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Abstract

Recent advances in single-cell time-lapse microscopy have revealed non-genetic heterogeneity
and temporal fluctuations of cellular phenotypes. While different phenotypic traits such
as abundance of growth-related proteins in single cells may have differential effects on the
reproductive success of cells, rigorous experimental quantification of this process has remained
elusive due to the complexity of single cell physiology within the context of a proliferating
population. We introduce and apply a practical empirical method to quantify the fitness
landscapes of arbitrary phenotypic traits, using genealogical data in the form of population
lineage trees which can include phenotypic data of various kinds. Our inference methodology
for fitness landscapes determines how reproductivity is correlated to cellular phenotypes, and
provides a natural generalization of bulk growth rate measures for single-cell histories. Using
this technique, we quantify the strength of selection acting on different cellular phenotypic
traits within populations, which allows us to determine whether a population responds to
environmental perturbations by physiological changes in single cells, through population-
level selection, or by a mixture of single-cell and population-level processes. By applying
these methods to single-cell time-lapse data of growing bacterial populations that express
a resistance-conferring protein under antibiotic stress, we show that selection acts on the
resistance protein’s production rate rather than on its concentration. Our work provides
a unified and practical framework for quantitative measurements of fitness landscapes and
selection strength for any statistical quantities definable on lineages, and thus elucidates the
adaptive significance of phenotypic states in time series data. The method is applicable in
diverse fields, from single cell biology to stem cell differentiation and viral evolution.

Introduction

Selection is a process in which the interaction of organisms with their environment deter-
mines which types of individuals thrive and proliferate more than others. Genetic informa-
tion encoded in the genome is a primary determinant of reproductivity, but epigenetic and
fluctuating phenotypic traits can also strongly influence selection [1–4]. Recent single-cell
measurements revealed the existence of phenotypic heterogeneity within clonal populations,
including cases in which heterogeneity has been shown to have a clear functional role [5, 6]
such as bacterial persistence [7,8], infection [9], and competence and sporulation [10]. Quan-
tifying reproductivity of phenotypic traits and revealing how strongly selection acts within a
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clonal population are thus of crucial importance for understanding the biological significance
of phenotypic heterogeneity.

To experimentally evaluate reproductivity of a unicellular organism, one usually measures
bulk growth rate (Malthusian parameter [11]) of a cellular population in batch or using a
competition assay between a genotype of interest and a reference genotype [12]. These meth-
ods are only valid when the time-scale of genotypic changes is sufficiently long compared with
that of the measurements. However, the time-scale of phenotypic changes is often compa-
rable to cellular generation time, and only in certain cases is it orders of magnitude longer,
e.g. when a phenotypic state is stabilized by specific epigenetic and/or positive-feedback
regulations. As a result, bulk population growth rates of sub-populations fractionated based
on initial phenotypic traits, e.g. by fluorescence-activated cell sorting, do not necessarily
represent reproductivity of initial phenotypic traits because phenotypic traits are diversified
rapidly by complex dynamical processes that occur during measurements. An alternative
approach is necessary to measure reproductivity for heterogeneous and fluctuating cellular
phenotypes.

Using time-lapse microscopy and fluorescent reporters, it has become possible to follow full
individual cell histories recording all division events and instantaneous expression levels of re-
porters within cellular populations [8, 13–18]. Several theoretical studies have demonstrated
the utility of history-based analysis of growing populations, regarding individual histories
rather than single cells as the basic replicating entity [19–21]. For example, Leibler and
Kussell introduced a time-integrated instantaneous reproduction rate, termed historical fit-
ness [19], and defined a measure of selection using the response of mean historical fitness
over all histories within a population. However, empirically determining the instantaneous
reproduction rate of an individual cell can be difficult in general, e.g. due to the fact that
cell size, age, elongation rate, and division timing are a subset of possible observables all of
which contribute to reproduction. Evaluating the fitness value of a certain phenotypic trait
such as expression level of a specific gene results in additional complications.

To address these difficulties, we introduce an empirically measurable quantity associated
with phenotypic states, which we call the phenotypic fitness landscape. This quantity, which
reports how cellular reproductivity is correlated with phenotypic states, extends the definition
of historical fitness so that it becomes meaningful in a general setting without requiring any
assumptions. Our approach allows one to assign a fitness value to any statistical quantities
observed over cellular lineages, and to evaluate the selection strength acting on different
phenotypic states. To formulate our framework, we leverage a fundamental property of
selection processes: the retrospective probability of observing a certain phenotypic trait value
by moving backward in time from the present to the ancestral parts of a lineage is different
from its counterpart, the chronological probability to observe the trait value moving forward
in time along a lineage as individuals grow and divide. We show that these two probabilities
can be evaluated directly using single-cell lineage tree data, leading to natural definitions of
the fitness landscape and selection strength. We apply this framework to analyze proliferation
processes of simulated and experimental cellular populations, demonstrating the utility of our
measures to reveal phenotype dependent fitness and its response to environmental change.
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Results

