 6 

each model are also shown.  Significant terms (p < 0.05) in each model are in italics. 7 

Predictor df SS F P Model statistics 

Gradient 3 20.57 9.99 1.39 x 10-5    Adj. R2 = 0.404 
   F19,72 = 4.25 
   P = 3.86 x 10-6 

PC1 1 2.10 3.06 0.09 
PC12 1 0.85 1.23 0.27 
PC2 1 0.73 1.06 0.31 
PC22 1 0.25 0.36 0.55 
Gradient x PC1 3 17.78 8.64 5.70 x 10-5 

Gradient x PC12 3 8.82 4.29 0.01 
Gradient x PC2 3 3.14 1.53 0.22 
Gradient x PC22 3 1.19 0.58 0.63 
Residual 72 49.42   

 8 

  9 

Estimates of parameters for each gradient: 

Gradient Parameter Estimate (SE) t P Model statistics 

Mt Lewis 
 

Intercept 0.264 (0.046) 5.722 5.28 x 10-7    Adj. R2 = 0 
   F2,52 = 0.892 
   P = 0.416 

PC1 -0.015 (0.021) -0.721 0.474 
PC12 -0.003 (0.007) -0.430 0.669 

      
Mt Edith 
 

Intercept 6.094 (1.144) 5.328 0.002    Adj. R2 = 0.920 
   F2,6 = 46.82 
   P = 0.0002 

PC1 4.052 (1.057) 3.833 0.009 
PC12 0.683 (0.234) 2.923 0.027 

      
Kirrama Intercept 0.650 (0.108) 6.043 2.25 x 10-5    Adj. R2 = 0.213 

   F2,15 = 3.295 
   P = 0.065 

PC1 -0.247 (0.109) -2.254 0.040 
PC12 -0.254 (0.102) -2.490 0.025 

      
Paluma 
 

Intercept 0.373 (0.046) 8.185 7.88 x 10-5    Adj. R2 = 0.681 
   F2,7 = 10.58 
   P = 0.008 

PC1 -0.071 (0.016) -4.517 0.003 
PC12 0.009 (0.006) 1.513 0.174 
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Testing for genetic variation in responses to environmental change: caged transplant 1 

experiment 2 

 3 

Testing for local adaptation along altitudinal gradients 4 

There was no evidence for local adaptation within gradients; ‘sympatric’ cages did not 5 

outperform ‘allopatric’ cages after controlling for habitat and population effects at either 6 

gradient (Table 2; Figure 2).  At Mt Edith, the SA contrast was only marginally non-significant 7 

(P=0.052; Table 2), but fitness of allopatric cages exceeded that of sympatric cages (Figure 2), 8 

which is opposite to expectations if the difference is due to local adaptation.  At Paluma, there 9 

was no significant difference between the fitness of sympatric and allopatric cages, and the 10 

trend was also opposite to that predicted with local adaptation (P=0.774; Table 2; Figure 2). 11 

 12 

There were highly significant effects of environmental variation on cage fitness. Along both 13 

altitudinal gradients there was a significant, non-linear increase in cage productivity with 14 

increasing PC1 (increasing temperature)(Figure 3).  Source population effects approached 15 

significance at Mt Edith (P =0.068; Table 2), which was attributable to low fitness of flies from 16 

one of the source populations (Figure S5), and was non-significant at Paluma (P=0.302; Table 17 

