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Abstract 
Much of our lives are spent in unconstrained rest states, yet cognitive brain processes are 
primarily investigated experimentally using task-constrained states. It may be possible to utilize 
the insights gained from experimental control of task processes as reference points for 
investigating unconstrained rest. To facilitate comparison of rest and task functional MRI (fMRI) 
data we focused on activation amplitude patterns, commonly used for task but not rest 
analyses. During rest, we identified spontaneous changes in temporally extended whole-brain 
activation pattern states. This revealed a hierarchical organization of rest states. The top 
consisted of two competing states consistent with previously identified “task-positive” and “task-
negative” activation patterns. These states were composed of a variety of more specific states 
that repeated over time and across individuals. In contrast to the classic view that rest consists 
of only task-negative states, task-positive states were present over 40% of the time while 
individuals “rested.” This suggests individuals conduct extensive task-oriented mental activity 
during rest. Consistent with this interpretation, classifier decoding of rest brain states based on 
thousands of task fMRI studies identified a variety of matched active tasks. Further, an analysis 
of task data revealed a similar hierarchical structure of brain states. Together these results 
suggest brain activation dynamics form a general hierarchy across both task and rest, with a 
small number of dominant general states reflecting basic modes of brain function along with a 
variety of specific states likely reflecting the rich variety of cognitive states experienced in 
everyday life. 
 
  
Significance Statement 
Neuroimaging has revolutionized understanding of human brain function, yet most brain 
activation studies have used instructed tasks, limiting understanding of the full range of human 
brain activation states. When unconstrained (“rest”) states have been investigated, activation of 
a “default mode” network involved in self-reflective cognition has been detected. This suggests 
rest periods consist of self-reflection, yet everyday experience suggests task-focused thoughts – 
such as attending to the environment and efforts to solve the problems of everyday life – also 
occur during “rest”. We confirmed this, identifying the broad organizational structure of 
spontaneous brain states in humans. We found that rest consists of approximately 60% self-
reflection and 40% task-focused events, with multiple cognitively meaningful sub-states 
identified using activity pattern decoding. 
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Introduction 
  
         The brain is a distributed information-processing system with rich spatiotemporal 
dynamics underlying complex cognitive dynamics. A major goal of cognitive neuroscience is to 
create a mapping between these two forms of dynamics to better understand the neural basis of 
cognition. Recent insights in human neuroimaging research have improved this mapping by 
considering activity in more than one spatial location at a time. These approaches include 
multivariate pattern analysis (MVPA) of brain activity patterns corresponding to cognitive task 
events (1, 2), as well as functional connectivity (FC) analysis of brain network dynamics during 
rest and task (3–5). Building on these advances, here we use what we term “dynamic MVPA” 
(dMVPA) – MVPA applied to the temporal evolution of brain processes (6–9) – with functional 
MRI (fMRI) to more comprehensively characterize the repertoire of brain states across a variety 
of resting and task cognitive states. 

In particular, we used a state space characterization of dynamics previously used to gain 
insight into other real-world complex systems (10, 11). This involves conceptualizing each 
whole-brain image in time as a single point in a high-dimensional feature space. Brain state 
changes are thus equivalent to movement through that state space. We primarily utilize distance 
between these points in state space, using spatial correlations (a standard distance metric) 
between time points to temporally cluster them into brain states extending through time. We 
perform further analysis using graph theoretical formulations. Relative to classical clustering 
approaches, graph theoretical community detection algorithms can better assign patterns near 
the edges of a cluster (12). This can provide a more comprehensive characterization of a state 
space’s large-scale organization. 

Recent investigations into moment-to-moment changes in FC have been important for 
characterizing brain dynamics (5). Unlike these studies of FC dynamics, we identify activation 
pattern-based brain states, which are not limited in their temporal precision by the need for 
temporally extended windows. More importantly, identifying whole-brain activation pattern states 
(rather than FC/temporal covariance patterns (13, 14)) facilitates the functional interpretability of 
those states. This is due to whole-brain fMRI activation patterns being more directly related to 
the vast fMRI task activation literature, which associates cognitive task manipulations with 
whole-brain spatial activation maps (15, 16). In contrast, previous studies relating resting-state 
FC to the fMRI activation literature focused on across-study covariance between brain regions 
(e.g., the similarity in activation level changes across all tasks) (13, 14), rather than focusing on 
any specific activation patterns (e.g., the whole-brain activation pattern during the N-back task). 
These studies revealed resting-state networks that were similar to patterns of across-study 
covariance, yet single brain activation states are known to activate multiple resting-state 
networks at once (14, 17). Several recent studies have focused on resting-state activation 
patterns (18, 19). However, these studies focused on relating these patterns to resting-state 
networks, rather than task activations. Here we compare resting-state activation patterns to 
specific task activation maps – potentially involving coactivation of multiple resting-state 
networks – to identify the likely functional relevance of spontaneous brain states during rest. We 
expected this approach to better characterize the organization of human brain states and 
potentially identify task-related states present during “rest” periods. 

We propose the use of the term dMVPA given the similarity of this approach to existing 
MVPA approaches with fMRI and M/EEG. However, whereas standard MVPA uses supervised 
machine learning (1) to classify activation patterns during experimentally induced cognitive 
events, dMVPA can be applied to the moment-by-moment temporal evolution of brain states to 
characterize even spontaneous cognitive events. A well-established example of dMVPA is the 
identification of M/EEG microstates, as defined by spontaneous changes in the spatial 
configuration of the scalp electromagnetic field (20). Critically, however, the identification of 
M/EEG microstates suffers from strong limitations on spatial certainty caused by the smearing 
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of neuronal sources as the electromagnetic field is conducted to the scalp surface (21, 22). This 
spatial smearing suggests identified M/EEG microstates are biased toward states that are 
spatially extreme (i.e., spatial distinct despite smearing) rather than both temporally and 
spatially distinct. Consistent with this, attempts to map M/EEG microstates to more spatially 
accurate fMRI data has yielded states with only limited similarity to well-known states from the 
vast fMRI task activation literature (7). Thus, we use a complementary approach here with fMRI 
to identify more spatially precise brain states during rest. While others have recently begun 
investigating spontaneous activation patterns with fMRI (19, 23), these patterns have not been 
directly compared to task activation patterns. Importantly, as mentioned above, comparison to 
task activation patterns is a major advantage of this approach, since using fMRI allows 
comparison of spontaneous states to the vast fMRI task activation literature, which associates 
cognitive manipulations with whole-brain spatial activation maps (15, 16). 