Retrospective and chronological probabilities for single cell lineages

We consider a binary division process as depicted in Fig 1, where t0, t1 are the start and end
times of a lineage tree, and we define τ = t1− t0 as the duration of observation. To illustrate
our view of lineage statistics, we first consider a single fixed lineage tree denoted by T derived
from a single ancestor cell (Fig 1A). Let N(t, T ) be the number of cells in the tree T at time
t and we label and distinguish each lineage by i = 1, 2, ..., N(t1, T ). We consider two different
ways of randomly sampling single-cell lineages on the tree. We could sample each lineage
with equal weight, where the probability of choosing lineage i is πrs

i = 1/N(t1, T ), which
we call the retrospective probability because it corresponds to the probability that the past
history of the last cell on lineage i is chosen. Alternatively, letting Di be the number of cell
divisions on lineage i, we could sample lineage i with probability πcl

i = 2−Di , which we call the
chronological probability because it is the probability that lineage i is chosen by descending
the tree from the ancestor cell at t0 randomly at each branch point with equal probability 1/2.
The probability distribution πcl

i is determined solely by the number of divisions on lineage
i, being unaffected by the reproductive performance of the other lineages. In contrast, πrs

i
strongly depends on the reproductive performance on the other lineages, which enters into
the total number of cell lineages.
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Fig 1. Chronological and retrospective probabilities of single-cell lineages. A.
Chronological and retrospective probabilities on a fixed tree. Here we consider a
representative fixed lineage tree T spanning from time t0 to t1 = t0 + τ . The number of
cells in this tree at t1 is N(t1) = 13 cells, and each of these cells distinguishes a unique
lineage (e.g. the thick black line in the tree). πcl

i is the probability that a cell lineage i
(i = 1, 2, · · · , N(t1)) is chosen by descending the tree from t0 to t1 (green arrow). At every
division point, we randomly select one daughter cell’s lineage with the probability of 1/2
(light green arrows). The probability that we choose lineage i in this manner is πcl

i = 2−Di ,
where Di is the number of cell divisions on lineage i. πrs

i is the probability of choosing cell
lineage i among N(t1) lineages with equal weight (pink arrow). Thus, πrs

i = N(t1)−1. We
call πcl

i and πrs
i the chronological probability and retrospective probability, respectively,

based on the time directions of the green and pink arrows. For the cell lineage indicated by
the thick line, πrs

i = 1/13 > πcl
i = 2−4 = 1/16. B. General case with a large collection of

lineage trees.
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Lineage fitness and fitness landscape on a phenotypic trait

Next, we consider the set of lineages within a large collection of independent trees initiated
from a large number of progenitor cells N(t0) ≫ 1 (Fig 1B). For each lineage, we record
a phenotypic trait x and the number of divisions D, where x can be any random variable
representing a phenotypic trait of a single cell lineage, e.g. a time-averaged gene expression
level, average cell length, number of divisions D, or any variety of other possibilities. We
consider the joint statistics of D and x across all possible trees, letting n(D,x, T ) denote
the number of lineages with values D and x within tree T , and we denote the sum of this
quantity over trees as n(D,x). The total number of lineages observed across all trees, N(t1),
is given by summing n(D,x) over D and x. In analogy with the single tree quantities, we
define the retrospective probability of choosing a lineage with D and x as

P rs(D,x) ≡ n(D,x)

N(t1)
, (1)

and the chronological probability as

P cl(D,x) ≡ 2−D

N(t0)
n(D,x) . (2)

Defining Λ to be the population growth rate,

Λ ≡ 1

τ
ln

N(t1)

N(t0)
, (3)

we obtain using equations 1 and 2 the relation

P rs (D,x) = eD ln 2−τΛP cl (D,x) . (4)

We see from Eq. 4 that h̃(D) ≡ τ−1D ln 2 is the natural measure of fitness for a lineage, since
lineages for which this quantity is greater than Λ will be exponentially over-represented in
retrospective probability relative to chronological probability.

