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ABSTRACT

The ability to process time on the scale of milliseconds and seconds is essential for behaviour. A growing number of studies
have started to focus on brain dynamics as a mechanism for temporal encoding. Although there is growing evidence in favour
of this view from computational and in vitro studies, there is still a lack of results from experiments in humans. We show that
high-dimensional brain states revealed by multivariate pattern analysis of human EEG are correlated to temporal judgements.
First, we show that, as participants estimate temporal intervals, the spatiotemporal dynamics of their brain activity are consistent
across trials. Second, we present evidence that these dynamics exhibit properties of temporal perception, such as the scalar
property. Lastly, we show that it is possible to predict temporal judgements based on brain states. These results show how
scalp recordings can reveal the spatiotemporal dynamics of human brain activity related to temporal processing.

Introduction

Humans and non-human animals are able to estimate temporal intervals across a wide range of scales1, 2. Intervals ranging from
hundreds of milliseconds to seconds are specially critical for sensory and motor processing, learning, and cognition. Although
cognitive models that propose the existence of some version of an internal clock have been effective in providing a framework
for much of the existent behavioural data3–5, there is still a lack of electrophysiological and anatomical evidence to support
their theoretical assumptions. For this reason, a number of alternate models of timing, which take into account neural data,
have been put forward as biologically-plausible explanatory candidates, such as state-dependent networks models6. For this
class of models, neural circuits would be inherently capable of temporal processing as a result of the natural complexity of
cortical networks coupled with the presence of time-dependent neuronal properties. However, the vast majority of evidence
in favour of these models rely on computational modelling or in vitro studies7–10 and evidence from human and non-human
animal recordings are still sparse11, 12.

In human electroencephalography (EEG), the majority of studies that investigate temporal perception have focused on
the contingent negative variation (CNV), a slow cortical potential of developing negative polarity that peaks at the reference
interval13. However, the relation between the CNV and temporal processing has been recently criticised as it is not clear whether
its ramping activity is coding time or using temporal information to anticipate or react to events14. Importantly, no studies
have investigated whether state-space trajectories, as proposed by state-dependent networks models, can be characterised using
non-invasive human electrophysiological recordings (EEG) and track relevant temporal information.

On the other hand, recent EEG studies have suggested that it is possible to differentiate spatially overlapping brain states
by analysing subject-specific patterns15–19. This methodology has been successfully applied to magneto-encephalographic
recordings and was able to dissociate between standard and deviant tones, frequent versus rare melodies, visual stimulus
location and stimulus orientation15. In the present study, we analysed the time-resolved EEG signals using multivariate pattern
analysis (MVPA), to investigate whether the evolution of brain states over time can carry information about the temporal
interval tracked by participants and also their future behavioural responses.

Results
Human participants (n = 14) performed a temporal categorisation task, in which they had to judge if an interval delimited by
two brief tones was longer, shorter or equal to 1.50 seconds (Figure 1a). In each trial, the interval was chosen randomly from
the following set: 0.80,0.98,1.22,1.50,1.85,2.27 and 2.80 seconds (log scale around 1.50 seconds). As expected, participants
made few errors when categorising intervals that were clearly shorter, equal or longer than 1.50 seconds (Figure 1b). Participants
demonstrated highest uncertainty (point of subjective equality, PSE) between shorter and equal responses for intervals around
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1.20±0.03s (mean ± s.e.m) and between equal and longer responses for intervals around 2.10±0.05s (paired t-test between
estimated PSEs, t13 = 15.05, p < 0.001).
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Figure 1. Experimental task and results. (a) The task consisted of a computerized shoot the target task. In regular trials a
bulls-eye moved towards the centre of the screen reaching it in 1.50 seconds. Participants were instructed to produce a “shot”
when the target passed trough the “aiming sight”. In Test trials, target trajectory was masked and automatic shots were given at
seven different intervals (0.80,0.98,1.22,1.50,1.85,2.27 and 2.80 seconds). Participants had to judge whether the shot
occurred after an interval “shorter”, “equal”, or “longer” than the time the target normally took to reach screen centre. (b)
Psychometric functions describing performance on Test trials. Right panel shows estimated parameters from the psychometric
functions: Points of Subjective Equality (PSE), Just Noticeable Difference and Weber ratio. Plots show mean and standard
error of the mean (s.e.m.) across participants. (c) Contingent Negative Variation (CNV) for central-parietal electrodes for Test
trials longer or equal to 2.27 seconds (dashed lines indicates intervals where the second marked could have been presented).
The CNV peaks at the memorised interval. Right panel shows the topographies for the intervals close to possible moments of
target presentation.
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A hallmark of interval timing is its scalar property (a generalisation of the Weber Law), which states that the variability in
temporal estimations increases linearly with the magnitude of the interval estimated. That is, errors in temporal estimations
scale with the durations of the intervals3, which implies that shorter intervals are easier to discriminate than longer intervals.
Accordingly, in our experiment, participants were more sensitive (i.e., responded differentially) to small temporal differences
across shorter intervals compared to longer intervals. This is illustrated by the smaller Just Noticeable Difference (JND) for the
shorter compared to the longer intervals (JNDshort = 0.287±0.031s, JNDlong = 0.438±0.032s , paired t-test, t13 = 4.77, p <
0.001). As predicted by the scalar property, when sensitivity was normalised by interval length no difference between shorter and
longer intervals was observed (Webershort = 0.118±0.013, Weberlong = 0.103±0.006, paired t-test t13 =−1.39, p = 0.187).