We primarily utilize rest data given the possibility that many brain states are visited in 
this unconstrained context (3). This allowed us to obtain a broad sampling of possible brain 
states across many (N=97) individuals. We also supplemented this broad repertoire of 
spontaneous states with experimentally controlled states identified from a variety of tasks 
involving distinct cognitive functions. We hypothesized that activation pattern states form a 
hierarchical structure, with a small number of dominant high-level states reflecting basic modes 
of brain function and a wide variety of lower-level states reflecting the rich variety of cognitive 
states humans are capable of visiting.  

In addition to this broad hypothesis, we sought to test the hypothesis that “task-positive” 
brain states occur regularly during rest periods. This contrasts with the highly replicated finding 
that a “task-negative” brain state with high default-mode network activity is present during rest 
(3, 24, 25). We expected that the task-negative state dominates rest (consistent with previous 
results), but that task-positive states also occur frequently. This expectation is based on the 
common self-reported experience of trying to solve the problems of everyday life during periods 
of “rest” (26). Such problem solving effort is associated with cognitive control demands, which 
involve task-positive activations in networks such as the frontoparietal control network and the 
cingulo-opercular network and deactivation of the default-mode network (27–29). Additionally, 
everyday experience suggests some portion of “rest” consists of passive attending to external 
sensory and motor events, suggesting occasional activation of sensory/motor networks and 
attention networks (30). We expected that identifying the overall organization of spontaneous 
brain state dynamics would allow us to test the possibility of both task-positive and task-
negative brain states occurring during rest periods, as well as allowing us to estimate the 
proportion of time devoted to each class of brain states. 
 
 
MATERIALS & METHODS 
 
Participants 
 Data were collected as part of the Washington University-Minnesota Consortium Human 
Connectome Project (31). The participants were recruited from the Washington University 
campus and surrounding area. All participants supplied informed consent. The data were from 
the “500 Subjects” public data release. We used data from the “100 Unrelated Subjects” set as 
we wanted a sample representative of the general population (excluding family relations). 

We used resting-state fMRI and task-state fMRI data from 100 subjects, with 3 outlier 
subjects removed for a subset of analyses (see Results). The resting-state dataset consisted of 
four separate runs, each spanning 14.4 minutes in length. Analyses were performed separately 
for each rest run. The task data involved seven diverse tasks (32). These seven tasks were 
selected to tap into different cognitive processes as well as the different neural circuitry that 
supports those functions. The tasks were related to emotion perception, reward learning, 
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language processing, motor responses, relational reasoning, social cognition, and working 
memory. See (32) for more details on the task fMRI data. 
  
MRI parameters 
 Whole-brain echo-planar scans were acquired with a 32 channel head coil on a modified 
3T Siemens Skyra with TR = 720 ms, TE = 33.1 ms, flip angle = 52°, BW = 2290 Hz/Px, in-
plane FOV = 208 × 180 mm, 72 slices, 2.0 mm isotropic voxels, with a multi-band acceleration 
factor of 8 (33). Data were collected across two days. On each day 28 minutes of rest (eyes 
open with fixation) fMRI data was collected across two runs (56 minutes total), followed by 30 
minutes of task fMRI data collection (60 minutes total). Each of the 7 tasks was completed over 
two consecutive fMRI runs. Details regarding the resting-state data collection for this dataset 
can be found elsewhere (34), as well as details about the tasks (32). 
 
fMRI preprocessing 
 We used a minimally preprocessed version of the data, which was the result of standard 
procedures including: spatial normalization to a standard template, motion correction, and 
intensity normalization. These steps have been described previously (35). We performed 
analyses on the volume version of these minimally preprocessed data using AFNI (36). We 
removed variables of no interest from the time series using linear regression, including: motion 
estimates, ventricle and white matter signals, as well as derivatives. Ventricle, white matter, 
gray matter, and anatomical structures were identified for each subject using FreeSurfer (37, 
38). Note that whole-brain global signal was not removed due to controversy regarding this 
preprocessing step (39). The linear trend was removed from the signal and the data were 
spatially smoothed (FWHM = 4 mm). Resting fMRI data is also typically temporally filtered to 
isolate the low frequency component of the time series. We did not apply a temporal filter to the 
data due to the possibility of relatively rapid brain state transitions. 
 Further data analysis was completed by sampling from a set of 264 regions in order to 
capture and explore large-scale regional and system-level questions. These 264 regions were 
independently identified in a previous study using functional criteria (40). Using this approach 
reduces the chance of blurring signal from neighboring regions with different functional profiles 
(41). Specifically, the 264 regions were identified and classified using resting-state FC 
parcellation (42) and a task-based neuroimaging meta-analysis (40). The mean time series from 
all of the voxels within each of these 264 regions was then calculated and used in subsequent 
analyses. Subsequent data analyses were conducted with MATLAB 2014b (Mathworks) or 
Python. 
 
Brain state identification 

We conceptualized time in terms of a weighted graph, with each time point as a graph 
node and edges as the similarities of whole-brain spatial activation patterns at those time points. 
Activation pattern similarity was calculated using Pearson correlation. Pattern similarity can be 
equivalently considered as (the inverse of) distance in state space, which has a long 
methodological history in mathematics and other fields (43). Pearson correlation was used given 
that it is a well-established distance measure (43), is invariant to scale changes (unlike, e.g., 
Euclidean distance), and can be conveniently conceptualized as (the square root of) linear 
variance explained. Note that Pearson correlation does not assume the underlying data are 
normally distributed when used as a similarity measure, given that its associated p-value is not 
calculated (44). These correlation-based associations were summarized in a temporal 
adjacency matrix, consisting of all pairwise similarities among time points. 