We now measure how quickly the number of lineages with a given phenotype x grow be-
tween times t0 and t1 according to their chronological and retrospective probabilities. We
denote by P rs(x) ≡

∑
D P rs(D,x) and P cl(x) ≡

∑
D P cl(D,x) the retrospective and chrono-

logical marginal probability distributions of x. We define the phenotypic fitness landscape
h(x) as

h (x) ≡ 1

τ
ln

N(t1)P rs(x)

N(t0)P cl(x)
= Λ+

1

τ
ln

P rs(x)

P cl(x)
, (5)

noting that N(t0)P cl(x) and N(t1)P rs(x) are the effective numbers of cell lineages with a
phenotypic trait x from the chronological and retrospective perspectives, respectively. We
can rewrite Eq. 5 as

P rs (x) = eτ(h(x)−Λ)P cl (x) , (6)

which shows that if h(x) is greater than Λ the phenotypic state x will be exponentially
over-represented in retrospective relative to chronological probability. Thus, h(x) provides a
natural extension of fitness for lineage-based phenotypic traits.
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Measuring the strength of phenotypic selection

Specific states of the phenotypic trait x can be selected if x and D are correlated. In
general, the strength of this correlation could differ significantly among different phenotypes.
In the conventional framework of natural selection known as Fisher’s fundamental theorem,
selection strength is measured by the gain of mean fitness due to the change of probability
distribution of a phenotype [11]. Inspired by this idea, we define the strength of selection
acting on phenotypic trait x as

S [x] ≡ ⟨h(x)⟩rs − ⟨h(x)⟩cl, (7)

where ⟨h(x)⟩rs =
∑

x h(x)P
rs(x) and ⟨h(x)⟩cl =

∑
x h(x)P

cl(x) are the mean fitness in retro-
spective and chronological perspectives, respectively.

This simple measure of selection strength has rich underpinnings. First, S[x] is also a
measure of fitness variation on the landscape h(x) because

S [x] ≈ τCov
[
h̃(D), h(x)

]
≈ τVar [h(x)] , (8)

where the variance and covariance can equivalently be taken over either chronological or ret-
rospective distributions, and the approximation is accurate to the order of second cumulants
of h̃(D) and h(x) (see Supporting Information). Secondly, S[x] also represents the statistical
deviation between the probability distributions P cl(x) and P rs(x) because

S[x] =
1

τ
J
[
P cl(x), P rs(x)

]
, (9)

where J [p(x), q(x)] ≡
∑

x (p(x)− q(x)) ln p(x)
q(x) is the Jeffereys divergence [22–24] (see Sup-

porting Information). The deviation between P rs(x) and P cl(x) is thus directly linked to the
selection strength on x.

From the properties of Jeffreys divergence, we can prove that

0 ≤ S[x] ≤ S[D]. (10)

Selection strengths of any phenotypic states are therefore bounded by that of D. As described
in Supporting Information, S[x] can be interpreted as an amount of information representing
to what extent variation of D can be explained by phenotype x. Therefore, when S[x] is
large, phenotype x is strongly correlated with lineage fitness. In fact, we can prove that
Srel[x] ≡ S[x]

S[D] is approximately equal to the squared correlation coefficient between h̃(D) and

h(x) to the order of second cumulants (Eq. S55).

Decomposition of fitness response to environmental change

We now introduce an explicit dependence of all quantities on an environment variable E , and
using this notation Eq.7 becomes

S[x](E) ≡ ⟨h(x; E)⟩rs,E − ⟨h(x; E)⟩cl,E . (11)

Let us denote the changes of mean fitness and selection strength due to an environmental
shift from E1 to E2 as ∆⟨h(x)⟩cl, ∆⟨h(x)⟩rs and ∆S[x]. Then

∆⟨h(x)⟩rs = ∆⟨h(x)⟩cl +∆S[x]. (12)
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∆⟨h(x)⟩rs represents the response of mean fitness in retrospective histories due to the change
of the environments. Eq. 12 indicates that this term can be decomposed into two terms:
∆⟨h(x)⟩cl, which represents the intrinsic response to the environmental change; and ∆S[x],
the change of selection strength. Thus, this framework allows us to distinguish and evaluate
the contributions of individual response and selection to the total change of retrospective
mean fitness.

In Supporting Information, we apply the above framework to several analytically tractable
models, and directly calculate fitness landscape and selection strength in each model. We
also show the examples of fitness decomposition in Supporting Information.

Simulation

To demonstrate the utility of our lineage-based analysis, we first applied it to simulation data
of a cell proliferation model. In this model, we consider a population in which cells divide
according to division probability f(yt)∆t, where ∆t is time increment, and yt is a variable
that represents an instantaneous state of a certain phenotype at time t. For example, yt can
be an intracellular concentration of some protein. In the simulation, we evolved yt assuming
that ln yt follows the Ornstein-Uhlenbeck process so that the stationary distribution of yt
in chronological cell histories follows the log-normal distribution with mean 1 and standard
deviation 0.3. We set f(y) to be a Hill function, f(y) = yn

1+yn fmax, where n is the Hill

coefficient, and fmax is the maximum division rate. We fixed fmax = 1.2 h−1 and ran the
simulation under different values of n. The initial state of a cell lineage at t0 was randomly
sampled from the stationary log-normal distribution. In each condition, we repeated the
simulation 100 times, i.e. N(t0) = 100, which is a realistic sample size of single-cell time-
lapse experiments. To calculate fitness landscape and selection strength, we used the lineage
tree data between t0 = 0 min and t1 = 250 min (thus τ = 250 min). Additional details of
simulation are described in Section Materials and Methods.

