
Contextual connectivity: A framework for
understanding the intrinsic dynamic architecture of
large-scale functional brain networks
Rastko Ciric1,*, Jason S. Nomi2, Lucina Q. Uddin2, and Ajay B. Satpute1,3,*

1Dept. of Neuroscience, Pomona College, Claremont, CA, USA
2Dept. of Psychology, University of Miami, Coral Gables, FL, USA
3Dept. of Psychology, Pomona College, Claremont, CA, USA
*Correspondence to: rc042010@mymail.pomona.edu and ajay.satpute@pomona.edu

ABSTRACT

Investigations of the human brain’s connectomic architecture have produced two alternative models: one describes the brain’s
spatial structure in terms of localized networks, and the other describes the brain’s temporal structure in terms of whole-brain
states. Here, we used tools from connectivity dynamics to develop a synthesis that bridges these models. Using task-free fMRI
data, we investigated the assumptions undergirding current models of the connectome. Consistent with state-based models,
our results suggest that localized networks are superordinate approximations of underlying dynamic states. Furthermore, each
of these localized, moment-to-moment connectivity states is associated with global changes in the whole-brain functional
connectome. By nesting localized connectivity states within their whole-brain contexts, we demonstrate the relative temporal
independence of brain networks. Our assay for functional autonomy of coordinated neural systems is broadly applicable across
populations, and our findings provide evidence of structure in temporal dynamics that complements the well-described spatial
organization of the brain.

A major endeavor in neuroscience is to characterize the spa-
tiotemporal organization of the brain into functional systems1.
By identifying patterns of synchronous brain activity, func-
tional magnetic resonance neuroimaging (fMRI) techniques
have partitioned the human brain into large-scale networks2, 3.
These functional networks are stable across individuals and
populations4–6, are roughly consistent across task-evoked
and task-free states7, 8, and are present across mammalian
species9, 10. A hierarchically modularized set of canonical
networks is now widely accepted as an organizational princi-
ple of the brain11, 12. Indeed, an expanding literature relates
networks to specific psychological functions and individual
differences13–16, with the potential for improved clinical diag-
nosis or treatment outcome metrics17–19.

However, recent work has called into question how accu-
rately this canonical network model represents underlying
neural architecture. In particular, many methods used to de-
lineate networks rely on two implicit assumptions. First is
the spatial assumption that each brain region participates in
exactly one network. Casting doubt on this are recent models
suggesting that brain regions can engage with several dif-
ferent networks20–22, dynamic causal models showing that
connectivity between brain regions changes as a function of
the experimental context23, and graph theoretic models in-
timating the existence of neural hubs that recruit multiple
networks24–27. Second is the temporal assumption that the
connectivity within each network remains relatively stable
during fMRI experiments. This, too, has been called into
question, with recent work28 suggesting that the brain is dy-

namically multistable. That is, the brain may occupy any of a
number of connectivity states over time, each with a distinct
network architecture29. Such a multistable model has been
applied to discover novel biomarkers for pathology30–32 and
to track changing cognitive demands33.

Currently, it is unclear whether these recent findings reflect
modest fluctuations nested within the canonical network ar-
chitecture, or whether the spatial and temporal assumptions
of commonly used network models must be re-evaluated. In
the present study, we evaluate the stability, homogeneity, and
independence of six networks to determine whether each net-
work’s temporal variability constitutes stochastic variation
about its time-averaged structure, or whether it reflects tem-
porally distinct network connectivity states (or NC-states).
We identify putative NC-states using k-means clustering of
connections computed over a sliding window28 (Figure 1).
We next characterize the whole-brain milieu in which NC-
states occur, identifying novel organizational principles from
which to further understanding of the brain’s intrinsic archi-
tecture. Our findings diverge from assumptions of spatiotem-
poral stability, and suggest instead that canonical networks
are superordinate representations of several NC-states, each
of which describes the state of a network at a given moment
in time and is associated with a distinct whole-brain context.
Surprisingly, we also find that individual network connectivity
is relatively independent of whole-cortex connectivity. Based
on these findings, we develop a novel organizational frame-
work, contextual connectivity, towards reconciling network-
and state-based models of the human brain.
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Figure 1. Summary of analysis steps. (A) ICA was used to parcellate the human brain into 70 cortical and 10 subcortical/cerebellar nodes
(top). Cortical nodes were assigned to six canonical functional networks using a community detection algorithm (bottom; results in Figure 2).
(B) Temporal fluctuations in connection strength between nodes were identified using sliding-window correlations. A k-means clustering
analysis identified prominent, recurring ‘network connectivity states’ (NC-states) among nodes within each canonical network. The top row
schematically illustrates four recurring NC-states of one canonical network. The bottom rows show the NC-states in other networks for
corresponding time windows (results in Figure 3a). To see how NC-states in a given network relate to the connectivity state of the rest of the
brain, two approaches were taken. One approach averaged the connectivity matrices over a given NC-state’s time windows (such as for
NC-state 4 for the network in the top row in the schematic) to determine (C) the whole-brain connectivity context (WBCC, grey portion of
matrix) in which each NC-state (purple portion) occurred (results in Figure 3b). The other approach examined synchrony between NC-states
in different canonical networks using a Bayesian concordance matrix (D, bottom) to test whether NC-states in different networks (top) relate
to one another over time (results in Supplementary Figure 4).

Results
Canonical network identification
The spatial segregation of cortical parcels into functional brain
networks forms the basis of modern analyses of the human
connectome. Here, we reproduced this canonical network
partition as the first step toward a revised understanding of
networks as temporally dynamic entities. Specifically, we
used spatial independent component analysis (ICA)34 to local-
ize 80 sources of variance in the BOLD signal. A connectome
was defined using the 80 components as nodes and using the
Pearson correlation coefficients between node timeseries as
evidence of connection strength35. Nodes were assigned mem-
bership to canonical brain networks by training a community
detection algorithm36, 37 using an a priori hypothesis3, 38. We
thus obtained six communities of nodes exhibiting one-to-one
correspondence with six reference brain networks: the visual
network (VIS), the somatomotor network (SOM), the dorsal
attention network (DAT), the cingulo-opercular/salience net-
work (SAL), the executive control network (EXE), and the
default mode network (DMN)2, 3. Spatial cross-correlations
between these communities and reference networks ranged
from approximately 0.49 to 0.68, well above a previously
established cutoff38, a positive indication that the canonical

partition was reproduced (Supplementary Figure 1C). Figure
2a illustrates the clear spatial correspondence between the net-
works of our partition and canonical functional networks2, 3, 28.
Figure 2b depicts the time-averaged connectome; the majority
of strong and specific correlations among nodes were local-
ized to within-network connections. We used this partition
to organize subsequent analyses examining the moment-to-
moment connectivity of functional networks.