Time points with strong edges between them were considered as instances of the same 
brain state. Clusters of similar time points were identified using the Infomap community 
detection algorithm (45–47). This community detection algorithm was first applied to each 
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subject’s initial resting-state fMRI run (14.4 minutes in duration, consisting of 1200 fMRI time 
points). Given the likely presence of noise, thresholded the temporal adjacency matrix prior to 
this stage, removing edges with low similarity. We used a standard consensus approach (48) in 
which versions of the matrix at thresholds from 1% to 50% density (in 1% increments) were 
combined based on their modularity score (49, 50). This produced 4 unique brain states (graph 
communities) per subject on average, with a total of 412 brain states across 98 subjects. Note 
that two of the 100 subjects were excluded because the clustering algorithm returned more than 
three standard deviations above the average number of states per subject. We reduced the 
many time points contributing to each brain state to a single “prototype” vector for each brain 
state via averaging. 

We next conducted a group-level analysis. This involved first computing an adjacency 
matrix based on the similarities among the brain state prototypes across all subjects. We then 
applied the Infomap algorithm to that matrix, this time with no thresholding, to produce a group-
level brain state solution. Later, we tested for the presence of a hierarchy of brain states, with 
the no-threshold solution being the top of the hierarchy. We produced lower levels of the 
hierarchy by re-running the algorithm (independently of the previous level) using a series of 
thresholds. We began with 100% density (no threshold), going down by 10% increments until 
the 10% density level. We also conducted a separate analysis going from the 10% density level 
down to the 2% density level in 1% increments. 
  
Task relevance – correspondence between brain states and behavioral/mental states 
  

We sought to identify correspondences between the identified brain states and known 
behavioral/mental states based on task manipulations. This allowed assessment of the likely 
functional relevance of the identified brain states. Task-rest correspondence was assessed 
using pairwise Pearson’s correlations between each group-level brain state and every activation 
pattern in each time point across all subjects for both resting fMRI and task fMRI. This returned 
a time series of correlation scores between each subject and the group-level brain states. The 
time series of all subjects were then visualized and assessed for temporal dynamics of brain 
state transitions. 

 
Assessing the amount of time spent in each brain state 
 

For resting-state data, each individual’s Infomap clustering solution was re-mapped into 
a two-state solution based on the group-level clustering. The durations in each state were then 
calculated based on this two-state solution for each individual subject. For task-state data, each 
time point was classified as either State A or State B using a support vector machine (SVM) 
classifier trained on resting-state data. Specifically, the SVM classifier was trained on rest runs 
2-4 and validated by testing on rest run 1 prior to classification of task state data (for each task 
separately). Note that validation with rest run 1 data was based on above-chance classification 
accuracy, using the InfoMap clustering labels as the ground truth. The two-state classification 
results were used to determine the amount spent in each state for each of the seven tasks. 

 
Neurosynth state decoding 
  

Brain states were decoded using the Neurosynth decoder tool (15). Neurosynth is a 
meta-analytical tool that contains a database with brain activation patterns and peak signal 
coordinates paired with the associated cognitive terms from the fMRI scientific literature. The 
decoder function takes in our voxelwise representation of brain states, cross-references with the 
database, and returns a list of cognitive terms each paired with a correlation score indicating 
how well each brain state is associated with each cognitive term. The decoder returned a list of 
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approximately 3400 cognitive terms and their correlation values with the tested brain state. Of 
the top 50 highest correlated terms, all anatomical terms, redundant terms, nonsensical terms 
(i.e., “cortexmpfc”, “networkdmn”), and methodological terms were excluded from the list. The 
remaining terms were visualized as word clouds and the relative font sizes of each term were 
determined by the correlation scores. 

We sought to validate the results returned by Neurosynth by running a series of 
permutation tests for each brain state. Specifically, within each subject, we permuted the order 
of the brain state temporal windows (consecutive time points of the same state) as returned by 
the Infomap clustering process. This approach allowed us to preserve many of the temporal 
properties of brain states within each subject, while still permuting the data being averaged for 
each unique brain state label. The newly “permuted” brain state prototypes were averaged 
across subjects according to the group-level clustering solution to produce a “permuted” State A 
and State B. The “permuted” State A and State B were run through the Neurosynth decoder to 
obtain correlation scores for each of the 3400 terms. A total of 1000 permutations cycles were 
performed for each brain state, returning a total of 340,000 correlation scores. This allowed us 
to create a null distribution of r-values to test the statistical significance of the observed r-value 
for each cognitive term. Note that these permutation tests controlled for multiple comparisons, 
since all 3400 comparisons were computed during each permutation (51). The same analysis 
was also performed for each of the 12 states at the 20% density tier of the hierarchy (see 
Supporting Information for methods, detailed results, and figure). 
 
RESULTS 
 
Identifying multivariate brain activation states 
 
We sought to characterize the repertoire of spontaneous human brain activation patterns using 
a data-driven method of temporally clustering resting-state fMRI activity. We hypothesized that 
whole-brain fMRI activation patterns would consist of discrete “states” – configuration patterns 
that extend (and repeat) through time. To test this possibility we clustered whole-brain resting-
state fMRI activations in time. A standard set of functionally defined regions (52) were used for 
computational tractability, as well as for the previously identified functional system assignments 
(to potentially increase interpretability of observed states) (Figure 1D). Spatial correlations were 
used as a similarity/distance measure across individual time points, with brain states defined as 
temporal clusters of similar activation patterns (Figure 1A). 