2; Figure S5). 18 
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Table 2. Tests for local adaptation and genetic variation in fitness from caged transplant experiments along the Mt Edith and Paluma altitudinal 1 

gradients, using Generalised Linear Mixed Models (GLMMs). The fixed effects included: linear and quadratic terms for PC1, which were 2 

significant predictors of D. birchii abundance at these gradients, ‘source population’, and a ‘local adaptation’ term which compared cages 3 

transplanted back to the site where flies originated (‘sympatric’) with those transplanted to a different site (‘allopatric’).  Random intercept and 4 

slope (with respect to PC1) terms for the effect of isofemale line nested in source population (‘Line’ in table) were also included. Significant 5 

effects are denoted in italics. The significance of fixed effects was evaluated using a χ2 test, and of random effects using a likelihood-ratio test 6 

comparing models with and without each term included. Variance components were estimated after removing non-significant fixed effects from 7 

the model. 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

  19 

 Fixed effects  Random effects 
Gradient Predictor d.f. χ

2 P  Variance 
component 

Variance P 

Mt Edith PC1 1 3.92 0.048  Line    
 PC12 1 7.11 0.008     Intercept 0.043 0.014 
 Source population 3 7.12 0.068     Slope (PC1) 0.013 0.488 
 Local adaptation:          
 Sympatric vs 

Allopatric 
 

1 
 

3.78 
 

0.052 
    

 Residual 314       
         
Paluma PC1 1 130.15 <2.2 x 10-16  Line    
 PC12 1 45.67 1.40 x 10-11     Intercept 0.020 0.658 
 Source population 3 3.65 0.302     Slope (PC1) 2.19 x 10-9 1 
 Local adaptation:        
 Sympatric vs 

Allopatric 
 

1 
 

0.08 
 

0.774 
    

 Residual 253       
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 1 

 2 

Figure 2. No evidence for local adaptation in caged transplants. Plots show the results of tests for local adaptation in caged transpla3 

Edith and Paluma using sympatric-allopatric (SA) contrasts.  The mean productivity (no. offspring emerging) of cages of flies transpla4 

into their site of origin (sympatric), and those transplanted to all of the other sites along the same gradient (allopatric) are shown.  Erro5 

standard errors across the four source populations when transplanted sympatrically or allopatrically.  The difference in productivity bet6 

sympatric and allopatric populations was marginally significant at Mt Edith (P = 0.052) and non-significant at Paluma (P = 0.774) (see7 

 8 

  9 
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  1 

 2 

Figure 3. Fitness in cages increases with mean temperature along altitudinal gradients.  Plots show mean productivity of cages placed at each 3 

site along altitudinal gradients at Mt Edith and Paluma. Mean site productivity (averaged across the cages at each site) is plotted as a function of 4 

PC1, the first principal component of a PCA of variation for a set of environmental variables (see Methods and Figure 1B), which is strongly, 5 

positively associated with temperature.  Fitted curves are from linear models of productivity on PC1 for each gradient (see Table 2).  Error bars 6 

indicate standard errors based on isofemale lines at each site. Note that the Paluma gradient encompasses a much wider range of values of PC1 7 

than Mt Edith. Points have been offset slightly along the x-axis at Mt Edith to reduce overlap. 8 
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Variation in cage fitness and reaction norms of fitness among lines 1 

There was significant variation among lines in cage productivity at Mt Edith (P = 0.014), but 2 

not at Paluma (P = 0.658)(Table 2).  At Mt Edith, the mean productivity of the ‘fittest’ line 3 

(24.5 offspring/cage) was more than seven times that of the least fit line (3.4 offspring/cage), 4 

whereas at Paluma the fittest line (37.5 offspring/cage) had mean productivity twice that of the 5 

least fit (19 offspring/cage).  We did not detect significant variation among lines in the slopes 6 

of their responses (i.e. their ‘reaction norms’ of fitness) to the change in environment 7 

experienced as a result of being transplanted along gradients, as captured by variation in the 8 

slopes of their fitness with respect to PC1 (Table 2).  Random slope variation with respect to 9 

the other PC terms was also not significant for either gradient.  These results suggest that there 10 

is significant genetic variation in mean fitness across these environmental conditions at Mt 11 

Edith, but at both gradients all lines respond similarly to the change in environment; that is, 12 

lines with high relative fitness at one end of the gradient tend to have high fitness at all sites.  13 