Each canonical network is resolvable into a set of
network connectivity states (NC-states)
While the brain’s organization into networks ranks among the
most robust findings in functional connectivity, the stability
of brain networks over time is under dispute. Recent evi-
dence suggests that the moment-to-moment synchrony among
the regions constituting each functional network may deviate
markedly from that network’s canonical structure28. Here, we
evaluated this hypothesis. For each of the six networks, we
calculated the extent to which different ‘network connectivity
states’ (NC-states) could arise among nodes in the network.
We began by using k-means clustering to identify putative
NC-states for each canonical network. Each NC-state repre-
sented a distinct pattern of synchrony among the nodes within
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Figure 2. Canonical functional networks of the time-averaged connectome. (A) Spatial maps of nodes are illustrated according to their
membership in functional networks. (B) Strengths of connections between nodes are illustrated in a whole-brain adjacency matrix. The
strongest connections of the time-averaged functional connectome occur among nodes of the same network.

a network. Compared with expectation under permuted and
phase-shifted null models, the NC-states we observed were
well-differentiated (p< 0.01) and represented distinct clusters
(p < 0.01; Supplementary Figure 2). Figure 3a illustrates the
NC-states of the DMN sorted in ascending order of intrinsic
connectivity.

Inconsistent with models that suggest uniformity of brain
networks over time, we found that networks could be resolved
temporally into NC-states. Remarkably, no NC-state was
completely predominant for any network. Instead, all subjects
exhibited multiple NC-states per scan, suggesting that the
many NC-states observed per network were not idiosyncratic
to particular subjects. For the default mode network, for
instance, between 7 and 9 NC-states were represented in the
majority of subjects, with no subject exhibiting fewer than 4.
Moreover, gross features of NC-states were conserved at the
single-subject level, and the majority of NC-states replicated
across split-half samples (.88 feature-wise correlation, 36 out
of 46 NC-states replicated; Supplementary Figure 3A). Taken
together, these results indicate that each brain network is
incompletely characterized by its time-averaged connectivity
profile.

NC-states occur in specific whole-brain connectiv-
ity contexts (WBCCs)

We used NC-states as the building blocks of a framework for
evaluating the temporal independence of canonical networks.
We first posed the question: Given information about the state
of one brain network, can we make inferences about the state
of another network, or of the brain as a whole? To answer
this question, we fashioned hypotheses based on whole-brain
connectivity contexts (WBCCs)39. The WBCC of each NC-
state was defined as the average (whole-brain) environment in
which that (single-network) NC-state was present. We used
multilayer community detection37 to obtain an allegiance ma-
trix40 representing each NC-state’s WBCC. In an allegiance
matrix, the weight of the edge connecting a pair of nodes
represents the probability that those nodes will be found in
the same community over all time windows during which that
NC-state is present. Allegiance matrices, unlike correlation
matrices, are more sensitive to specificity than to magnitude
of connections. We first tested a model of complete temporal
independence: the null hypothesis that an NC-state’s WBCC
did not significantly differ from the time-averaged connec-
tome, which would suggest that each network’s connectivity
state changed independently of the remainder of the brain. In
contrast with the null model derived under this hypothesis, all
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Figure 3. Connectivity dynamics of the default mode network (DMN). Dynamic functional connectivity analysis among nodes of the
DMN revealed that the DMN is composed of several network connectivity states (NC-states). This figure summarizes the connectivity
patterns of the canonical (time-averaged) DMN (first row, left) in comparison with the 9 observed NC-states (DMN1-9), organized in order of
low intrinsic connectivity (dark red) to high intrinsic connectivity (dark blue). (A) illustrates the connectivity (Pearson correlation) among the
17 nodes in the DMN, either time-averaged or for specific NC-states. Each NC-state exhibits a distinct profile of connectivity among nodes.
(B) illustrates relative within- and between-network allegiance for each NC-state and its whole-brain context. Allegiance is the probability
that nodes are in the same community when that NC-state is present. The circle plot illustrates between-network allegiances for each NC-state
relative to the time-averaged connectome. The color codes along the rim signify different canonical networks as labeled at right (e.g., red for
DMN). Longer rim segments indicate that the network has greater allegiance to other networks relative to the time-averaged state, and the
size of connections between rim segments indicate strength of between-network allegiances. The time-averaged circle plot defines a
‘baseline’; thus, each rim segment is of equal size. The remaining plots show that allegiance between networks changes across NC-states (to
emphasize changes in allegiance, plotted allegiance ratios were rescaled exponentially). The adjacent bar illustrates within-network allegiance
using corresponding color codes. Longer segments indicate that the network has greater intrinsic allegiance, again relative to the
time-averaged ‘baseline’. For instance, DMN in DMN1 exhibits weak within-network allegiance but strong between-network allegiance,
which appears to be driven by greater allegiance to DAT, SAL, and VIS. DMN’s intrinsic allegiance increases from DMN1 to DMN9.
Conversely, DMN’s allegiance to other networks substantially drops from DMN1 to DMN9.
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NC-states were associated with specific changes in the func-
tional architecture of the whole brain (Supplementary Figure
3B). Figure 3b uses a Circos plot to illustrate changes in the
WBCC associated with each NC-state. For example, DMN4
was associated with increased allegiance among salience, ex-
ecutive, and subcortical systems, while DMN7 was associated
with increased allegiance between the salience and dorsal at-
tention networks. In supplementary analyses, we also tested
interdependence between individual networks in another way
by using a Bayesian concordance metric. This showed that
the occurrence of a state in one network was predictive of the
occurrence of particular states in other networks (Bonferroni-
adjusted p < 0.05, Wilcoxon test; Supplementary Figure 4B).
These results are inconsistent with temporal independence of
brain networks, and instead support the view that informa-
tion about the state of the entire brain is embedded in each
network.