As a phenotypic trait of cell lineages, we chose the time-average of yt; i.e.

x = yτ ≡ 1

τ

∫ t1

t0

ytdt. (13)

The result shows that the fitness landscape h(yτ ) calculated from the simulated lineage
trees and the time-series of yt retrieves f(y) in a relatively good precision despite the non-
linearity of f(y) (Fig 2A and Fig S1A and S1B in Supporting Information). The chronological
mean fitness ⟨h(yτ )⟩cl is unchanged by the change of n, but the retrospective mean fitness
⟨h(yτ )⟩rs increases significantly with n (Fig 2B). As a result, selection strength S[yτ ] =
⟨h(yτ )⟩rs − ⟨h(yτ )⟩cl as well as relative selection strength Srel[yτ ] increase with n as expected
from the fact that larger n introduces greater fitness variation (Fig 2B and C). Reducing the
autocorrelation time of yt decreases selection strength (Fig S1C in Supporting Information),
since faster fluctuations of the phenotype decrease the variation of the time average, yτ . In
this case, h(yτ ) deviates slightly from f(y) when the non-linearity is strong (n = 10, Fig S1A
and S1B in Supporting Information), which results from the fact that the time-average of
f(yt) is not equivalent to f(ȳτ ), an effect that becomes pronounced when n is large. These
results show that our lineage-based analysis allows us to probe fitness and selection strength
of heterogeneous cellular phenotypes from realistic sample sizes of single-cell lineage trees.
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Fig 2. Quantifying fitness landscape and selection strength for the simulation
data of clonal cell proliferation. A. Fitness landscapes. We produced the datasets of
clonal cell proliferation by simulation, in which we assumed that cells stochastically change
phenotypic state y and divide in a phenotype-dependent manner with the division rate
f(y) = yn

1+yn fmax. We calculated fitness landscapes h(ȳ) from the simulation data for the
conditions of n = 0, 2, and 10. In all the conditions, h(ȳ) (points) recovered the assigned
phenotype-dependent division rate f(y) (broken curves) with good precision. The points
and the error bars represent means and standard deviations of results from 10 independent
simulations (same in B and C). B. Dependence of mean fitness ⟨h(ȳτ )⟩cl and ⟨h(ȳτ )⟩rs on
Hill coefficient. Strengthening phenotype-dependence of fitness by increasing the Hill
coefficient in f(y) caused ⟨h(ȳτ )⟩rs (magenta circles) to be greater than ⟨h(ȳτ )⟩cl (green
squares). In our definition, selection strength for phenotype ȳτ is given by
⟨h(ȳτ )⟩rs − ⟨h(ȳτ )⟩cl (Eq. 7), thus the deviation directly indicates the existence of selection
acting on phenotype ȳτ . C. Dependence of relative selection strength Srel[ȳτ ] = S[ȳτ ]/S[D]
on Hill coefficient.

Single-cell time-lapse experiment

Next we apply this analytical framework to real single-cell time-lapse data of E. coli, which
expresses an antibiotic resistance gene smR [25] and a fluorescent reporter venus-yfp [26] from
a low copy plasmid under the control of a common promoter PLlacO-1 [27] (Fig 3A). The SmR

protein confers the resistance to a ribosome-targetting antibiotic drug, streptomycin, by direct
inactivation [28,29]. We conducted fluorescent time-lapse measurements of cells proliferating
on agarose pads that contain either no drug (Sm−) or a sub-inhibitory concentration of
streptomycin (Sm+) (200 µg/ml; minimum inhibitory concentration (MIC) is 1000 µg/ml,
Fig 3B) (Fig 3C). We extracted the information of lineage trees (Fig 3D) along with time-
series of cell size v(t) and of fluorescence intensity c(t) (Fig 3E). Since c(t) is a proxy for
protein concentration in a cell, c(t)v(t) can be regarded as the quantity that scales with the
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total amount of protein in a cell. Based on these quantities, we analyzed three different
time-averaged phenotypes along a single-cell lineage: elongation rate λ̄τ , protein production
rate p̄τ , and protein concentration c̄τ , which are defined as

λτ ≡ 1

τ

∫ t1

t0

d

dt
ln v(t)dt, (14)

pτ ≡ 1

τ

∫ t1

t0

1

v(t)

d

dt
[c(t)v(t)] dt, (15)

cτ ≡ 1

τ

∫ t1

t0

c(t)dt . (16)

We calculated these phenotypic quantities for all the lineages spanning from t0 to t1, and
obtained the chronological probability distribution P cl(·), fitness landscape h(·), and selection
strength S[·] of these phenotypes.