 14 

Genetic variation in productivity in the laboratory 15 

Consistent with results from the field experiment, we found significant among-line variation in 16 

laboratory productivity at Mt Edith, but not Paluma (Table S5).  However, estimates of among-17 

line variance in the laboratory were much higher than in the field for both gradients (Table S5; 18 

cf Table 2).  In contrast to the field experiment, variation among source populations for 19 

laboratory productivity was highly significant at both gradients (Table S5), with high altitude 20 

source populations showing higher productivity than low altitude populations in both cases 21 

(Figure S4).  A Spearman’s rank correlation test revealed that, while the rank order of lines for 22 

productivity in the laboratory and in the field was positively correlated at both gradients, the 23 

correlation was not distinguishable from zero at either gradient (Mt Edith: ρ = 0.271, P = 24 
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0.327; Paluma: ρ = 0.173, P = 0.492), suggesting the relative fitness of lines under constant 1 

conditions is not a good predictor of their relative fitness in the more variable field 2 

environment. 3 

 4 

Predicting local abundance of D. birchii from cage fitness 5 

 6 

Cage productivity changed in the same direction as local abundance of D. birchii along the Mt 7 

Edith gradient, and this relationship was marginally non-significant (Slope (SE) = 1.313 (0.57); 8 

P = 0.054). However, this relationship was significantly negative along the Paluma gradient 9 

(Slope (SE) = -0.253 (0.08); P = 0.012)(Table S6; Figure 4).  As outlined above, cage 10 

productivity increased with increasing PC1 (i.e., towards warmer, lower altitude sites) at both 11 

gradients (Figure 3).  Paluma covered a wider range of PC1 values than Mt Edith; specifically, 12 

Paluma included much higher values, reflecting higher temperatures.  Therefore, the difference 13 

between the gradients in the relationship between cage fitness and abundance implies that, 14 

while cage productivity is a good predictor of local abundance of D. birchii at cooler, high 15 

altitude sites, it fails to predict changes in abundance towards the warm margin of this species’ 16 

range. 17 
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 1 

Figure 4. Cage fitness predicts local abundance at cool, high altitude sites but not at warm, low altitude sites.  Plots show the rel2 

between fitness estimated from the caged transplant experiment (cage productivity) and the local abundance of D. birchii estimated fro3 

sampling at Mt Edith and Paluma.  Fitness and abundance data were both standardised to mean = 0 and standard deviation = 1.  Error b4 

abundance (y-axis) are standard errors across sampling days, and on productivity (x-axis) are standard errors among lines.  Fitted lines5 

from regressions of standardised mean D. birchii abundance on standardised mean productivity (see Table S4). 6 
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 1 

DISCUSSION 2 

 3 

Predicting the effect of rapid environmental change on species’ distributions, and therefore the 4 

persistence of ecological communities, is an urgent priority.  However such predictions 5 

typically rely on models that assume a constant relationship between abiotic environmental 6 

variation and species’ persistence or abundance, thus ignoring the potential for evolutionary 7 

change in environmental tolerances, and the influence of biotic interactions.  Our approach, 8 

which combines surveys of field abundance, cage transplant experiments, and both laboratory 9 

and field estimates of genetic variation in fitness in the rainforest fruit fly Drosophila birchii, 10 

provides a comprehensive test of these assumptions, along ecological gradients that 11 

characterise distributional limits of this species at different spatial scales. 12 

 13 

 14 

Predicting responses to environmental change from the relationship between D. birchii 15 

abundance and environmental variation  16 

 17 

Our field surveys revealed that local abundance of D. birchii is strongly predicted by 18 

environmental variation at three of the four altitudinal gradients studied, which each exhibits 19 

variation in mean temperature characteristic of hundreds of kilometres of latitudinal distance 20 