Brain states were identified first at the individual subject level. Of the 100 subjects, two 
subjects were excluded from subsequent analyses (unless noted otherwise) because the 
clustering algorithm returned more than three standard deviations above the average number of 
states per subject. On average, four unique brain states were identified for each subject for a 
total of 412 unique brain state prototypes across the remaining 98 subjects. These 412 brain 
states were re-clustered in a group level analysis. The same processing steps performed at the 
individual subject level were applied at the group level for determining group-level brain states 
(see Methods for details). 
  At the group level two brain states were identified, which we labeled “State A” and “State 
B” (Figure 1B & 1C). The states were summarized by averaging all prototypes with the same 
clustering label and visualized in 264 ROI space (Figure 1B) and in voxel space (Figure 1C). An 
example subject’s temporal adjacency matrix along with the group-level clustering solution is 
illustrated in Figure 1A. Periods of highly similar activation patterns can be observed by the 
blocked structure on the diagonal of the temporal adjacency matrix, which are grouped as the 
same state in the clustering solution. We replicated the current findings using the same 
approach for the remaining three rest runs and found similar results (second run shown in 
Figure 1B). Specifically, State A identified in any given rest run was highly correlated on 
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average with State A identified in other rest runs:  rank correlation rho=0.92 (p<0.0001 for all 
pairwise comparisons). This was also the case for State B being correlated with State B 
identified in other rest runs: average rank correlation rho=0.91 (p<0.0001 for all pairwise 
comparisons). Note that we used Spearman’s rank correlation (rho) to calculate p-values for 
data that were not approximately normally distributed. Additionally, State A and State B were 
highly anti-correlated at rho=-0.97 on average (p<0.0001 for all pairwise comparisons). Note 
that the clustering approach used to identify distinct activation states prioritizes identification of 
maximally distinct (e.g., anti-correlated) states. To confirm the statistical significance of the 
observed anti-correlation despite this prioritization of maximally distinct states, we performed a 
permutation test with 10000 iterations, finding that the observed result was p<0.0001 (see 
Supporting Information section for methods and detailed results). 

Functionally, State A is highly similar to observed “task-positive” activation patterns 
reported in the literature (52–54). This activation pattern includes active regions in many task-
related functional networks, such as the dorsal and ventral attention networks, salience network, 
and sensory-motor networks (visual, auditory, somatomotor). Conversely, State B may be a 
“task-negative” state, given the strong activation of the default mode network (DMN) (53, 55) 
(along with a portion of the fronto-parietal cognitive control network (FPN)). Note, however, that 
we used only “task-negative” data – fMRI data collected during rest – to define both of these 
states. 
 

 
 
Figure 1 – The repertoire of brain states based on resting-state fMRI. Each individual’s prototypical 
brain states are correlated and clustered using the same Infomap algorithm. A. An example of individual 
time point similarity based on spatial correlations. 250 time points from a single subject are shown for 
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illustration. The across-subject clustering result (mapped back to this subject’s data) is shown in blue and 
yellow. B. Brain state prototypes for state A and state B, averaged across all activation vectors across all 
subjects. The two-state results replicated across all 4 of the rest runs (results from 2 runs are shown in 
B).  C. Voxelwise representations of state A and state B. Note that state B involves activation of the 
default-mode network as well as the tan/salmon-colored portion of the frontoparietal network in panel D. 
D. Functionally defined set of 264 regions and the associated functional network assignments. 
 
 
Spatial activation patterns vs. FC 
 

Using resting-state data, we identified a “task-positive” state A and a “task-negative” 
state B. These labels were based on the functions assigned to these activation patterns by the 
task activation fMRI literature (13, 29, 56, 57). As mentioned above, several aspects of these 
state A and state B patterns (Figure 1B) are consistent with networks identified in the resting-
state FC literature (52, 53, 58). However, the approach used here was quite distinct from FC 
analyses, since it is based on spatial activation covariance, which is ignored by FC approaches 
in favor of temporal covariance. Therefore, in order to test whether the current spatial activation 
pattern approach reveals additional insights independent of traditional FC analyses, we 
analyzed resting-state FC patterns across time periods identified as either State A or State B 
(Fig 3). Comparing between the FC patterns calculated by averaging across all subjects (Figure 
2), we found that the overall resting-state FC pattern (calculated across the entire rest run) 
correlated with State A FC at r=0.948 and State B FC at r=0.951. Additionally, to test whether 
results were consistent across subjects, FC comparisons were also performed for each subject 
separately. We then performed random-effects statistical analyses to test for across-subject 
consistency. The overall resting-state FC pattern correlated with State A FC on average at 
r=0.55 (t(96)=42.4, p<0.0001) and State B FC on average at r=0.54 (t(96) = 49.1, p<0.0001). 
Note that we calculated the overall resting-state FC pattern based on a separate run (e.g., run 2 
when comparing to run 1’s State A FC) to remove circularity from the analysis (59). All non-
circular combinations (between the first and second resting-state run) were computed and the 
reported results are based on averages across these comparisons. 

The strong correlation between the individual states’ FC and overall rest FC suggests 
that resting-state FC architecture remains consistent across distinct activation brain states. 
Further supporting this conclusion, across-subject averaged State A FC correlated with across-
subject averaged State B FC at r=0.951. This was also the case when computed based on 
averaging within-subject comparisons: r=0.49 (t(96) = 48.6, p<0.0001), suggesting across-
subject consistency. Note that this was calculated by comparing across rest runs, as with the 
overall resting-state FC pattern comparisons above. The resulting average similarity is very high 
relative to chance, but also in contrast to the strong anti-correlation (rho=-0.97) between State A 
and State B activation patterns. This suggests the possibility that whole-brain activation pattern 
dynamics are largely independent of FC dynamics. This supports our choice to analyze 
activation patterns independently of FC, as well as identifying brain states based on activation 
pattern similarities rather than FC dynamics. 
 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 6, 2016. ; https://doi.org/10.1101/068221doi: bioRxiv preprint 

https://doi.org/10.1101/068221


 10 

  
 
Figure 2 - Independence of activation state dynamics from FC state dynamics. The FC 
matrices for resting-state (over the entire rest run), State A (just the time points labeled state A), 
and State B (just the time points labeled state B) are pairwise correlated with each other for 
each subject. Averaged FC matrices and correlation values across subjects are shown here. 
These results suggest that the whole-brain multivariate activation states investigated here are 
independent of FC dynamics.  
 