For the EEG recordings, we focused our analysis on trials in which the interval was at least 2.27s long, collapsing the
data from the two longest intervals. The event-related potential for central electrodes can be seen in Figure 1c. Consistent
with previous results, there was a clear Contingent Negative Variation potential (CNV, a slow cortical potential of developing
negative polarity) which peaked at the reference interval13, 14.

For a neural system to be able to read time by its trajectory through state space, the trajectory of the activity elicited
by a target must be consistent across activations. Thus, we checked if the recorded dynamics were consistent across trials.
Indeed, the pattern of the EEG signals across the scalp followed a structured sequence in time during the different trials (Figure
2a). Next, we used the Mahalanobis distance19, 20 to perform pair-wise comparisons across time points to determine whether
the pattern of the EEG signal contained information about the interval between events. As shown in Figure 2b, multivariate
distances between time points followed a diagonal-shaped pattern (i.e., a stronger similarity across points closer in time),
suggesting a sequential activation of overlapping states15.
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Figure 2. Spatiotemporal dynamics and temporal perception (a) Similarity index of the spatiotemporal dynamics across trials
(mean ± s.e.m). Red lines at the bottom represent periods were similarity was significant (p-values corrected by false discovery
rate, FDR). (b) Pairwise multivariate distance matrix between all time points. Continuous black lines indicate the 95% quantile.
There is a strong similarity for time points closer in time, suggesting a sequence of activation states. (c) Multidimensional
distance between the activity in different time points visualised in three dimensions using multidimensional scaling (MDS).
The colour of each point represents its physical interval. The trajectory represents the path linking the sequence of activation
states. (d) Instantaneous velocity through multidimensional state space. There is a fast change of states in the beginning of each
trial, followed by a decrease in the velocity (e) Instantaneous velocity for intervals where the target could be presented
significantly decreased as a function of interval. (f) Although the velocity through multidimensional state space decreased for
longer intervals, the distance travelled when taken into account the scalar property was similar across intervals.
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The evolution of the spatiotemporal dynamics captured by the EEG sensors can be visualised using multidimensional
scaling and plotted against the first three dimensions. This trajectory represents the path linking the sequence of activation
states, while the multidimensional distance between time points in state space reflects the difference in the overall response
captured by all sensors. In line with the pairwise distances showing similarity in activations for points closer in time, the
recovered trajectory preserves the temporal information of the activated states (Figure 2c). Although there is a quick transition
of states at the beginning of the interval, as time gets closer to the possible moments in which the interval ends, there is roughly
a one-to-one correspondence between temporal distance and state distance.

The velocity with which states change and travel through state space can also be calculated using Mahalanobis distances21.
After a quick transition through states following the first temporal marker, the velocity of such transitions continuously
decreased over time, suggesting that as time passed, changes in state occurred at a smaller rate (t-test on the estimated slopes,
t13 =−9.59, p < 0.001, Figure 2d and Figure 2e). This is once again consistent with the scalar property of time: as interval
length increases, change rate in state space decreases, which in turn decreases the resolution of longer intervals, making it harder
for participants to discriminate between longer intervals. Importantly, when the distance between two states was corrected
by the estimated Weber-fraction, there was no significant difference in distance travelled as a function of interval (one-way
repeated measures ANOVA with Interval as the main factor, F5,65 = 1.663, p = 0.185, Figure 2f).