(Table S1).  Overall, there was a decline in the abundance of D. birchii towards warm, low 21 

altitude sites (Figure 1), which suggests that the rising temperatures forecast as a result of 22 

climate change will reduce the area of suitable habitat for this species.  However, the 23 

relationship between environment and local D. birchii abundance differed between gradients 24 

(Table 1), suggesting local variation in the response of this species to environmental change.  25 

Predictions of D. birchii abundance based on its association with environmental variables at a 26 
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broad geographical scale would therefore perform poorly at a local scale.  This variation in the 1 

relationship of D. birchii abundance with environmental conditions could be caused by other 2 

factors affecting abundance that vary among gradients that were not captured by our measures 3 

of environmental variation, and/or local adaptation within or among gradients, enabling 4 

population growth over different ranges of environments at different gradients.  We consider 5 

each of these possibilities below. 6 

 7 

 8 

Cage transplants along altitudinal gradients: does the abiotic environment predict the fitness 9 

of D. birchii? 10 

 11 

Fitness, as measured by productivity in cages, showed consistent increases with temperature 12 

along both gradients. This was in contrast to the reduction in abundance at warmer (low 13 

altitude) sites in our surveys of field abundance.  This surprising result suggests that there are 14 

factors excluded from our cages that restrict D. birchii’s distribution at its warm ecological 15 

limit. The cage transplant experiment exposed flies to changes in the naturally-varying abiotic 16 

(i.e. temperature and humidity) environment, but there are likely to be significant changes in 17 

the biotic environment (e.g., competitors, parasites, pathogens) over this scale that were absent 18 

from cages, and which may constrain D. birchii’s abundance towards its warmer margin.  This 19 

is consistent with the hypothesis, initially proposed by Darwin (1859), and subsequently 20 

supported by numerous authors (e.g. Ettinger et al., 2011, MacArthur, 1972), that abiotic 21 

factors are the principal limit to species’ distributions at high latitudes and altitudes, while the 22 

importance of biotic interactions increases towards warmer margins at lower latitudes and 23 

altitudes.  The lowest latitude, and on average warmest, gradient included in our abundance 24 

survey, Mt Lewis, was the only gradient where abiotic environmental variation (captured by 25 
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PC1) did not predict D. birchii abundance (Table 1), again suggesting a potential role for biotic 1 

factors.  Further work is underway to identify important biotic interactions.  However, we note 2 

that PC2, which is largely driven by the abundance of non-birchii serrata-complex species 3 

(Figure 1B), did not predict D. birchii abundance at any gradient (Table 1), suggesting that 4 

competition with these closely related species is not the key factor limiting the distribution of 5 

this species. 6 

 7 

Understanding how biotic and abiotic factors interact to shape species’ distributions is crucial 8 

for predicting the responses of ecological communities to environmental change (Alexander et 9 

al., 2015, Araújo &  Luoto, 2007, Godsoe et al., 2015, Grassein et al., 2014).  Predicting the 10 

effect of changes in either the abiotic or biotic environment on species distributions is 11 

complicated by the fact that these different components of environmental variation are typically 12 

highly correlated in nature.  Most species’ distribution models either ignore biotic variables, or 13 

implicitly assume that these correlations will remain constant in future (Araújo &  Luoto, 14 

2007).  However, abiotic and biotic factors may become uncoupled if interacting species within 15 

an ecological community differ in their responses to environmental change, resulting in novel 16 

species’ assemblages (e.g. Alexander et al., 2015).  Future studies should explicitly test for the 17 

effects of biotic interactions within and among species on fitness, in combination with abiotic 18 

factors, to better understand local variation in evolutionary responses to environmental change, 19 

and therefore the persistence of species and local communities in response to ongoing climate 20 

change. 21 

 22 

Local adaptation and genetic variation in fitness and reaction norms in response to 23 

movement along altitudinal gradients, and comparison with laboratory estimates 24 

 25 
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A central question when predicting the impacts of climate change and habitat loss on species’ 1 

distributions is the extent to which species’ responses are affected by existing local adaptation 2 

and future evolutionary potential (Gienapp et al., 2008, Hoffmann &  Sgrò, 2011, Parmesan, 3 