Population growth kinetics revealed that the growth rate difference between Sm− and Sm+
conditions was small and became noticeable only after t = 200 min (Fig 4A). Therefore, we
focused on the time window between t0 = 200 min and t1 = 400 min (see Fig S2 in Supporting
Information for the results when t0 = 0 min and t1 = 200 min). The population growth rates
during this period were 0.45±0.01 h−1 for Sm− and 0.39±0.01 h−1 for Sm+, respectively
(p < 0.05) (Fig 4B). Consistently, the mean of lineage fitness in the chronological perspective
⟨h̃(D)⟩cl in Sm+ condition was 0.35±0.01 h−1, which is smaller than that in Sm− condition,
0.41±0.01 h−1 (p < 0.05) (Fig 4C). Despite the decrease in the mean lineage fitness, we did
not detect the difference in intra-population lineage heterogeneity measured by maximum
selection strength S[D] (p = 0.5) (Fig 4D).

The three lineage phenotypes had distinct characteristics in their response to the drug
(Fig 4E-I). The fitness landscapes of elongation rate were nearly identical between Sm− and
Sm+ conditions, and increased approximately linearly with λ̄τ (Fig 4E). This agrees with
the natural assumption that fast elongation should lead to proportionately high division rate.
The chronological distribution P cl(λ̄τ ) shifted to the left in Sm+ condition (Fig 4E), which is
also consistent with the fact that ⟨h̃(D)⟩cl is slightly lower in Sm+ condition. Nevertheless,
we did not detect the difference in selection strength S[λ̄τ ] (Fig 4H). These results confirm
that λ̄τ behaves coherently with D under those conditions.

The fitness landscape of protein production rate were likewise nearly identical between
Sm+ and Sm− conditions (Fig 4F). The landscape is a more saturating function rather than
linear with the kink around 0.5 FL unit/h. The fact that h(p̄τ ) is an increasing function
even in the absence of the drug is presumably because overall cellular metabolism couples to
all production rates and cells growing faster generally have higher production rates in most
genes. The chronological distribution P cl(p̄τ ) shifted significantly toward the left in Sm+
condition. Interestingly, we detected an increased selection strength S[p̄τ ] in Sm+ condition
(1.7× 10−2 h−1) compared with that in Sm− condition (0.5× 10−2 h−1, p < 0.05) (Fig 4H).
This indicates that the heterogeneity in SmR production rate begins to play a role in causing
fitness heterogeneity within a population exposed to the drug. This change in the selection
strength largely comes from the shift of the chronological distribution P cl(p̄τ ): A large portion
of the probability distribution resides in the platau region of the fitness landscape in Sm−
condition, whereas its shift in Sm+ condition causes a significant overlap with the linear
region, resulting in a larger fitness heterogeneity in the phenotypic space of p̄τ .
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The fitness landscapes of protein concentration decrease linearly with c̄τ in both Sm+
and Sm− conditions; protein expression levels and fitness are thus anti-correlated (Fig 4G).
Surprisingly, we did not detect any advantages of high expression level even in the presence
of the drug (Fig 4G). The chronological distribution P cl(c̄τ ) and selection strength S[c̄τ ] were
nearly identical between the two conditions (Fig 4G and 4H). This indicates that, unlike
production rate p̄τ , the heterogeneity in SmR expression level per se does not induce any
additional selection even if the drug is added at this concentration. The results therefore
suggest that the protein production rate of SmR is a more responsive phenotype to selection
than protein expression level. The response characteristics of selection strength are unchanged
even if the relative selection strengths were compared between the two conditions (Fig 4I).

Applying fitness decomposition in Eq. 12 to the experimental data revealed that the
changes of mean fitness in retrospective perspective due to the environmental change from
Sm− to Sm+ (∆⟨h(x)⟩rs) mostly came from the changes in ∆⟨h(x)⟩cl, not from the changes
in selection strengths ∆S[x], for all the phenotypes (Table 1). Therefore, the contribution of
∆S[x] to ∆⟨h(x)⟩rs were marginal at least in the environmental difference used in this study.

Table 1. Contributions of individual cells’ response ∆⟨h(x)⟩cl and change of
selection strength ∆S[x] to fitness gain ⟨h(x)⟩rs for the environmental change
from Sm− to Sm+.