To quantify the relation between state space and behaviour, we focused our analysis at time points when the interval
could have ended. We performed multivariate pairwise comparisons (using Mahalanobis distances) on data for the six first
intervals (0.80,0.98,1.22,1.50,1.85,2.27 seconds) and used multidimensional scaling to represent them in a two dimensional
plot (Figure 3a).

Figure 3. Distance in state space is correlated to distance in time (a) Multidimensional distance between the activity in the
different possible intervals visualised in two dimensions using multidimensional scaling (MDS). The colour of each point
represents its physical interval. (b) Mean distances in state-space (Mahalanobis distance) as a function of temporal separation
(log10 scale). Blue/Red markers shows pairwise multivariate distances (mean ± s.e.m) between the 0.8s/2.27s and all other
intervals. The slope of the fitted linear functions indicated that the rate of change in state space as a function of time is faster for
the first than for the last interval.

To quantify the relationship between distance in time and in state space, we fitted linear functions to the log transformed
temporal distance with the state space distance, comparing the first and last interval to all others. As shown in Figure 3b,
there was a strong association between both distances, suggesting that states further apart in time are also further apart in state
space (fitted slope for shortest interval = 1.58±0.08, t-test to zero: t13 = 19.48, p = 0.001, fitted slope for longest interval
=−1.29±0.09, t-test to zero: t13 =−13.50, p = 0.001). Importantly, the slope for the shortest interval is steeper than for the
longest interval (paired t-test on the absolute estimated slopes, t13 = 3.348, p = 0.005). This suggests that, for the shortest
interval, the rate of change in state space as a function of time is higher than for the last interval, once again in accordance with
the scalar property of time.

To compare this difference in a more direct way, we tested the distance in state space between two conditions that had
identical distances in time. Specifically, we compared whether the distance in state space between the first and third interval
(0.8s and 1.22s, being 420ms apart) was similar to the distance in state space between the sixth and the fifth interval (2.27s and
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1.85s, also 420ms apart). Consistent with the scalar property of time, we found that the difference in state space was larger for
the first comparison than for the second (t13 = 2.43, p = 0.030).

Thus far, we have shown that the properties of brain states revealed by MVPA follow key characteristics of temporal
processing. However, if they are related to temporal perception, then it should be possible to decode participants’ temporal
judgements based on the recovered states. To test this possibility, we focused our analysis on single trial data from the two
intervals closest to when participants had highest uncertainty about their temporal judgement: (1) 1.22s, for which participants
had a high uncertainty on whether it was shorter or equal to 1.50s; and (2) 1.85s, for which participants had a high uncertainty
on whether it was equal or longer than 1.50s. When participants had a high uncertainty between shorter/equal responses,
positions within the path of state space that were closer to the equal state increased the probability of equal responses (t-test
on the estimated slopes, t12 = 2.28, p = 0.041). When participants had a high uncertainty between equal/longer responses,
positions within the path of state space that were further to the equal state decreased the probability of equal responses (t-test
on the estimated slopes, t12− = −2.81, p = 0.016). Within each case, the physical interval tested was identical in all trials,
showing how trial-by-trial fluctuations in the distance travelled in state space can partially account for the variability in temporal
judgements.

Figure 4. Correlation between position in state-space and behaviour (a) Schematic representation of the methodology used to
estimate position in state-space for single trials. These analyses focused in intervals where participants had maximum
uncertainty whether the interval was shorter than or equal to 1.5 s (1.22 s) and equal or longer than 1.5 s (1.85 s). For each of
these trials, multivariate distances between activity in that trial and two other landmarks were estimated. The difference
between these distances was used as an index of position in state space. (b) Proportion of Equal responses as a function of
position in state space. For shorter intervals, proportion of Equal responses increased as activity was more similar to the equal
landmark. For longer intervals, proportion of Equal responses decreased when activity was more similar to the longer landmark.

Discussion
In this study, we investigated whether time-resolved EEG signals can carry information about time. We have shown how
dynamic pattern analyses can characterise states correlated with coding of temporal intervals. These states show the properties
classically related to temporal perception, such as scale invariance, and were predictive of temporal judgements.