 
Functional relevance of the two states 
 

Identifying a task-positive State A when using “task-negative” resting-state data 
suggests that subjects may have been performing covert tasks during “rest” periods. To test this 
hypothesis, we compared both State A and State B with rest and task data to better understand 
the functional significance of the two brain states. Specifically, we explored the temporal 
characteristics of the two states and how they related to ongoing task demands by correlating 
the two states’ prototypical activation patterns (Figure 1B) with every individual time point’s 
whole-brain activation pattern. This was done for all subjects individually in both resting-state 
and in each of the seven tasks (Figure 3B shows correlation results for the reasoning task).  No 
across-subject temporal patterns were observed in the correlations with resting-state data 
(Figure 3A), as expected. On average, subjects were in State A only 39% of the time, and in 
State B 61% of the time. In contrast, for each of the seven tasks (Table 1), we found that every 
subject was in State A most of the time during task blocks and in State B during the inter-task 
rest periods (Figure 2B), with the exception of the language task (see Discussion). On average 
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(including the language task), subjects were in State A 54% (State B 46%) of the time during 
task blocks and in State A 41% (State B 59%) of the time during inter-task rest periods. 
Additionally, subjects tended to stay in State A longer for tasks that were likely more 
challenging. For instance, subjects were in State A 59% (State B 41%) for the reasoning task, 
but only in State A 49% (State B 51%) for the language task. This suggests that State A is not 
only relevant to rest data (the data used to derive it), but also likely to be the same state 
required for performing various active task demands.  
 
Table 1 - Percent time in each state for each task. Percent of time in each state during task blocks and 
inter-rest rest periods for each task.  
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Figure 3 - Functional relevance of the two main states. The two brain states observed at the group 
level (see Figure 1B) are correlated with each subjects’ rest and task data (separately for each time 
point). No discernable temporal organization of state A and state B is observed in resting-state data 
across all 100 subjects (A). The two subjects removed during the state identification analysis were 
included here for completeness. Evidence of state A during rest may suggest subjects are performing 
covert tasks during rest. Clear structure is seen when correlated with activity during the reasoning task 
(B). All subjects consistently enter state A when entering task blocks (in red), and enter state B when 
entering inter-task rest periods (in blue).   
 
 
 
Hierarchical organization of brain states 

The previous analyses suggest that State A and State B may be general and multi-
functional states. Further, the vast fMRI literature indicates that each active task (cognitive 
state) has a unique activation pattern, despite an overarching “task-positive” activation pattern 
for externally oriented and cognitive control tasks (52–54). We therefore hypothesized brain 
states have a hierarchical organization, with state A and state B at the top level and more 
specific task states at lower levels (Figure 4). The two top states were broken down into more 
states by reducing the density of the adjacency matrix before applying Infomap clustering, from 
100% to 20% density at decreasing increments of 20%. Reducing the density of the adjacency 
matrix removes weaker graph edges (lower correlations) between the group state prototypes. 
The task-positive state A divides into two states early in the hierarchy (60% density), shown by 
the red links between the levels of the hierarchy (Figure 4). The task negative state B splits into 
multiple states at the lowest level of the hierarchy (20% density), shown with blue links between 
the levels of the hierarchy. 
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Figure 4 – Relationship between levels of the brain state hierarchy. The top level of the hierarchy 
(i.e., with no thresholding) is depicted at top, with additional states lower in the hierarchy with more 
stringent thresholding. Each level is defined by removing graph edges between the group prototype 
states (e.g., 80% density means removing the weakest 20% of edges) prior to running the community 
detection algorithm. The lines depict which state in the higher level that the lower-level state is most 
associated with. Specifically, a line indicates which higher-level state is composed of the largest 
percentage of the same group-level prototypes as the lower level state. Red links are associated with 
State A (task-positive) at the top level while blue links are associated with State B (task-negative) at the 
top level. The state labels below each of the states at 20% density (level 5) corresponds with the state 
labels in Figure 7.  
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To better understand the relationships between the individual prototypes that contribute 
to the state hierarchy, we visualized all 412 individual state prototypes in a force-directed graph 
(Figure 5). This helped characterize the state space underlying the states in the hierarchy. Each 
node in the graph represents an individual’s brain state prototype. Edges connecting the nodes 
were weighted based on Pearson correlation scores between each pair of nodes, with stronger 
weights pulling nodes closer together. The correlation strengths are depicted on the graph with 
solid lines (p<0.01) and dashed lines (p<0.05). Negative correlations were excluded as possible 
edges on the graph. The nodes are colored based on the Infomap clustering assignments for 
the 100% density level (Figure 5A) and the 20% density level (Figure 5B). At the top level of the 
hierarchy, the centers of the two states consist of tightly clustered and strongly connected 
prototypes. However, at the 20% density level, the nodes located further away from the centers 
of State A and State B break off to form several clusters of prototypes, each constituting a 
unique brain state. Five states with the largest clusters are emphasized in Figure 5B. Two of 
these clusters (A1, A2) are from state A and three of the clusters (B1, B2, B3) are from state B. 
 

 
Figure 5 – Force directed graph visualization of brain states. All 412 group-level prototype brain 
states are depicted as nodes in a force-directed graph. More spatially similar states are closer together, 
while less similar states are forced apart. Solid lines indicate a significant spatial correlation between 
states at p<0.01, while a dashed line indicates a significant correlation at p<0.05. Panel A indicates the 
top-level solution (100% density), with red being the task-positive State A and blue being the task-
negative State B. Panel B shows the lowest level of the hierarchy (20% density), with each color 
indicating a separate graph community. Large communities are highlighted with circles. Note that states 
appear to break off from the primary State A and State B clusters when they are mixtures of those two 
states (i.e., they were between the large State A and State B clusters).  
 
Hierarchical organization in task fMRI 

We next analyzed task-state fMRI brain states to test the hypothesis that task activations 
have a similar hierarchical structure as identified using resting-state fMRI data. Importantly, we 
could use a more supervised approach here, since the experimental cognitive manipulations 
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indicate (roughly) which mental state each subject is in. This involved assuming the 
experimental cognitive state corresponded to the brain activation state, then working backward 
to see if the activations were hierarchical in nature. 

We first calculated the mean brain state prototypes for each of the seven tasks, shown in 
Figure 6A. This was done using a standard fMRI general linear model, with a canonical 
hemodynamic response function (given that all 7 tasks used block designs) and inter-block rest 
periods as baseline. The extremely high similarity across the seven distinct cognitive states 
observed (r=0.9984 on average) suggests that the highly similar brain states identified with 
resting-state fMRI may map to distinct cognitive states as well. 