2006).  Modelling has shown that the presence of such intraspecific genetic variation in 4 

ecologically relevant traits, as well as adaptive divergence among populations, can significantly 5 

alter predictions of species’ current and future distributions (Atkins &  Travis, 2010, Banta et 6 

al., 2012, Valladares et al., 2014).  7 

 8 

We did not detect evidence of local adaptation within either gradient.  Although there was 9 

significant genetic variation in overall fitness at Mt Edith, all lines transplanted at both 10 

gradients responded similarly to the imposed change in their environment.  In other words, 11 

reaction norms for fitness of different lines do not intersect or vary in steepness, indicating that 12 

fitness under conditions at one end of the gradient does not ‘trade off’ against fitness at the 13 

opposite end.  The lack of local adaptation within gradients is surprising, because divergent 14 

selection between gradient ends is expected to be strong in this system, given the substantial 15 

and consistent difference in their abiotic environments (temperature and humidity), and the 16 

significant consequences of this for fitness of D. birchii, as shown by our cage transplant 17 

experiments.  Possible explanations for a lack of local adaptation along gradients include gene 18 

flow, which has been shown to be high in this species over larger geographic distances than 19 

were considered here (Schiffer et al., 2007, van Heerwaarden et al., 2009), and may swamp 20 

local adaptation, particularly given the steep changes in abundance observed even between 21 

adjacent sites, which are likely to lead to asymmetrical gene flow (Bridle et al., 2009, Bridle &  22 

Vines, 2007).  Alternatively, populations occupying marginal habitat towards the species’ range 23 

edge may lack sufficient genetic variation to track local optima by adaptation, potentially due 24 

to small population size, or trade-offs between different components of fitness (Blows &  25 
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Hoffmann, 2005).  Differences in the relative importance of abiotic and biotic factors at each 1 

end of the altitudinal range of D. birchii may also explain why we did not detect either genetic 2 

variation in fitness reaction norms or local adaptation in our cage transplant experiment.  If 3 

biotic interactions (rather than temperature or humidity) constrain the distribution of D. birchii 4 

at its warm margin, fitness trade-offs may become apparent when measured in the presence of 5 

such interactions. 6 

 7 

Nevertheless, previous studies in D. birchii have revealed latitudinal clines (over similar 8 

temperature ranges) suggestive of local adaptation in development time (Griffiths et al., 2005), 9 

resistance to desiccation (Hoffmann et al., 2003, Kellermann et al., 2006) and starvation 10 

(Griffiths et al., 2005, van Heerwaarden et al., 2009), as well as altitudinal clines in chill coma 11 

tolerance (Bridle et al., 2009).  However, all of these studies examined trait variation under 12 

constant conditions in the laboratory.  While it is likely that the patterns of trait variation they 13 

observed were the result of selection, the fitness consequences of this variation may become 14 

evident only under certain sets of conditions, since environmental conditions are known to 15 

affect estimates of trait heritabilities (Charmantier &  Garant, 2005, Hoffmann &  Merilä, 1999, 16 

Pemberton, 2010).  We also found significant genetic variation in productivity among D. 17 

birchii populations in the laboratory, but not in the field, where conditions were more variable.  18 

This indicates that environmental variation can constrain responses to selection by masking 19 

fitness differences, and highlights the importance of assaying fitness under naturally-varying 20 

conditions when inferring adaptive potential in wild populations. 21 

 22 

 23 

   24 

Implications for predicting biological responses to environmental change 25 
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 1 

Three important findings emerge from our study that would affect the accuracy of predicted 2 

changes in the distribution of D. birchii in response to environmental change using traditional 3 