Dynamically determined NC-states recapitulate
time-averaged subnetworks
The analyses above suggest that brain networks are tempo-
rally resolvable into transient NC-states. However, it is not
yet clear that this complexity adds notable value. To address
this, we first examined whether the NC-states we observed
using dynamic analyses recapitulate prior results from static
connectivity analyses. Such work has shown that the DMN
is composed of two subnetworks, one anchored in the me-
dial temporal lobe (MTL) and the other in the dorsomedial
prefrontal cortex (DMPFC), both of which converge onto a
’midline core’ (Figure 4A, inset). We first examined whether
our analysis reproduced these subnetworks of the DMN. We
used hierarchical clustering to determine whether a network’s
nodes associated into subnetworks (Supplementary Figure
5). NC-states DMN2 and DMN3 showed a clear correspon-
dence with previously reported MTL and DMPFC subnet-
works, respectively. DMN2 featured enhanced connections
among medial nodes (red and violet), while DMN3 featured
enhanced connections among lateral nodes (blue and violet).
The precuneus, PCC, medial PFC, and right IPL – nodes
that remained cohesive in both NC-states (violet in Figure
4a) – map onto the midline core of the DMN following prior
work41 (Figure 4A, inset). These findings validate our dy-
namic approach insofar as it captures known findings from
static connectivity studies.

We then addressed two additional questions afforded by
our dynamic approach. First, what is the status of the deco-
herent DMPFC nodes during DMN2, and of the MTL nodes
during DMN3? Our findings indicate that in both cases the
decoherent nodes demodularize (Figure 4b-c). That is, the con-
nectivity of the DMPFC subnetwork with other DMN nodes
diminishes in DMN2, while its connectivity with other net-
works (e.g. SAL) increases. Similarly, the connectivity of the
MTL subnetwork with other DMN nodes decreases in DMN3
while increasing with other networks (e.g. DAT and SAL).
Second, we explored whether networks other than DMN also

have NC-states that suggest the configuration of nodes into
subnetworks. We observed NC-states corresponding to frac-
tionation of the SAL and EXE networks (and replicated these
in split-half samples). In SAL2, salience nodes assorted into
two antagonistic subsystems (Figure 4a). We suggest puta-
tive functions based on their distinct connectivity profiles, but
caution that a definitive functional description would require
formal probing using tasks. SAL2 exhibited a ’cognitive-
control’ core (blue) that became negatively correlated with an
’interoceptive-attentional’ periphery (red). While the ventral
core remained selectively connected to EXE, the dorsal pe-
riphery connected strongly into SOM and VIS (Figure 4b-c).
As for the EXE network, EXE2 was characterized by a split-
ting of the EXE into two sets of nodes (Figure 4b-c). While
one set of nodes appeared to lose cohesion with the rest of
the EXE and each other (red), another set of nodes exhib-
ited increasing modularization (blue). The DMN subsystems
coherent in DMN2 and DMN3 were similarly modularized
(Figure 4b). These modularizations may reflect a shift toward
specific, localized computation in these subsystems.

Canonical networks are relatively independent
The preceding analyses provide evidence of interdependence
among brain networks but do not test whether networks
nonetheless retain a relative degree of independence. In-
deed, it is notable that temporal independence of networks
has largely been assumed on the basis of community struc-
ture rather than formally tested. We reasoned that for a given
sample of nodes, the extent to which these nodes’ connections
cannot explain dynamic connectivity among the remaining
nodes is the extent to which these nodes are independent.
Owing to the putative modularization of canonical brain net-
works, we hypothesized that dynamics of known networks
would poorly explain the entire cortex’s dynamics in com-
parison with dynamics of a random sample of nodes, or a
pseudo-network. We calculated how well the NC-states of
canonical and pseudo-networks explained the temporal varia-
tion in the cortical connectome using the within-cluster sum
of squares (WCSS) error metric. The WCSS error is a mea-
sure of the quality of a putative clustering solution, or the
extent to which it explains the variability within a dataset;
a higher WCSS error corresponds to a poor-quality cluster-
ing solution, which may be interpreted as evidence that a
(pseudo-)network’s local connections poorly predict global
connectivity; i.e., the (pseudo-)network is more independent.
We proposed whole-cortex clustering solutions on the basis
of only information from connections within each (pseudo-
)network and calculated the WCSS error for each proposed so-
lution. Consistent with our hypothesis, dynamics of canonical
networks explained significantly less whole-cortex variation
than did dynamics of pseudo-networks (Figure 5a; p < 0.05,
Wilcoxon test). Furthermore, canonical network NC-states
were significantly less concordant with cortical states than
were pseudo-network NC-states (Figure 5b; p < 0.01 except
SOM, Wilcoxon test). These findings suggest that (while fluc-
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Figure 4. The salience, executive, and default mode networks dynamically segregate into temporally decomposable but spatially
overlapping subsystems. (A) Top to bottom: Spatial maps of dynamically segregated subsystems of SAL, EXE, and DMN. (B) Circle plots
illustrate changes in subsystem connections relative to the time-averaged connectome. (C) Allegiance matrices illustrate that nodes within
different subnetworks exhibit differential allegiance to external networks. Top: The default mode network exhibited two NC-states that
reflected its underlying connectomic architecture. DMN2 featured selective cohesion in an MTL subsystem (M), while DMN3 was
characterized by selective cohesion in a dmPFC subsystem (D). Several medial core regions (C) remained cohesive in both states. Inset, top
left: Dynamic DMN subsystems recapitulate subsystems of DMN previously reported using a time-averaged connectivity analysis15. Third
row: NC-state SAL2 was characterized by a bifurcation of the salience network into a cognitive-control core (CC) and an interoceptive
periphery (IA), each exhibiting distinct and antagonistic connectivity profiles. CC preferentially linked into control systems, while IA
preferentially linked into perceptual systems. Bottom: NC-state EXE2 was characterized by enhanced modularization of a central executive
system (CEN) and demodularization of auxiliary nodes (AUX).
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tuations occurring on a dynamic level across networks are of
importance) canonical networks nevertheless retain a degree
of independence from the rest of the cortex.