Next, we used principal component analysis (PCA; the first principal component) to 
isolate a dominant task-general activation state (Figure 6B middle), which was quite similar to 
the State A pattern identified using resting-state data (r=0.56, p<0.0001) but anti-correlated with 
State B (r=-0.54, p<0.0001). The task-general activation state was then removed from each of 
the seven mean task states using linear regression to obtain task-specific activation states 
(Figure 7B right). Each of the task-specific activation states included active regions associated 
with each cognitive task. For example (Figure 6B), after subtracting the task-general activation 
state from the motor task state, the remaining task-specific activation state included 
predominantly motor region activity and some attention region activity. Similar results were 
observed for the remaining six tasks as well (Figure 6C). The presence of a strongly dominant 
task-general state across diverse task demands, along with subordinate task-specific activation 
states across those tasks, indicates a hierarchical organization of the state space that is similar 
to what was observed with resting-state fMRI. 
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Figure 6 – Hierarchical organization of task activation brain states. A) The mean whole-brain 
activation patterns for each state are shown. These brain states were highly similar to each other on 
average (r=0.9984). The similarity of the brain states underlying these quite distinct mental states 
suggests the similarities observed across the resting-state brain states likely correspond to distinct mental 
states as well. B) We hypothesized that task activation states are also organized hierarchically. We used 
PCA to derive a task-general activation pattern – a higher-order brain state – which was correlated with 
State A (r=0.56, p<0.0001) but anti-correlated with State B (r=-0.54, p<0.0001). A lower-order task-
specific brain state was revealed when the higher-order task-general brain state was subtracted from 
each task’s activation pattern. The motor task is shown for illustration. Motor/tactile network activations 
are not readily apparent in the original activation pattern, but are revealed when the task-general pattern 
is subtracted. Note that such task-specific patterns are typically observed using specific contrasts (e.g., 
left vs. right hand motor responses), whereas we use a task-general contrast here. C) Task-specific 
activation patterns for all 7 tasks are shown (average across-task r=-0.01). These results suggest 
important functional distinctions relevant to cognition and behavior are hierarchically embedded within the 
observed rest states despite dominance of State A and State B. 
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Decoding brain states using Neurosynth 
  

We next sought to take advantage of the vast fMRI task activation literature to decode 
the identified resting-state brain states, identifying likely cognitive processes occurring during 
rest. This also allows us to test the hypothesis that State A and State B are likely to be general 
states governing basic modes of cognition, while the lower level states (12 states at 20% 
density) are likely more more functionally specific. To examine the specific cognitive functions of 
each state at the 100% and 20% density levels, each of the 14 states (state A, state B, and the 
12 states at 20%) were decoded using the Neurosynth decoder function and visualized as word 
clouds. The word clouds for state A and state B (Figure 7A) were consistent with our previous 
interpretation of a “task-positive” state and a “task-negative” state, respectively. Additionally, the 
cognitive terms for each of the lower level states (Figure 7B) are quite distinct from one another, 
despite certain terms repeating across states (“healthy” for state B2, B5). State A branched into 
two lower-level states that shared similar cognitive terms. In contrast, State B is subdivided into 
ten lower-level states that include more diverse cognitive terms spanning multiple functional 
domains not seen in State B word cloud. One possible explanation for the variability in cognitive 
terms observed could be that State B is also an internally-focused state for passive homeostatic 
functions and covert task executions, which could contribute to a wider spread of equally 
significant cognitive terms in the lower-level State B word clouds (see Discussion). 

We validated the Neurosynth findings by running a permutation test for each of the brain 
states (see Methods for details). We found that all of the cognitive terms of interest depicted in 
State A and State B word clouds were significantly different when compared against the 
permutation tests’ null distributions (p<0.001) for all cognitive terms (see Supporting Information 
Figure 2). Additionally, all cognitive terms for State A1, A2, B1, and B2  were significantly 
different (p<0.05) when compared to the null distributions. Note that the permutation tests 
controlled for multiple comparisons, since all 3400 term comparisons were included in each 
permutation (see Methods). The remaining States B3-B10 (Figure 7B, in grey) did not survive 
the permutation tests. Together, these results support the accuracy of Neurosynth decoding of 
spontaneous activation states and suggest that the identified brain states correspond with 
distinct mental/cognitive states. 
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Figure 7 - Decoding the states using Neurosynth. Each state at the 100% (A) and 20% (B) levels of 
the hierarchy illustrated in Figure 6 were decoded using Neurosynth. Cognitive terms with the strongest 
associations with each state are depicted as word clouds (top 50 terms with non-functional terms 
removed; see Methods for details on term selection). Terms with higher correlation values with the 
indicated brain state activation pattern are represented by larger font sizes (with size normalized within 
each brain state’s word cloud). States B3-B10, colored in grey, did not survive the permutation testing 
(see Supporting Information for details). 
 
 
 
DISCUSSION 
 

By characterizing moment-to-moment activation patterns in a high-dimensional state 
space, we identified a hierarchical organization of functional brain states. Two domain-general 
states (State A and State B) occupy the highest tier of that hierarchy. These two states can be 
further subdivided into functionally specific “sub-states”. As expected, subjects spent a majority 
of time in State B, which matches the activation pattern commonly observed to be more active 
during rest than during task. Despite using resting-state data for brain state identification, we 
found that subjects spent a significant portion of time (39%) in State A, which matches the 
activation pattern commonly observed to be more active during a wide variety of tasks than 
during rest. The functional relevance of these activation patterns was characterized using a 
variety of distinct task states as well as pattern decoding based on meta-analysis of thousands 
of fMRI studies. Together these results suggest that whole-brain activation state configurations 
correspond between rest and a variety of tasks. 
 