A growing number of studies have investigated if the neural mechanisms of temporal perception in the range of hundreds
of milliseconds to seconds are related to population dynamics instead of a single central clock1, 11, 22. According to this view,
temporal information emerges from neural properties that are naturally time-varying, such as short-term synaptic plasticity23.
Our results show, for the first time to our knowledge, how these dynamics can be captured by non-invasive electrophysiological
recordings, addressing an important lack of evidence in favour of this population dynamics view in humans.

The majority of timing studies in humans have focused on the contingent negative variation (CNV) as a potential signature
of the subjective experience of time13. However, the exact role of the CNV on temporal perception has been recently criticised
both on experimental and theoretical terms14, 24. For example, a recent study has argued that post interval evoked potentials
(e.g., activity evoked by a stimulus that marks the end of an interval) can reflect the subjective experience of time better than the
CNV24.
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Our results, on the other hand, suggest that temporal experience can be tracked during the interval to be estimated. Although
the averaged amplitude of the CNV in a group of electrodes might not be a good predictor of the elapsed interval, other subtle
differences present in individual electrodes, and possibly hindered by the CNV, can actually carry information about time.
When a network is activated it will follow a complex trajectory dependent not only on the synapses directly activated by the
input, but also on the ongoing activity of the network6. This process leads to distinct spatiotemporal patterns of activity, which,
according to our results, produce different patterns of activation across the EEG sensors. This finding adds to the increasing
evidence of how multivariate methods represent a powerful approach to decode task-relevant dimensions.

As these trajectories evolve through time in a consistent way, stimuli presented in different time points will find the network
in a different state leading to different activity patterns6. Therefore, although small differences in the state of a network might
not be detectable using classical EEG methods, they could still lead to marked differences of evoked activity by new inputs in
different time points, as recently reported24.

One important question that remains to be answered is whether these recovered brain states are part of a coding scheme
used to track time or a by-product of other processes that could generate a time-decodable signal. Although we have found that
the decoded brain states in single trials are correlated with participants’ temporal judgements, one could argue that the majority
of neural processing has a temporal structure. If this structure is consistent enough, even if not directly used to track time, it
could lead to similar results reported by our study. Future studies should address this issue by observing how those brain states
behave in tasks that have similar temporal structures, but different temporal demands. There is a myriad of temporal tasks and
illusions that can be used to study time in humans. Future studies can combine theses tasks and use similar methods herein
described to elucidate how temporal information can be encoded at the population level to support time-dependent functions.
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Methods

Participants
Sixteen volunteers (age range, 22−27 years; 9 female) gave informed consent to participate in this study. All of them had
normal or corrected-to-normal vision and were free from psychological or neurological diseases. The experimental protocol
was approved by The Research Ethics Committee of the Federal University of ABC. Two participants were excluded from the
analyses because more than 3 channels during EEG recordings presented an increased number of artifacts.

Stimuli and Procedures
The experiment consisted of a computerized “shoot the target” task25. The stimuli were presented using Psychtoolbox v.3.0
package for MATLAB on a 17−inch CRT monitor with a vertical refresh rate of 60Hz, placed 50cm in front of the participant.
Responses were collected via a response box with 9 buttons (DirectIN High Speed Button; Empirisoft). Each trial started
with the presentation of a target (1.5 visual degrees radius, red and black) at the left hemifield of the screen (background
RGB-colour 150;150;150) and an “aiming sight” (an empty circle with 0.5 visual degree radius) at the centre of the screen.
After a random interval (500ms-1000ms) a beep (1000Hz, 70dB, 100ms duration) was presented simultaneously with the start
of movement of the target from left to right. The target moved at a constant speed (9 degrees/sec) taking 1.50 seconds to reach
the centre of the screen, thus passing through the aiming sight. In Regular trials (350 trials) a button press (with the right index
finger) produced a “shot” (a green disc, presented inside the aiming sight) and a second beep (500Hz, 70dB, 100ms duration),
presented simultaneously.