Division D Elongation λ̄τ Protein production p̄τ Protein concentration c̄τ
∆⟨h(x)⟩rs -0.05 ± 0.02 -0.05 ± 0.02 -0.05 ± 0.02 -0.06 ± 0.02
∆⟨h(x)⟩cl -0.06 ± 0.02 -0.06 ± 0.02 -0.06 ± 0.02 -0.06 ± 0.02
∆S[x] 0.005 ± 0.009 0.007 ± 0.008 0.012 ± 0.006 0.000 ± 0.004

We found that the relative selection strengths of x = λτ , pτ , and cτ were approximately
equal to the squared correlation coefficients between h̃(D) and h(x) evaluated by both chrono-
logical and retrospective probabilities (Fig 4J). This validates the simple interpretation that
Srel[x] represents the correlation between h̃(D) and h(x), though the small differences of
the squared correlation coefficients between the chronological and retrospective probabilities
suggest the contribution of higher-order cumulants (Supporting Information).

Discussion

In this report, we have presented a method to quantify fitness differences and selection
strength for heterogeneous phenotypic states of individual cells within a population. Our
framework shares a basic idea with the method for measuring selection strength developed
in evolutionary biology in that we evaluate phenotype-dependent fitness [30–32]. The impor-
tant differences are: (1) we treated a single-cell lineage or history as the unit of proliferation;
(2) we assigned the statistical weight 2D to each cell history as proposed in [20]; and (3)
we treated natural logarithm of the expected statistical weight conditioned on a phenotypic
state of cell history as the measure of fitness.

An important advantage of history-based formulation of fitness landscape and selection
strength is that it is applicable even to cellular phenotypes that fluctuate in time like gene
expression levels in single cells. Indeed, we demonstrated by simulation that the pre-assigned
fitness landscape was retrievable from the single-cell lineage trees and the associated dynamics
of cellular phenotypic states despite the stochastic transition of the states. Though a number
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of single cell studies have suggested the functional roles of phenotypic fluctuation in a geneti-
cally uniform cell population [5,6], our framework provides the first procedure for the rigorous
quantification of the fitness values of such fluctuating cellular states. In this framework, we
can use any statistical quantities that are measurable on cell lineages as the ‘phenotype’. Al-
though we exclusively evaluated the time-averages of cellular phenotypes along cell lineages
in the analysis, the other statistical quantities such as variance and coefficient of variation
can be also evaluated as lineage phenotypes, which might reveal e.g. the fitness value of
“noisiness” of gene expression level. Conversely, the flexibility imposes a technical challenge
to select a suitable quantity that correctly reports cellular functions. We emphasize that the
fitness landscapes and selection strengths quantified in this study report only correlation be-
tween the lineage phenotypes and cell division, not causality. To address causality, one must
carefully choose appropriate lineage phenotypes that take detailed time-series of phenotypic
states into account.

We applied our method to real clonal proliferation processes of E. coli, and quantified the
fitness landscape and the selection strength for different phenotypes with and without an
antibiotic drug. An interesting observation was that the selection strength for time-averaged
protein concentration of SmR was indistinguishable between the two environments, whereas
that for time-averaged protein production rate increased significantly by drug exposure. This
result suggests that, at least in the drug exposure condition used in this experiment, the
role of the resistance gene in individual cells is better represented by its production rate
than its intracellular concentration. Since our study is limited to a single drug at a single
concentration, extending the measurements to broad conditions is an important future subject
for understanding how gene expression influences cellular fitness.

It is important to note that the conventional genetic perturbation methods such as gene
knock-out, overexpression, and gene suppression only associate a population-level gene ex-
pression state with population fitness; they are unable to report whether different expression
states of single cells in the same population are correlated to their fitness. Our new analytical
framework, however, allows us to reveal the impact of different expression levels and dynam-
ics to cellular fitness without modifying population-level expression states, and might open
up a new field in genetics that connects different expression states to cellular fitness without
applying the genetic perturbation.