Species’ Distribution Models. (1) The relationship between environmental variation and 4 

abundance differs between gradients, demonstrating the importance of geographic scale in 5 

predictive models. (2) The effect of abiotic environmental variation on fitness of D. birchii in 6 

cages does not mirror the change in field abundance, suggesting an important role for biotic 7 

interactions in limiting the distribution of this species. (3) There is no local adaptation or 8 

genetic variation in fitness reaction norms of D. birchii within gradients, although this 9 

contradicts predictions based on laboratory estimates of genetic variation in fitness.  These 10 

observations are likely to have general significance beyond the model system examined here, 11 

and can therefore offer insights on how to improve methods for predicting biological responses 12 

to environmental change. 13 

 14 

Incorporating spatial geographic scale into Species’ Distribution Models is quite 15 

straightforward, as long as abundance or occurrence data are available at a sufficiently fine 16 

scale.  Ideally, sampling should be undertaken across both local and global ecological limits, to 17 

account for potential variation in the factors limiting species’ distributions at these different 18 

scales (e.g. across altitudinal and latitudinal gradients  Halbritter et al., 2013).  As has been 19 

appreciated by others, biotic interactions should be incorporated into SDMs by including data 20 

on the presence or abundance of co-occurring species as predictive factors (Araújo &  Luoto, 21 

2007, Wisz et al., 2013).  Our results demonstrate that the importance of biotic interactions in 22 

limiting species’ distributions is likely to vary across abiotic gradients, which reiterates the 23 

importance of sampling at appropriate geographic scales.  Furthermore, given that key biotic 24 

interactions are themselves susceptible to the effects of changes in the abiotic environment, 25 
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regular re-sampling should be undertaken to identify changes in the correlation of abiotic and 1 

biotic components, and their consequences for species’ distributions. 2 

 3 

The lack of genetic variation in fitness reaction norms suggests that populations of D. birchii 4 

along gradients are likely to respond similarly to a changing thermal environment, and have 5 

low potential for adaptation.  This contrasts with measurements under laboratory conditions 6 

(both in the present study and in previous work e.g. Bridle et al., 2009), which reveal 7 

significant genetic variation in ecologically important traits both within and among populations 8 

sampled from different parts of the species’ altitudinal range. These data highlight the 9 

importance of assessing genetic variation in fitness under ecologically relevant conditions when 10 

predicting the potential for evolutionary responses to environmental change.  This challenge is 11 

more difficult to overcome, since field estimates of genetic variation within and among 12 

populations are clearly not feasible for all taxa.  Nevertheless, the current study highlights how 13 

these assessments can be undertaken using model organisms such as Drosophila. 14 

 15 

 16 
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Supporting Information captions 1 

 2 

Table S1.  Location and environmental variation of altitudinal gradients where D. birchii was 3 

collected between 2010 – 12, including  altitudinal range, total length (the straight-line distance 4 

between the top and bottom of each gradient in km), number of sites sampled, ranges of 5 

environmental variables (Mean daily temperature (MDT); Mean daily minimum temperature 6 

(MDTmin); Mean daily maximum temperature (MDTmax); Mean daily humidity (MDH)), D. 7 

birchii density, density of other species from the serrata species complex (non-birchii density), 8 

and productivity in cages (only assessed in 2012).  For each environmental variable, density 9 

and cage productivity, the range shown is the mean at the lowest altitude site to the mean at the 10 

highest altitude site.  Density of D. birchii and other serrata-complex species were not 11 

estimated in 2012.  The difference in mean temperature between the most northerly gradient 12 

(Mt Lewis) and the most southerly gradient (Paluma) was less than the temperature difference 13 

seen within most of the altitudinal gradients 14 

 15 

 16 

Table S2: Linear regressions of each environmental variable measured during 2010–2012 on 17 