Participants were instructed to hit the target by pressing the button at the appropriate moment. Test trials followed
the same schema, but the trajectory of the target was masked by a gray rectangle (3 visual degrees of height, RGB-colour
130;130;130) and automatic shots were given at seven different intervals (0.80,0.98,1.22,1.50,1.85,2.27or2.80 s). In each
Test trial, participants had to judge whether the shot occurred at an interval “shorter”, “equal”, or “longer” than the time the
target normally took to reach the screen centre. Participants responded using three different buttons. Responses in Test trials
were unspeeded and could be given starting 800ms after the automatic shot. Trials were presented in a random order, with the
restriction of having a maximum of three Test trials in sequence. Participants performed a total of 10 blocks, each with 35
Regular and 35 Test trials. The first 10 trials in each block were always Regular trials. The experimental session lasted 60
minutes on average.

EEG recordings and pre-processing
EEG was recorded continuously from 64 ActiCap Electrodes (Brain Products) at 1000Hz by a QuickAmp amplifier (Brain
Products). All sites were referenced to FCz and grounded to AFz. The electrodes were positioned according to the International
10−10 system. Additional bipolar electrodes registered the electrooculogram (EOG). EEG pre-processing was carried out
using BrainVision Analyzer (Brain Products). All data were down-sampled to 250Hz, re-referenced to the average of all
electrodes, filtered (0.05Hz to 30Hz) and epoched from 500ms before the first beep to 1000ms after the second beep. An
independent component analysis (ICA) was performed to reject eye movement artifacts. Eye related components were identified
by comparing individual ICA components with EOG channels and by visual inspection. The number of trials rejected for each
participant was small (13% on average). ERP analysis were performed on data using the SPM8 and Fieldtrip toolboxes for
MATLAB. The CNV for Figure 1c was estimated at central-parietal electrodes (C3,C1,Cz,C2,C4).

Behavioural Analysis
Behavioural analysis was based on the proportions of each type of response as a function of interval. For each participant, two
independent sigmoidal functions were fitted to the data. The first function was fitted on the proportion of “shorter” responses
and the second on the proportion of “longer” responses. The psychometric data from each participant and condition were
fitted with Cumulative Normal functions, each defined by four parameters: threshold, slope, lapse-rate and guess rate26. Guess
rates were fixed at 0 across all participants and conditions, and lapse rates were restricted to a maximum of 0.05. The three
free parameters were fitted separately for each participant. The points of highest uncertainty were estimated as the predicted
interval corresponding to 50% of “shorter” responses and the predicted interval corresponding to 50% of “longer” responses.
Quality of fit for each participant was assessed by correlating predicted values to observed responses (r-square 0.96±0.01;
lowest individual r-square = 0.88). The analysis of the psychometric function was performed using the Palamedes toolbox for
MATLAB. To measure temporal sensitivity for shorter and longer intervals, we calculated Just Noticeable Difference (JND)
scores, which represents the absolute difference in seconds between the intervals at which 25% and 75% of shorter or longer
responses were given. Weber fractions were estimated as:

WeberFraction =
(JND×0.5)

PSE
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Multivariate Pattern Analysis
Similarity between different trials
To calculate the similarity of the sequence of patterns activated in each trial, we used a leave-one-trial-out approach. Specifically,
for each participant and trial, data from each time point (a row vector with the amplitude values of all 62 electrodes) was
compared to the averaged data of all remaining trials (also a row vector with the mean amplitude values of all 62 electrodes at
the same point), using a Pearson correlation (Rho’). After calculating these similarities for each trial, the Rhos’ were Fisher
transformed and averaged across trials for each participant. At the group level, Rhos’ were compared using a paired t-test and
p-values were corrected using a false discovery rate (FDR) procedure27.

Dissimilarity Matrix
To determine whether the pattern of the EEG signal across channels contained information about the elapsed time, we used the
Mahalanobis distance to perform pair-wise comparisons between different time points. Several studies have shown that the
Mahalanobis distance is superior to Euclidean distance because it accounts for the covariance structure of the noise between
features19, 28. For each participant, data from the two longest intervals (2.27 and 2.88) were collapsed and averaged. Data were
smoothed with a Gaussian kernel (SD = 20ms). The pairwise multivariate dissimilarity (Mahalanobis distance) of each time
point to all others were calculated as follows:

D(ti,t j) =
√

(EEGti −EEGt j)T × pinvC× (EEGti −EEGt j)

where EEGti and EEGt j are row vectors containing the average signals of the two time points being compared. The pinvC
is the pseudo inverse of the error covariance matrix, estimated by pooling over the covariances of both time points being
compared, estimated from all trials, using a shrinkage estimator that is more robust than the sample covariance for data sets
with many variables and/or few observations19, 28. This procedure was performed for all time points, from 0 to 2.27 seconds,
in 4ms bins. Pairwise multivariate dissimilarity matrices were estimated separately for each participant, and the grand mean
dissimilarity matrix was calculated by averaging individual matrices across participants.