The application of this method is not restricted to the analysis of clonal proliferation in
unicellular organisms. An important application would be in the analysis of embryogenesis
and stem cell differentiation of multicellular organisms, in which cellular reproduction rates
diversify among the branches of lineage trees as the differentiation process goes forward [33].
Recently, large-scale cell lineage trees along with detailed quantitative information on cellular
phenotypes (gene expression, cell position, movement, etc.) have been available [17,18,34,35].
Quantifying fitness and selection strength for different phenotypes at the single-cell level in
differentiation processes might reveal key phenotypic steps and events leading to cell fate
diversification. Additionally, fruitful applications may be found in the analysis of evolutionary
lineages in viral populations, such as influenza [36] and HIV [37], where lineage trees have been
obtained using temporal sequencing data. Quantifying the strength of selection on viral traits,
such as antigenic determinants, and inferring their fitness landscape is an important challenge
in the field [38–40] which the method presented here could address. The application of this
new lineage analysis tool to broader biological contexts may unravel the roles of phenotypic
heterogeneity in diverse cellular and evolutionary phenomena.
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Fig 3. Single-cell time-lapse measurements. A Fluorescent reporter and drug
resistance genes transcribed from common promoter. We used an E. coli strain F3/pTN001
(W3110 derivative), which expresses a fluorescent protein Venus-YFP and streptomycin
resistance-conferring protein SmR under the control of PLlac-O1 promoter from a low copy
plasmid pTN001 (pSC101 ori). Ribosomal binding sites are present in front of the start
codons of both structural genes, thus proteins are translated separately. We analyzed the
data assuming that production rate and protein amount of SmR are strongly correlated
with those of Venus-YFP. B MICs of streptomycin for F3 and F3/pTN001. Absorbance at
595 nm of cell cultures of F3 or F3/pTN001 at different concentrations of streptomycin was
measured after 20-hour incubation with shaking at 37◦C. The average of three replicates are
plotted with the standard deviation for each condition of streptomycin concentration. We
determined MICs by the minimum concentration above which the absorbance of cell culture
remains below 0.05 (cyan region): 8 µg/mL for F3 (green) and 1000 µg/mL for F3/pTN001
(magenta). C Representative time-lapse fluorescent images in Sm+ condition. Images were
acquired every five minutes. Approximately 100 microcolonies were simultaneously observed
in each time-lapse experiment. Scale bars, 5 µm. D Cell lineage trees for the three
microcolonies in (B). E Quantities obtained from time-lapse images. We extracted the
time-series of cell volume v, protein concentration (mean fluorescence intensity on cell area)
c, and total protein amount (total fluorescence intensity on cell area) a = cv together with
cell lineage trees, and calculated λ̄τ , p̄τ , and c̄τ for each cell lineage according to the
definitions in Eq. 14-16.
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Fig 4. Fitness landscapes and selection strength measured for E. coli
phenotypes. A. Population growth curves. Green curve is for Sm− condition, and red for
Sm+ condition (the color correspondence is the same for all the following panels). Relative
population size on Y-axis is the number of cells at each time point normalized by the
number of cells at t = 0 min. The error bars are the standard deviations of three
independent experiments, which is also true for all the error bars in the following panels.
Growth rate difference became apparent only after t = 200 min. Hence, we set t0 = 200 min
and t1 = 400 min in the following analyses. The results with t0 = 0 min and t1 = 200 min
are shown in Fig 2 in Supporting Information. B-D. Comparison of population growth rate
Λ (B), chronological mean fitness for division count ⟨h̃(D)⟩cl (C), and selection strength for
division count S[D] (D), between Sm− and Sm+ conditions. p-values by t-test are 0.013,
0.010, and 0.529, respectively (n = 3). E-G. Fitness landscapes h(x) (upper panels) and
chronological distributions P cl(x) (lower panels) for elongation rate λ̄τ (E), protein
production rate p̄τ (F), and protein concentration c̄τ (G). The fitness landscapes for
elongation rate and protein production rate were barely distinguishable between Sm− and
Sm+ conditions, whereas that for protein concentration shows a slight downshift in Sm+
condition. In contrast, shift of chronological distributions was observed for elongation rate
and protein production rate, but not for protein concentration. H. Selection strengths. We
compared selection strengths λ̄τ , p̄τ , and c̄τ between Sm− and Sm+ conditions, finding a
statistically significant difference only for p̄τ (p < 0.05). The p-values are 0.34 for λ̄τ , 0.044
for p̄τ , and 0.58 for c̄τ , respectively (n = 3). I. Relative selection strengths. Again, the
difference is statistically significant only for p̄τ (p < 0.05). The p-values are 0.21 for λ̄τ ,
0.024 for p̄τ , and 0.14 for c̄τ , respectively (n = 3). J. Relationship between relative selection
strength and squared correlation coefficient between h̃(D) and h(x), where x = λτ , pτ , or
cτ . The correlation coefficients were evaluated by both chronological and retrospective
probabilities. 12
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Materials and Methods

Simulation

We simulated clonal cell proliferation processes using a custom C program. We determined
phenotypic state yt+∆t by randomly sampling the value of ln yt+∆t from the normal distribu-
tion with mean µ+ e−γ∆t (ln yt − µ) and variance σ2

(
1− e−2γ∆t

)
assuming that the transi-

tion of ln yt follows the Ornstein-Uhlenbeck process. We set ∆t = 5 min, µ = −0.5 ln(1.09),
σ2 = ln(1.09), and γ = (−0.6 ln rg) h−1 with rg = 0.8. In this setting, yt follows the log-
normal distribution with mean 1.0 and standard deviation 0.3 in the stationary state without
selection (i.e. Hill coefficient n = 0). We assumed that cells divide with the probability of
f(yt)∆t with fmax = 1.2 h−1 at each time point, and the initial states of two daguther cells
(yt+∆t) were determined independently of each other from the last state (yt) of their mother
cell. Without selection, the division rate is f0 = fmax/2 = 0.6 h−1 and thereby the mean
interdivision time along a lineage is f−1