(a) altitude for each gradient, and (b) altitude, latitude and their interaction across the entire 18 

sampled range.  Shown is the slope, with the Standard Error (SE) in brackets, of the regression 19 

line between each environmental variable and altitude/latitude, and the R2 value indicating the 20 

proportion of variation explained by the model.  N is the number of sites sampled.  Symbols 21 

indicate the significance of each factor in the model:  *** P < 0.001, ** 0.001 ≤ P < 0.01, * 0.01 ≤ 22 

P < 0.05, † 0.05 ≤ P < 0.1, NS P ≥ 0.1. Significant associations are highlighted in italics.  23 

 24 

 25 

Table S3: Correlations between environmental variables included as predictors of D. birchii 26 

field abundance (below diagonal) and p-values indicating significance of correlations (above 27 

diagonal).  All correlations were highly significant, even at a very conservative Bonferroni-28 

corrected significance threshold of P = 0.003.  29 

 30 

 31 

Table S4.  Variation in productivity among isofemale lines (nested in source population) from 32 

Mt Edith and Paluma when reared in the laboratory.  Productivity variation was analysed using 33 

Generalised Linear Mixed Models (GLMMs), run in the R package glmmADMB, specifying 34 

zero-inflation, and a negative binomial distribution with a log link function. Source population 35 

(indicating which of the four populations within a gradient the line came from) was included as 36 

a fixed factor and maternal isofemale line (‘Line’), nested within source population, was 37 

included as a random factor. Significant effects are denoted in italics. The significance of fixed 38 

effects was evaluated using a χ2 test, and of random effects using a likelihood-ratio test 39 

comparing models with and without the term included.  Separate analyses were conducted for 40 

the two gradients.  Productivity was measured as the mean number of offspring per female 41 

produced from controlled crosses in the laboratory.  Sites at both gradients differed 42 

significantly in their productivity in the lab (but not in the field; see Table 2).  Estimates of 43 
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among-line variance in productivity at both gradients were much higher in the laboratory than 1 

in the field (cf Table 2), and this variance was significant at Mt Edith. 2 

 3 

 4 

Table S5. Results of linear models to test how well mean fitness in cages (cage productivity) 5 

predicts local abundance in the field.  Separate analyses were performed for Mt Edith and 6 

Paluma, the two gradients where caged transplants were performed. All fitness and abundance 7 

data were standardized to mean = 0; standard deviation = 1 prior to analysis.  Shown are the 8 

slopes of the regressions of cage productivity on local abundance at each gradient, with the 9 

standard error of this estimate in brackets, the t-value for the analysis, and the significance of 10 

each test.   11 

 12 

 13 

Figure S1.  Schematic illustrating design of caged transplant experiment.  Bold lines show 14 

transplants among the sites of origin: solid lines indicate transplants back into each 15 

population’s home site; large dashed lines indicate transplants to the other site of origin at the 16 

same end of the gradient; and small dashed lines indicate transplants to the sites of origin at the 17 

opposite end of the gradient.  Dotted lines indicate transplants to intermediate sites along the 18 

gradient (I-1 – I-5).  Transplants originating from low altitude sites (LOW 1 and LOW 2) are in 19 

red, and from high altitude sites (HIGH 1 and HIGH 2) are in blue.  To improve clarity, only 20 

one set of arrows depicts transplants from each end of the gradient to sites along the gradient, 21 

but lines from both populations of origin were transplanted in each case.  At Paluma, only high 22 

altitude lines were transplanted to intermediate sites, but all lines were transplanted to sites at 23 

gradient ends. *Actual number of lines per site used in transplants varied because some lines 24 

did not produce sufficient offspring (see Methods). 25 

 26 

 27 

Figure S2.  Mean productivity of each of the four source populations from Mt Edith (left) and 28 

Paluma (right) in laboratory crosses. Error bars are standard errors across mean productivities 29 

of the (up to five) lines within each source population.  At one of the high altitude sites from Mt 30 

Edith (High1), only one of the five lines produced offspring in laboratory crosses. Different 31 

letters indicate significantly different productivity means of populations within a gradient. 32 

 33 
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