As an exploratory aim, we used these measurements to
characterize a maximally interdependent brain subsystem. We
hypothesized that such a ‘hub’ system would better explain
cortical dynamics than would pseudo-networks and that it
would exhibit NC-states highly concordant with cortical states.
Several subsystems satisfied these criteria; of these, the most
potent was the ‘most interdependent’ (INT) subsystem pre-
sented in Figure 6 (p < 0.01 for WCSS and concordance
metrics). INT nodes included medial and lateral prefrontal
cortices, midcingulate gyrus, middle temporal gyrus, fusiform
gyrus, dorsal somatomotor cortex, and lateral occipital cortex.
Unlike prior attempts to identify hubs, INT nodes were not
characterized by high degree18 or participation coefficient24.
Instead, they appear to be representative nodes of their parent
networks and may lack substantial anatomical connections
with one another. It is possible that traditional graph-based
hubs entrain synchrony among INT nodes.

Discussion

An ideal model of the brain distills its dynamic, high-
dimensional information23 into interpretable constructs with-
out sacrificing fidelity. Towards this goal, research using
functional connectivity has centered on two models. The
first of these models emphasizes the spatial dimension, and
parcellates brain activity into spatially localized functional
networks2, 3, 5. A second model emphasizes the temporal di-
mension, and parcellates brain activity into dynamically re-
curring states28, 31, 32, 42. While researchers have nominally
acknowledged that the simplifying assumptions of each model
introduce numerous deficiencies and limitations20, 28, the pre-
ponderance of studies in functional connectivity continue to
rely upon them.

In the present study, we deconstructed the elementary units
of both models – the spatial network and the temporal state –
into a ’common factor’, or a spatially localized connectivity
state (i.e., a NC-state). We then evaluated the assumptions un-
derlying network-based models, in particular the assumptions
that brain networks are independent and stable. Inconsistent
with the canonical model of localized and temporally sta-
ble networks, we found that brain networks are temporally
decomposable into an array of possible connectivity states.
Moreover, each local connectivity state also provides infor-
mation about the global state of the entire brain. However,
inconsistent with whole-brain models that disregard network
boundaries, our results also indicate that networks retain a
degree of modularization; connectivity patterns among nodes
of a single network provide less information about the whole-
brain dynamic state than do connectivity patterns among ran-
domly selected nodes.

To accommodate these findings, we advance an alternative
model, contextual connectivity, and a corresponding analytical
framework. In our model, networks are better thought of as
composed from a set of dynamically recurring states, each of
which is associated with a specific whole-brain context. The
combination of the network state and the whole-brain state
(outside the network) provides a tractable balance that bridges
two analytical levels of cognitive neuroscience: the spatially
localized, temporally general network and the temporally lo-
calized, spatially general brain state. Thus, our model takes
advantage of the spatial simplification provided by canoni-
cal networks, which is empirically supported by our findings,
while also capturing dynamic reconfigurations of nodes as
suggested by dynamic models.

(To be sure, this is not the only possible interpretation
consistent with our evidence. An alternative model might be
developed by first decomposing the whole brain dynamically
and afterward identifying spatially localized, synchronous
systems that recur over time. Thus, instead of identifying
localized connectivity states, this approach would identify
transient coalitions of nodes that manifest during particular
time windows depending on moment-to-moment affiliations
and disaffiliations among nodes. Such coalitions are likely to
be, on average, roughly coterminous with network boundaries.
While this alternative is consistent with our findings, it is
unclear how to identify recurrent coalitions at this time.)

Analytically, our framework comprises four main steps,
which in principle are extensible to any set of complex brain
systems: (i) identify a system of interest (e.g., a canonical
brain network), (ii) determine the internal temporal states of
that system (here, using dynamic functional connectivity),
(iii) determine the external contexts of those internal states
(here, either by computing the average connectivity pattern
of the whole brain or by identifying co-occurrent states of
other systems), (iv) quantify the affiliation between the sys-
tem’s internal states and external contexts (here, using the
WCSS error or the concordance). Notably, our analytical
framework provides a better opportunity for capturing mul-
tivariate or nonlinear exchanges between networks. This is
because our model captures two levels of synchrony dynam-
ics: not only node-to-node connectivity measured within a
given temporal window, but also state-to-state concordance.
At a particular time, it is possible that network A’s nodes have
low moment-to-moment connectivity with nodes in network
B, while the states of the two networks at the same time are
highly concordant. Such cases indicate a complex interplay
between brain networks that may be reflective of nonlinear or
multidimensional interactions mong brain regions.

Because fMRI, and dynamic connectivity in particular, is
susceptible to a number of spurious phenomena, we took cau-
tion to ensure that our results were driven by effects of interest
rather than noise. Two artefactual processes are of particu-
lar concern in dynamic analyses of task-free fMRI: subject
motion and sampling variability. First, in-scanner subject
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Figure 5. Canonical networks are significantly more temporally independent than random cortical subsystems. (A) The relationship
between a canonical network’s intrinsic variation and whole-cortical variation can be quantified using the within-cluster sum-of-square errors
(WCSS). The WCSS approach demonstrated that canonical networks (colored circles) were more independent than random pseudo-networks
(grey silhouette, background) (p < 0.05, Wilcoxon test). (B) Schematic of the WCSS approach used to determine the independence of a
canonical brain network. The whole-cortex connectivity pattern captured in each time window was matched to a context (contextual centroid)
of a NC-state of the network under investigation. Matching was based on proximity in the brain’s connectomic state space. The squares of the
distances separating windowed connectivity patterns from their matched contextual centroid were added together to determine the WCSS
error; a higher WCSS error corresponded to greater independence. A null distribution was built by applying the same approach to random
pseudo-networks. (C) A separate metric, the mean Bayesian concordance, recapitulated the results obtained using the WCSS error. Here,
greater concordance corresponds to more interdependence. Each canonical network (colored bars) was compared against a null distribution of
pseudo-networks (black bars); with one exception, canonical brain networks were significantly more independent (p < 0.01).
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Figure 6. The most interdependent brain system consists primarily of connections between nodes in different networks. We
identified an interdependent (INT) node set characterized by its high temporal interdependence with the cortex as a whole (CTX). (A) The
Bayesian concordance between states of INT and states of CTX is represented as a state-by-state matrix; a positive concordance indicates that
states co-occur more often than predicted by chance. Every state of INT was highly concordant (concordance > 1) with at least one state of
CTX, reflective of similarities between the trajectories of INT and CTX through their respective state spaces. (B) The 8 nodes in the INT set,
color coded according to their parent canonical network and listed at right. These nodes differed from graph-theoretical hubs; rather than
being situated in areas where multiple networks overlapped, they were typically representative nodes of their parent networks. Because these
nodes represented a diversity of brain networks, nearly all connections of INT were between-network rather than within-network connections.