Hierarchical Organization of Brain States 
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         We identified a pair of competing anti-correlated states based on spontaneous activation 
patterns. State A appears to be a “task-positive” state, with high activation amplitudes in 
common task-active areas such as sensorimotor and cognitive control networks (28, 54, 60, 61). 
State B appears to be a “task-negative” state, with high activation patterns mainly in the default-
mode network (29, 62). Breaking individual brain states into more clusters, we observed 12 
distinct brain states that are more functionally specific than State A and B, as indicated by 
associated terms from the cognitive neuroscience literature. Qualitatively, the activation pattern 
for each brain state includes highly activated and/or de-activated brain regions that are affiliated 
with various functional network definitions (Figure 4 bottom), further supporting the specificity of 
each brain state. However, detecting the same states across unconstrained rest and task at 
lower tiers of the hierarchy would be unlikely, given that any two subjects are unlikely to enter 
the exact same mental state spontaneously. Additionally, reverse inferences are more likely to 
be problematic for lower-level (more specific) states, since reverse inferences are often used 
inaccurately when making overly broad generalizations about specific activations (63). 
Therefore, we focused predominantly on State A and State B, which were both present for 97 of 
the 98 subjects. 
 
Relation to Resting-state FC 

In this study, we emphasized the use of whole-brain activation patterns over alternative 
FC-based approaches (5, 64) for several reasons. Mainly, by focusing on activation amplitudes, 
we were able to directly compare the identified patterns with the large fMRI activation amplitude 
literature (15, 56). Also, characterizing activations allowed us to directly test whether subjects 
were in active task (externally oriented) brain states during “rest” periods, which the results 
support (Figure 7). Importantly, we found that FC architecture remains relatively unchanged 
across State A and State B despite significant differences in the underlying activation patterns 
(Figure 2). This suggests the activation states identified here are only weakly (if at all) related to 
FC states (5, 64). However, the observed activation states appear to be related to static resting-
state FC networks (based on estimating FC across entire resting-state runs). For instance, the 
State B activation pattern is highly similar to the DMN resting-state network, though a portion of 
the FPN is also present. Several studies (19, 23) have investigated the relationship between 
static resting-state networks and co-activation patterns more directly. These studies showed 
that co-activation patterns can resemble common resting-state networks identified using 
traditional FC-based approaches, but some differences in the co-activation patterns remained 
undetected in FC-based analyses. Together, these observations support the use of activation 
patterns to investigate brain state organization. 
 Despite evidence that the present results are independent of FC dynamics, these results 
appear to be related to observed anti-correlation between DMN and task-positive network time 
series according to (static) resting-state FC estimates (53). That result has been recently 
questioned, however, given that it is dependent on the global signal regression preprocessing 
step (39). Importantly, we did not use global signal regression here, such that DMN time series 
were not anti-correlated with task-positive network time series (see Figure 2). This suggests the 
observed spatial (not temporal, which is used with FC) anti-correlation between DMN-dominated 
and task-positive-dominated states are at least somewhat independent of FC-based results. 
This may have been possible because spatial anti-correlation does not imply temporal anti-
correlation (and vice versa). For example, two networks can be activated above baseline (high 
spatial correlation across time points) while being temporally anti-correlated at higher 
frequencies. It remains unclear exactly how spatial activation dynamics relate to time series 
dynamics, however, such that it will be important for future studies to fully characterize the 
relationship between spatial and temporal brain activity correlations in the future. 
  
Brain Activation States Common Across Task and Rest 
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By using a data-driven approach across dozens of subjects we were able to obtain a 
comprehensive characterization of brain states across rest and task. The results confirmed our 
hypothesis that “task-positive” brain states occur regularly during rest periods. We specifically 
found that subjects spent the majority of rest in State B (61% of the time) but that a significant 
portion of rest was also spent in State A (39% of the time.) This ratio is reversed (as expected) 
during the seven tasks: subjects were in State A more often (54% of the time on average) 
during task periods. The only exception was the language task, where subjects were in State A 
only 49% of the time during task periods. One potential explanation is that the language task 
includes two trial types: a math task and a story task. It is possible that during the story task, 
subjects enter a self-reflective cognitive state consistent with State B, either due to the 
introspective nature of stories or due to a lack of active task demands, which may bias the 
percentages in favor of State B over State A during task periods. 

A popular account of resting periods is that mind wandering is the primary mental 
phenomenon occurring during those times. Past studies have linked increased activity in the 
DMN, present in the State B activation pattern, with mind wandering (65, 66). However, it is 
likely that increased DMN activity is not the only neural mechanism underlying mind wandering. 
The significant presence of State A suggests that the brain is frequently performing active tasks, 
even during “rest”. A few studies have suggested personally relevant planning as one such task, 
which involves activity in the autobiographical memory system (67) and executive control 
systems (68, 69). Alternatively, common self-reported experiences of engaging in problem 
solving during rest (26) may also require increased activity in areas such as the FPN. 
Additionally, one might expect periodic activations in motor and sensory systems that are largely 
involved with passive attending to sensorimotor events (30). These “task-positive” networks are 
present in the State A activation pattern, suggesting State A might be important in a full 
explanation of mind wandering. However, future work will be required to assess the specific 
tasks that are performed during unconstrained resting-state mind wandering. Also of note, State 
B was present for a substantial portion of time during task performance. These results suggest 
there is a balance between these two states – with only moderate shifting from this homeostatic 
baseline – regardless of outward behavioral state. 
  
Limitations 

The present study involves several limitations that will be important for future studies to 
address. For instance, with fMRI the choice of a representative “baseline” for activation 
analyses is a complex issue. For standard task analyses, this is often circumvented using inter-
task rest periods as the baseline to compare across task conditions. This choice has several 
issues, especially given that some regions are more active during rest than task (70). Yet even 
this imperfect baseline choice is unavailable when investigating activations during resting states. 
Building on common practice in the fMRI FC literature, we used each region’s (or voxel’s) time 
series mean as baseline. This is equivalent to using the spatial average across all whole-brain 
images in an fMRI run as the baseline, which removes brain anatomy and other potentially 
spurious similarities between brain images at individual time points. However, differences in the 
choice of baseline may influence the amplitude of the activations we observe, which in turn may 
affect the interpretability of activation patterns. Notably, this would be a problem for methods 
with a true baseline as well (e.g., positron emission tomography), given that without temporal 
de-meaning the spatial activation patterns could mostly reflect anatomy (and so would always 
be highly similar to each other). However, the majority of our analyses and findings are rooted in 
correlation-based methods, which are designed to remove the influence of baseline (or linear 
scaling) shifts in signals. Thus, our results may be less influenced by baseline issues than other 
alternative approaches. While the choice of a valid baseline remains an important problem to 
explore in fMRI research, its effect is likely minimized by the analytical approaches used in this 
study. 
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The dimensionality of the feature space, downscaling from approximately 60,000 grey-
matter voxels to 264 brain regions, is another potential limiting factor for this study. While signal-
to-noise is likely increased with a reduction in dimensionality (through averaging related signals 
within brain regions), meaningful information at the voxel level can also be lost. We focused on 
the scale of brain regions to take advantage of higher signal-to-noise, and also for 
computational tractability. Importantly, we found that the conclusions drawn at the region level 
generalized to the voxel level, based on mapping the time points assigned to each brain state to 
the voxel level (Figure 1C). It will be important, however, for future studies to perform our 
dMVPA approach (or related methods) directly on voxel patterns to assess potentially more 
detailed (but potentially more noisy) activation pattern brain states. 
  