To estimate the 95% quantile of the estimated Mahalanobis distances (black lines in Figure 2b), a permutation procedure
was used. For each participant and iteration: (1) two random time points were chosen; (2) trials between them were randomly
mixed; (3) the Mahalanobis distance was calculated between the intermixed conditions. After performing 1000 iterations for
each participant, the distances were averaged across participants and the 95% quantile was estimated.

Multidimensional Scaling
Trajectory in state space was visualised using metric multidimensional scaling (MDS) as implemented in MATLAB. In Figure
2c, MDS was performed on the grand mean pairwise dissimilarity for all time points matrix and data was plotted against the first
three dimensions (stress = 0.056). For figure 3a, MDS was performed on the grand mean pairwise dissimilarity for possible
intervals and data was plotted against the first two dimensions (stress < 0.001)

Velocity
Instantaneous velocity at time t was estimated by calculating the difference in activity state as a function of time:

velocity =

√
(EEGt−n −EEGt+n)T × pinvC× (EEGt−n −EEGt+n)

2n

Here, we used n = 40ms. Velocity was calculated separately for each participant. To calculate if velocity changed at the
moments of possible target presentation, velocity was calculated for the six possible moments of target presentation. For each
participant, a linear regression was performed and, at the groups level, the estimated linear coefficients were compared to zero
using a paired t-test.

To test whether distances in state space were similar when the scalar property was taken into account, we first estimated the
mean Weber-fraction as the average of all Weber-fractions estimated previously as described above (mean Weber-fraction=
0.1106±0.008). Distances for each possible moment of target presentation were calculated in a similar manner as previously:

distance =
√
(EEGt−n −EEGt+n)T × pinvC× (EEGt−n −EEGt+n)

The values of n were calculated as a function of their respective intervals (0.80,0.98,1.22,1.50,1.85,2.27s) multiplied by the
estimated Weber-fraction, resulting in the following values of n for each interval: [0.0442,0.0547,0.0669,0.0829,0.1018,0.1255]s.
To calculate if these distances varied at the moments of possible target presentation, distances were submitted to a one-way
repeated measures ANOVA with interval as a main factor.
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Correlation between dissimilarity and performance
To calculate how single trial trajectories correlated with performance, we focused on the two intervals closest to the points
of highest uncertainty (1.22s and 1.85s). To measure where in the state-space trajectory participants were in each trial, we
compared single-trial states to two other landmarks states, allowing us to estimate the location in the state space where
participants were when the interval ended. The landmarks consisted of the averaged data from pre-stimuli period (−100 to
0, relative to target onset) for the 0.8s interval (short landmark), 1.5s interval (equal landmark) and 2.27s (longer landmark).
Importantly, these landmarks were estimated on the averaged data of the two longest intervals (collapsing 2.27s e 2.8s, as done
previously). Thus, the single-trial data and the data used to estimate the landmarks were completely independent.

For the 1.22s, data from the last 100 ms before target presentation (1.12−1.22s) was averaged, resulting in a row vector
for each trial. This was then compared to the short landmark and the equal landmark, using the Mahalanobis distance as
previously described. The subtraction D(1.22,short)−D(1.22,equal) resulted in an index of how similar that state in that particular
trial was to each landmark. Trials where the state is more similar to the equal landmark yields higher values. If these distances
are correlated to performance, then the proportion of equal responses should increase as this index increases. To test this
hypothesis, the estimated distance values were used as predictors in a generalised linear model regression, with a probit link for
the binomial distribution. This procedure was performed separately for each participant and at the group level the estimated
slope coefficients were tested against zero using a paired t-test. Similarly, we compared single-trial data for 1.85s to equal and
longer landmarks and used the difference D(1.85,equal)−D(1.85,longer). In this case, higher values indicate a stronger similarity to
the longer state and should be correlated with a decrease in the proportion of equal responses. In both cases, data from one
participant was removed due to a small proportion of one of the response types (< 10%).
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