motion can bias connectivity results in favour of connections
between regions that are close together in physical space43, 44.
We repeated our experiment on a low-noise subsample of the
cohort, which we obtained by censoring epochs of high mo-
tion44. Overwhelmingly, we observed states nearly identical
to those observed in the cohort as a whole, indicating that
the dynamic effects we report were not explained by motion.
Second, a recent body of work45 suggests that transient pat-
terns of brain connectivity are not structured manifestations
of a set of underlying brain states; instead, they are artifacts
arising due to variable sampling of a single underlying state
that is stable across time. To account for this possibility, we
generated surrogate data by applying a randomized phase
shift to the connectivity data, thus preserving the structure of
such a stable underlying state but disrupting any organized
dynamic connectivity patterns45. On the whole, we observed
that connectivity states in the empirical data were better dif-
ferentiated than those in the surrogate data, indicating that the
connectivity patterns we observed reflected multiple underly-
ing brain states. In addition to the analytical precautions taken,
our replication of known neural architecture attests to the fi-
delity of our approach. First, we observed local connectivity
states of the default mode network that mirrored previously
reported task-related subsystems15. Second, our analysis of
the independence of local connectivity states recapitulates
the known spatial organization of the brain into functional
networks3. The convergence of dynamic connectivity with
previous results from the task-evoked and resting-state liter-
ature corroborates the argument that dynamic connectivity
analyses are capable of detecting true neural architecture and
not only spurious fluctuations.

Implications for structure-function mapping
The identification of large-scale brain networks is moti-

vated by the possibility of an improved mapping of brain

structure to psychological function. However, the conjectured
functions of large-scale brain networks are highly generalized
and evade psychological intuition13; instead, they reflect the
intrinsic degeneracy and pluripotency of the brain46. This lack
of specificity suggests that brain networks are not the atomic
ingredients of neural function. Indeed, analyses of static
functional connectivity have revealed that large-scale brain
networks are spatially dissociable into subnetworks41. Spe-
cific subnetworks can be selectively engaged using targeted
task conditions41, 47, suggesting that they support specific op-
erations of their parent networks’ function. Here, we offer
an update to this interpretation using dynamic, time-resolved
approaches.

Patterns of neural activity identified as default mode subnet-
works are recruited under specific task constraints41, 47. We
find that the same patterns also occur spontaneously and are
detectable in dynamically occurring brain states (Figure 4).
Moreover, our analysis provides additional insights and an-
alytical metrics pertaining to subnetworks from a dynamic
framework. First, we provide insight into how nodes – such
as those comprising the MTL and DMPFC subsystems of the
DMN – behave when one subsystem temporarily dominates
over the cohesiveness of the network. In both cases, the deco-
herent subsystem appears to demodularize, increasing its con-
nectivity to other networks. Second, whereas time-averaged
approaches resolve networks into spatially non-overlapping
subnetworks, our analysis permits spatial overlaps between
nodes. As such, our approach is more capable of handling
cases of degeneracy and pluripotency, which are considered
to an important feature of complex systems48. Third, our
approach allows us to probe the global context of each subnet-
work as reflected in its NC-state (i.e. DMN2 or DMN3).

9/16

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 7, 2016. ; https://doi.org/10.1101/068320doi: bioRxiv preprint 

https://doi.org/10.1101/068320


Additional implications for functional connec-
tomics

According to dynamical systems models, brain activity can
be understood as tracing a trajectory through a multidimen-
sional ’state space’. A question of current interest is how
to identify the contributions of different brain regions to the
brain’s overall trajectory. Our findings suggest that different
types of regions contribute in distinct ways according to their
network properties. Specifically, we found that INT nodes
(Figure 6) provide maximal information about the status of
the brain as a whole. In that sense, these nodes approximately
denote the general location of the brain in its multidimen-
sional state space. Notably, the connections of this system
are representative linkages between networks. In contrast,
the relatively independent within-network connections may
provide more localized information about the brain’s status,
or specific coordinates within its general location (Figure 5).
These findings suggest that the state of the brain is coarsely
determined by between-network connections, while within-
network connections guide the brain to more specific states.

We also observed that the executive control network was
consistently the most independent brain system across valida-
tion samples. Prior work has demonstrated that the executive
network exhibits a nonspecific or global pattern of connectiv-
ity in the resting state2, 49. This nonspecific pattern represents
a temporal average over a highly variable dynamic repertoire
of connections to all other networks27. The independence of
the executive control network during the resting state indicates
that its intrinsic activity is relatively unconstrained by activity
across the remainder of the cortex. This property of the exec-
utive network may enable it to flexibly update its connections
and steer the brain into a multitude of difficult-to-access states
in response to changing cognitive loads27, 50.

Implications for individual differences
The discovery of large-scale functional networks has

prompted considerable efforts to understand how these net-
works relate to individual differences. Prior work has focused
primarily on whether canonical networks show topological
variation across individuals. However, examining individ-
ual differences in network architectures requires a precise
characterization of intrinsic connectivity networks. Here our
study contributes in several ways. First, our findings suggest
that canonical network analyses of individual differences run
the risk of conflating subject differences in state topology
with differences in network topology. Because each network
can be resolved into distinct NC-states, it may be more in-
formative to isolate states whose between-subject connectiv-
ity differences most strongly relate to individual difference
variables. Second, our findings introduce novel approaches
for relating differences between individuals to differences in
network architectures. Dwell times31 and transition frequen-
cies51 of whole-brain states have been identified as correlates
of schizophrenia; analogous metrics computed for localized
states could elucidate network drivers of pathology. Further-

more, the contextual independence metrics that we introduce
might illuminate previously overlooked correlates of individ-
ual difference variables; specific pathologies may be reflected
in a failure of systems to coordinate or, reciprocally, a failure
of systems to segregate (elevated independence or interdepen-
dence). The methods we present for examining the degree of
independence of brain systems could illuminate new relation-
ships.

Conclusions
Researchers have long acknowledged that brain networks

are not immutable, monolithic entities, but analytical strate-
gies consistent with this acknowledgment have been limited.
Methods aimed at recapitulating canonical networks fail to
capture important dynamics occurring within and between
those networks. However, analyses that do away with network
assumptions often present challenges of interpretability and
complexity. Our approach, contextual connectivity, addresses
this issue by introducing an intermediate level of analysis that
not only respects the robust finding that networks are rela-
tively autonomous, but also recognizes that networks are at
best superordinate approximations of dynamically recurring
states. As such, NC-states provide a tractable approximation
of the functional connectome that maintains fidelity across
both spatial and temporal levels of analysis, and thus may be
valuable for examining relationships between networks and
dynamic whole-brain architectures.