Conclusion 

We used a novel dMVPA approach combining insights from multivariate activation 
methods as well as graph theoretical methods to identify and characterize activation pattern 
brain states during resting-state and task-state fMRI. This provided three primary benefits. First, 
relative to related M/EEG dMVPA approaches, the increased spatial accuracy of fMRI facilitated 
identification of activation patterns. Second, use of both resting-state and task-state data across 
98 subjects allowed for an especially comprehensive identification of human brain activation 
states. Third, a focus on fMRI activation amplitude patterns allowed us to begin to interpret even 
spontaneous activations in terms of specific functions, given the vast task fMRI activation 
literature and associated cognitive functions. Together these benefits revealed a hierarchical 
organization of brain states with shared features across rest periods and task performance. It 
will be important for future studies to build on these results, improving our understanding of the 
many brain states that are entered spontaneously and as a result of social interactions (e.g., 
cognitive task instructions) along with their relation to ongoing brain network dynamics. 
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SUPPORTING INFORMATION 
 
Permutation test for statistical significance of the anti-correlation between State A and State B 
 
Methods 
We sought to confirm the statistical significance of the observed anti-correlation by performing a 
permutation test with 10,000 iterations. For every iteration cycle, each subject’s Infomap 
clustering solution was re-mapped into a two-state label solution based on the group-level 
clustering solution. The two-state labeling solution was then permuted for each timepoint prior to 
averaging all timepoints with the same label to create a “permuted” State A and State B. The 
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permuted State A and State B activation patterns were then correlated. The 10,000 r-values 
across all iterations formed the null distribution for comparing the observed anti-correlation 
between State A and State B. 
 
Results 
The null distribution derived from the permutation test followed a relatively normal distribution. 
Pseudo-randomly dividing the resting state data into two states tended to favor anti-correlated 
states, as seen in the negative mean of the null distribution. However, the observed anti-
correlation State A and State B is statistically significant relative to this null distribution 
(p<0.0001), supporting the distinctness of State A and State B. 
 
 

 
 
Supporting Information Figure 1 - Permutation test for State A vs. State B anti-
correlation. A total of 10000 permutations were performed to create the plotted null distribution. 
The red vertical line represents the observed anti-correlation r-value between State A and State 
B (r = -0.97). The negative null distribution suggests that pseudo-randomly splitting the data into 
two “states” tends to create anti-correlated activation patterns. However, the permutation test 
indicates that State A and State B were more distinct from one another than they would be by 
chance (p<0.0001). 
 
 
 
Permutation test for statistical significance of Neurosynth decoding for all states 
Methods 
We validated the Neurosynth results by running permutation tests (1000 iterations) for each 
brain state (State A, State B, and the 12 states at 20% density tier of the hierarchy). For each 
permutation iteration, we permuted the order of the brain state temporal windows (consecutive 
time points of the same state), dictated by the Infomap clustering algorithm, for each individual 
subject. This method preserved the temporal properties of the brain states while still permuting 
the data being used to average and obtain the brain state prototypes. These newly permuted 
individual brain state prototypes were then averaged based on the group-level clustering 
solution to generate the permutated brain states (State A, State B, 12 states). These permuted 
states were passed through the Neurosynth decoder, comparing across all 3400 cognitive terms 
for each iteration of the 1000 permutations. The null distribution was formed by taking the 
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strongest correlation value (regardless of signage) across the 3400 comparisons for each of the 
1000 permutations. Using this null distribution (size n=1000), we compared the observed 
correlation values for each cognitive term of interest in the word clouds (Figure 7) to test for 
statistical significance. Note that this approach allowed us to control for multiple comparisons, 
since all possible comparisons were computed for this permutation test (51).  
 
Results 
The null distribution for each state were formed by taking the highest correlation score across 
3400 comparisons for every permutation cycle (n=1000). Each cognitive term of interest 
included in the respective word cloud (Figure 7) were tested against this null distribution for 
significance. Across all panels in Supporting Information Figure 2, the blue histograms 
represents the null distribution (n=1000) derived from the 1000 permutations and the red 
histograms illustrates all observed correlations scores for each cognitive term. All terms for 
State A and State B were significant (p<0.001). Additionally, all terms for State A1, A2, B1, and 
B2 were significant (p<0.05), but no terms from State B3-B10 passed the permutation test.  

 
 
Supporting Information Figure 2 - Permutation test for Neurosynth decoding of State A 
and State B. The order of the state time windows were permuted per subject before averaging 
to obtain “permuted” prototypical states. A total of 1000 permutations per state were performed 
prior to Neurosynth decoding. The maximum (absolute value) r-value across the 3400 terms 
was selected for each permutation. The observed r-value for each cognitive term of interest was 
then compared to the null distribution formed from the 1000 permutations. A) Results for State A 
and State B are shown. Note that the blue histogram represents the null distribution and the red 
histogram represents correlation values for all terms included in the word cloud. All cognitive 
terms were significant (p<0.001) for both states. B) Results for the 12 states are displayed in the 
same manner as (A). All terms for A1, A2, B1, and B2 were significant (p<0.05) while no terms 
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from B3-B10 passed the permutation test. Note that multiple comparisons were corrected as 
part of the permutation test procedure (see Methods).  
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