0 = 0.6−1 h−1. Without selection, since the normalized
autocorrelation function of ln yt at stationary sate is φ(τ) = e−γτ , rg = e−γ/f0 is the auto-
correlation of ln yt after a single generation. Fitness landscapes of yτ with faster fluctuation
conditions (rg = 0.5 and 0.2) were shown in Fig S1 in Supporting Information. We produced
a dataset that contains 100 lineage trees (i.e. N(t0) = 100 cells) with the length of τ = 250
min in each condition, which is comparable to the data size of the real experiments (Table
S1 in Supporting Information). For each condition, we repeated the simulation 10 times,
and the average and standard deviation were shown in Fig 2 and in Fig S1 in in Supporting
Information.

Cell strain and culture conditions

We used F3 and F3/pTN001 E. coli strains in the experiment. F3 is a W3110 derivative
strain in which three genes (fliC, fimA, and flu) are deleted. pTN001 is a low copy plasmid
constructed from pMW118 (Nippon Gene, Co., LTD), into which we inserted PLlacO-1 pro-
moter [27], venus-yfp [26], and smR as shown in Fig 3A. venus-yfp and smR genes were cloned
from Venus/pCS2 (gift from A. Miyawaki at RIKEN, JAPAN) and pKP2375 (gift from Dr.
H. Niki at National Institute of Genetics, JAPAN), respectively. We cultured the cells in
M9 minimal medium (M9 minimal salt (Difco) + 2 mM MgSO4 (Wako) + 0.1 mM CaCl2
(Wako) + 0.2% glucose (Wako)) at 37◦C. 0.1 mM Isopropyl β-D-1 thiogalactopyranoside
(IPTG) (Wako) was added to the culture of F3/pTN001 to induce Venus-YFP and SmR. For
single-cell time-lapse experiments, we solidified M9 medium with 1.5% (w/v) agarose (Gene
Pure Agarose, BM Bio), and approximately 5 mm (W)×8 mm (D)×5 mm (H) piece of M9
agarose gel was mounted onto cell suspension on a glass-bottom dish (IWAKI). For Sm+
condition, we added 200 µg/mL streptomycin when solidifying M9 agarose gel.

Determination of MIC

An overnight culture of F3 or F3/pTN001 in M9 medium at 37◦C from glycerol stock was
diluted ×100 into 2-ml fresh M9 medium and cultured for three hours at 37◦C. 100 µl ex-
ponential phase culture was mixed with 100 µl fresh M9 medium containing streptomycin in
a 96-well plate. We prepared 10 different conditions of streptomycin concentration for each
strain with the concentration increased in two-fold stepwise. The optical density of the cell
cultures after mix was ca. 0.05 at 600 nm. The cell cultures in a 96-well plate were incubated
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by shaking at 37◦C for 20 hours. We determined the MICs of F3 and F3/pTN001 with a
microtiter plate (FilterMax F5, Molecular Devices) by absorbance at 595 nm.

Time-lapse microscopy

To prepare a sample for time-lapse microscopy, we first cultured F3/pTN001 cells from glyc-
erol stock in M9 medium at 37◦C by shaking overnight. Next, we diluted the overnight
culture ×100 in 2 ml fresh M9 medium, and cultured it for another three hours at 37◦C
by shaking. We adjusted the OD600 of the culture to 0.05, and 1 µl of the diluted culture
was spread on a 35-mm (φ) glass-bottom dish (IWAKI) by placing M9 agarose pad onto
the cell suspension. To avoid drying the M9 agarose pad, water droplets (total 200 µl)
were placed around the internal edge of the dish. The dish was sealed by parafilm to mini-
mize water evaporation. Fluorescent time-lapse images were acquired every 5 minutes with
Nikon Ti-E microscope equipped with a thermostat chamber (TIZHB, Tokai Hit), 100x oil
immersion objective (Plan Apo λ, N.A. 1.45, Nikon), cooled CCD camera (ORCA-R2, Hama-
matsu Photonics), and LED excitation light source (DC2100, Thorlabs). The temperature
around the dish was maintained at 37◦C. The microscope was controlled by micromanager
(https://micro-manager.org/).

Analysis

Time-lapse images were analyzed with a custom macro of ImageJ (http://imagej.nih.gov/ij/).
This macro produces the results file, which contains the information of mean fluorescence
intensity, cell size (area), and geneaological position of individual cells. We analyzed the
results file with a custom C program.

To evaluate fitness landscapes and selection strengths both in the simulation and the
experiments, we determined the bin width based on the interquartile range of each phenotypic
state (Fig S3 and S4 in Supporting Information). The details are explained in Supporting
Information.
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