Methods
Subjects. Minimally preprocessed task-free fMRI data
for 200 healthy adult humans (age 22-35, 112 female) were
selected randomly from the Human Connectome Project
S500 public data release52. Acquisition and analysis of
data received institutional review board approval. Informed
consent was obtained in accordance with the policies of the
host institution, and data were de-identified prior to analysis.

Image acquisition and preprocessing. Data were ac-
quired on the 3T Connectom scanner (Siemens Healthcare,
Erlangen, Germany) using multiband pulse sequences (TR =
720 ms; TE = 33.1 ms; 2.0 mm isotropic spatial resolution;
multiband factor = 8)53–56. During task-free data acquisition,
subjects were instructed to visually fixate on a crosshair. The
data acquisition strategy is detailed elsewhere57.

Data were obtained as outputs of the Human Connec-
tome Project’s denoising pipelines, detailed elsewhere58. In
addition to standard fMRI preprocessing using FSL and
FreeSurfer59, 60, data were denoised to minimize the impact
of subject movement on connectivity estimates. In brief, sub-
ject data were decomposed using ICA, and nuisance signals
were removed via regression of realignment parameters, their
temporal derivatives, and independent components identified
as artifactual by a trained classifier (ICA-FIX61, 62).
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In order to divide the brain into functional parcels, we
used group-level independent component analysis (1) to de-
compose the preprocessed images into 100 constituent signal
sources common to all 200 subjects and (2) to identify where
in the brain each signal was localized34. We then applied back-
reconstruction (GICA1) to obtain, for each subject, 100 spatial
maps and timeseries representing subject-specific analogues
of each group-level independent component63, 64. Component
validity was assessed both qualitatively (via visual inspection)
and via cross-correlation of component maps with canonical
network maps38; components corresponding to movement or
physiological noise were discarded, and 80 of the original 100
components were retained as functional parcels, or network
nodes. The activation timeseries of each node was subject
to additional preprocessing steps in GIFT, including demean-
ing and detrending, interpolation over artifact-related outliers
(‘despiking’), removal of frequencies less than 0.01 Hz or
greater than 0.15 Hz using a bandpass filter, and variance
normalization of signal intensities.

Canonical network discovery. The time-averaged func-
tional connectivity between each pair of processed node
timeseries was computed as the Pearson correlation coeffi-
cient65. This analysis yielded a symmetric, undirected graph
with 3160 edges. The weight of the edge connecting node ni
to node n j was encoded as feature Ei j in a symmetric 80 x 80
adjacency matrix E. This time-averaged connectivity matrix
was used to separate nodes into canonical networks and to
establish a reference against which transient connectivity
metrics could be compared.

We applied a generalized Louvain-like community detec-
tion algorithm36, 37 to a 70 x 70 submatrix of this adjacency
matrix; this submatrix corresponded to cortical nodes and
their connections. The Louvain resolution parameter was
trained by performing community detection at a number of
resolutions and penalizing the distance between the resultant
partition and an established a priori partition3 (Supplementary
Figure 1). Using this approach, we partitioned cortical nodes
into six canonical networks.

Dynamic functional connectivity and NC-state resolution.
Dynamic functional connectivity among the 80 nodes was
computed over a 44.64s tapered (rectangle convolved with a
Gaussian) sliding window incremented 0.72s over 15-minute
node timeseries66. In the absence of information about the
timescale of dynamic fluctuations in connectivity, the probabil-
ity of detecting such fluctuations in task-free data is optimized
for a sliding window approximately 50s in duration45. The
pairwise connectivity matrix during each time window was
computed as a regularized precision matrix28, 67–69. An ag-
gressively denoised subsample of all data was selected by
computing the mean framewise displacement44 during each
time window and excluding any windows with a mean FD >
0.18 mm; NC-state identification (as described below) was
performed on the full sample and this subsample with compa-

rable results.

We generated six network-specific graphs for each time
window by extracting from the whole-brain graph only edges
between nodes in the same network. Following an approach
previously used to detect connectivity states28, we used k-
means clustering (L1 distance) of these window-wise graphs
to identify time windows during which each network exhib-
ited relatively consistent connectivity patterns. We determined
the number of clusters (connectivity patterns) for each net-
work using a semi-formalized elbow criterion (Supplementary
Figure 2). To ensure the validity of clustering, we performed
clustering on data generated by independently permuting ob-
servations of each variable in order to preserve variable distri-
butions without maintaining any explicit relationship between
the variables. We found that the sum-of-squares error for the
null data significantly exceeded that for the observed data
(p < 0.01), a positive indication that a clustering approach
was valid (Supplementary Figure 2C). We thus obtained for
each network a set of cluster centroids along with a map as-
signing each time window to a centroid. We defined each
centroid as an NC-state, or connectivity state. To ensure that
NC-states represented dynamic reconfiguration within sub-
jects rather than individual differences across subjects, the
number of NC-states represented in each subject was com-
puted. We also repeated connectivity state detection, as above,
using all nodes in the cerebral cortex rather than only those
assigned to a particular network.

To validate results, the clustering procedure was repeated
on randomly selected split-half samples of the data. Similarity
of subsample centroids was then assessed using the correla-
tion distance metric (1− r, where r is the pairwise Pearson
correlation between the connections of subsample centroids)
as a proxy for similarity. In addition to the empirical split-
half subsamples, clustering was performed on surrogate data
(permuted split-half samples) generated by applying a ran-
dom phase shift to the timeseries representing the strength
of each connection within the network of interest over time.
The similarity between empirical split-half centroids and anal-
ogous phase-shifted split-half centroids was then assessed
using the correlation distance metric. Each centroid was re-
ported as replicated if clustering of the empirical split-half
samples produced centroids more similar to one another than
to the centroids yielded by clustering the phase-shifted data
(Supplementary Figure 3A). Overall, 36 of 46 centroids repli-
cated, including all SAL and EXE NC-states, and all but two
DAT and DMN NC-states. Qualitative visual inspection of all
subsample centroids suggested replication rates similar to but
greater than this automated approach.

Contextual connectivity and concordance. For each sub-
ject, we used Louvain-like multilayer community detection
to compute each node’s community membership at every
point in time37. For each NC-state, we identified an average
whole-brain connectivity context (WBCC) by computing a
community-allegiance matrix over all time points in which the
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network exhibited the NC-state in question. In the allegiance
matrix, an edge Ei j connecting nodes ni and n j is assigned
a weight equal to the probability that ni and n j are assigned
to the same community over the sampled time points (the
“allegiance” of those nodes to one another)70. These context-
specific allegiances were next quantified as a ‘displacement
from baseline allegiance’, defined as the ratio of within- and
between-network allegiances in a specific WBCC to the same
within- and between-network allegiances averaged over all
time. To facilitate visualization, these ratios were rescaled to
represent relative shares of total allegiance in each WBCC
and plotted on an exponential scale.

Additionally, a Bayesian ‘concordance’ metric was com-
puted, which indexed the change in the probability that a
particular network (or the whole cortex) exhibited a particular
NC-state (or connectivity state) given information about the
NC-state (or connectivity state) of another network (or the
whole cortex):

C(Ai,B j) = ln
(

P(Ai|B j)

P(Ai)

)
(1)

wherein for each pair of network-specific NC-states,
Ai represents NC-state i of network A;
B j represents NC-state j of network B, where j may equal i

Concordance was zero-centred by applying a logarithm to
the posterior-to-prior probability ratio; positive concordances
thus corresponded to states more likely to co-occur than pre-
dicted by chance, while negative concordances corresponded
to states less likely to co-occur than predicted by chance.

Three null models were used to generate control distribu-
tions of concordance data under the assumption of complete
independence of the networks. These were generated by shuf-
fling or simulating the assignment of each time point to a
particular set of NC-states. In the first model, the observed
NC-state assignments for each network were randomly per-
muted across subjects. In this way, the observed trends of
occurrence of connectivity states over time was preserved,
but any explicit relationship between NC-states in different
networks was abolished. In the second model, NC-state as-
signments were simulated using the observed initial condi-
tions and Markov chain transition models computed from the
observed data. In the third model, the phase of the observed
NC-state assignments was randomly shifted. In this way, any
apparent concordance that was attributable to static individual
differences (or to sampling variability) was preserved, but
dynamic concordances were abolished. A concordance matrix
was then generated, as above, for the permuted or simulated
data. Null distributions for hypothesis testing were generated
from 100 repetitions of each null model. If a concordance was
non-significant under any of the three null models, then it was
marked as non-significant.

Subsystem identification. Four NC-states corresponding
to fractionation of a brain network into subsystems were iden-
tified through a qualitative screen. Dynamically engaged
subsystems of brain networks were then identified through
hierarchical clustering of the average connectivity profiles
of all nodes in these NC-states. Hierarchical clustering was
performed using the correlation distance metric, defined as
1− r, where r is the Pearson correlation coefficient between
the compared connectivity profiles. Subsystems of brain net-
works were considered to be recruited in a particular NC-state
if the correlation distance between the connectivity profiles of
their constituent nodes did not exceed 0.4.

Evaluation of null/independence hypothesis. We evalu-
ated the null hypothesis of complete network independence by
comparing the empirical contexts of each NC-state to phase-
randomized contexts of each NC-state. For each network,
we applied a randomized phase shift to the timeseries repre-
senting the strength of each connection over time28, 45 (the
edge-weight timeseries). Only connections outside of the
network of interest were phase-shifted in this manner; thus,
dynamic structure was preserved within each network but
abolished for the remainder of the brain. Contexts were then
computed for each NC-state for the phase-randomized data,
as described above.

Our analysis was predicated upon the following assump-
tions:

• Randomly phase-shifting each edge-weight timeseries
preserves the mean and variance of the timeseries, but dis-
rupts the overall dynamic covariance structure28, which
is dependent upon common features across multiple edge-
weight timeseries.

• If a network’s intrinsic connectivity state were indepen-
dent of its whole-brain environment, then the network’s
states would not co-occur with any consistent changes in
the covariance structure of the remainder of the brain.

• If networks are completely independent, then a random-
ized phase shift of all edge-weight timeseries not in the
network of interest will not meaningfully change the
similarity between contexts.

When we applied a randomized phase-shift to all edge
weight timeseries outside of a network of interest, we instead
observed that the resultant phase-shifted NC-state contexts
were, without exception, more similar to one another than
were the empirical contexts of NC-states (p << 0.001, paired
Wilcoxon signed-rank test), suggesting that NC-states oc-
curred in the context of specific changes in the whole-brain
connectivity structure (Supplementary Figure 3B).

Independence. The independence of each canonical net-
work was computed using two metrics: mutual variation
and mean concordance. For each network, null distributions
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for each metric were generated on the basis of 50 pseudo-
networks. Each pseudo-network was defined to include the
same number of nodes and NC-states as the canonical network
in question. However, unlike the case for canonical networks,
nodes were assigned to pseudo-networks randomly and not
on the basis of community structure or previous scientific
results. Pseudo-network NC-states were then computed us-
ing k-means clustering in a manner analogous to canonical
network NC-states. For each canonical and pseudo-network
NC-state, contexts were obtained (1) as allegiance matrices,
defined as the probability that each pair of nodes would be
assigned to same community while that particular NC-state
was present, and (2) as contextual centroids, defined as the
mean of all Fisher-transformed whole-cortex windows during
which a network or pseudo-network expressed that NC-state.

For independence analysis using the mutual variation met-
ric, contextual centroids were treated as a proposed clustering
solution for the entire cortex, with the understanding that a net-
work that was less independent of the whole cortex would pro-
vide a better clustering solution for the cortex. The goodness
of this clustering solution was thus computed as a proxy for
the network’s independence from the cortex as follows. The
correlation distance from each z-transformed whole-cortex
window to the nearest contextual centroid was computed (the
“within-cluster” distance). All distances were squared and
subsequently added together to determine a within-cluster
sum-of-squares (WCSS) error term. The WCSS reflected the
extent to which the proposed clustering solution (which was
based only on information about the temporal variance of
a single canonical or pseudo-network) explained the tempo-
ral variance present in the entire cortex; a lower error term
corresponded to a better clustering solution and thus to less
independence.

The theoretical upper limit on clustering efficacy (maximal
interdependence) corresponded to the clustering solution that
minimized the WCSS error; this was obtained by clustering
all cortical features (taking into account the temporal variance
of the entire cortex rather than only that of its subsystems).
The theoretical lower limit on cluster efficacy (maximal inde-
pendence) would result in maximization of the WCSS error
and corresponded to centroids identical to the time-averaged
cortical connectivity except in the network of interest, where
they were identical to the network’s NC-state centroids. Tests
for significance (two-sided Wilcoxon signed-rank tests) were
performed for each canonical network’s WCSS error score
relative to the null distribution generated from the 50 pseudo-
networks with similar properties. Following the indepen-
dence analysis, an independence score was obtained for each
network by scaling the mean WCSS error among pseudo-
networks to zero, maximal interdependence to -1, and maxi-
mal independence to 1.

A second assay for independence was performed using the
concordance metric. Here, interdependence was operational-
ized as the concordance of (pseudo-)network NC-states with 8

whole-cortex states, with positive and negative concordances
computed separately because of their different interpretations.
More interdependent systems were predicted to exhibit greater
positive and negative concordances. The mean positive and
negative concordances between (pseudo-)network NC-states
and whole-cortex states were separately computed. Results
using this metric (with the exception of those for the somato-
motor network) were convergent with the results from the
WCSS approach.

Identification of a highly interdependent system. The
“interdependent” (INT) system was identified through a two-
step process. First, a tally was obtained of the frequency with
which nodes appeared in pseudo-networks that scored in the
bottom quintile of WCSS errors. A subset of nodes that fre-
quently often occurred in such “interdependent” networks was
thus identified, and pseudo-network generation (8 nodes, 8
NC-states) was repeated 100 times, with random drawing from
only this subset of nodes. On the whole, the resultant pseudo-
networks exhibited notably lower WCSS errors than did those
selected from all nodes. Among these pseudo-networks, the
one with greatest interdependence (lowest WCSS error) was
selected as the INT system. Interdependence was re-evaluated
and reproduced in split-half samples and with 16 NC-states
and cortical states instead of 8. Independence was also eval-
uated for pseudo-networks generated from nodes with (1)
maximal participation coefficient and (2) mean allegiance to
nodes other than canonical partners without significant results.
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Supplementary Information | Contextual connectivity: A
framework for understanding the intrinsic dynamic
architecture of large-scale functional brain networks
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Supplementary Figure 1 | Training the resolution parameter of the generalized Louvain algo-
rithm to discover canonical networks. An existing 7-network partition of the cerebral cortex (Yeo
et al., 2011) was used to train the resolution parameter of the generalized Louvain algorithm. (A)
Top, the spatial model derived from cross-correlations of each community with the a priori parti-
tion, which served as a starting point for training the algorithm. Bottom, when the algorithm con-
verged, the Louvain solution and spatial model were identical. (B) The distance between the Lou-
vain partition and the spatial model across a range of values of the resolution parameter gamma.
The optimal solution consistently occurred at a value of gamma near 1.3. The observed instability
along the ordinate occurs due to degeneracy of the Louvain partition. (C) Spatial cross-correlations
of communities of nodes with reference networks from the a priori partition ranged from approx-
imately 0.5 to 0.7, establishing a one-to-one correspondence between our communities and the
canonical reference networks.
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Supplementary Figure 2 | Validity of clustering-based data reduction is established via permu-
tation. (A) Sample clustering validity plot for the salience network, depicting the elbow computa-
tion for the optimal solution. Two least-squares lines were computed, with the putative solution
demarcating the point of separation along the abscissa between data included in each computa-
tion. The putative solution that optimised fit for both lines was selected. (B) A semi-formalized
elbow criterion suggested an optimal solution of k = 8 clusters. (C) The empirical clustering va-
lidity plot for the salience network (blue) in comparison with the mean null clustering validity
plot (yellow) across a range of k. (D) A formalized gap criterion suggested an optimal solution of
at least 20 clusters. Error bars indicate standard deviation.
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Supplementary Figure 3 | Randomized phase shifts of edge-weight timeseries establish NC-
state replication and network interdependence. (A) To determine whether each NC-state repli-
cated across randomized split-half subsamples, we compared the similarity of empirical split-half
NC-states to one another (SH1/SH2) against the similarity of empirical split-half NC-states to
phase-randomized split-half NC-states (SH1/PS2 and PS1/SH2). If similarity between empirical
NC-states was greater than similarity of empirical NC-states to phase-randomized NC-states, this
was a positive indication that the NC-state replicated. NC-states denoted with a star (F) are those
that replicated according to this criterion. In total, 36 out of 46 total NC-states replicated. Among
these were all SAL and EXE NC-states, all but 2 NC-states of DAT and DMN each, and the major-
ity of VIS and SOM NC-states. The overall featurewise similarity between split-half NC-states was
approximately 0.88. (B) We formally evaluated whether a network’s intrinsic state was indepen-
dent of its context by comparing (i) the similarity of empirically observed contexts to one another
against (ii) the similarity of phase-randomized contexts to one another. (If all contexts recapitu-
lated the time-averaged connectivity, then their similarity coefficients would approach a maximal
value of 1.) Phase-randomizing extrinsic connections resulted without exception in contexts that
were more similar to one another than the empirically observed contexts, indicating that NC-states
empirically occurred in specific whole-brain contexts (p << 0.001, paired Wilcoxon signed-rank
test).
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Supplementary Figure 4 | Concordance matrix across NC-states: Functional interdependence
of networks.. The figure illustrates pervasive interdependence between canonical networks when
examined at the level of NC-states. Cooperativity between brain systems is revealed in a state-
by-state matrix of Bayesian concordances, which captures co-occurrences of single-system con-
nectivity patterns that deviate from the prior probability derived under complete independence
of brain systems. Compared with permuted and simulated null models assuming independence,
nearly all NC-states exhibited a significant degree of concordance or discordance (p < 0.01, two-
sided Wilcoxon signed rank test, Bonferroni corrected). The fewer non-significant concordances
are blacked out for ease of visualization.
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Supplementary Figure 5 | Criterion for subnetwork identification. To identify dynamic subnet-
works, hierarchical clustering of whole-brain node allegiance profiles was performed. The resul-
tant dendrograms are shown here for the states displayed in Figure 6. A hard cut-off at a corre-
lation distance of 0.4 was used to define cohesive subnetworks. While not cohesive, nodes of the
auxiliary executive subsystem did display some common changes in overall connectivity.
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