
climwin : An R Toolbox for Climate Window Analysis

Liam D. Bailey1*, Martijn van de Pol1, 2

1 Department of Evolution, Ecology and Genetics, Research School of Biology, The
Australian National University, Canberra, Australia
2 Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW),
Wageningen, The Netherlands

* liam.bailey@anu.edu.au (LDB)

Abstract

When studying the impacts of climate change, there is a tendency to select climate data
from a small set of arbitrary time periods or climate windows (e.g., spring temperature).
However, these arbitrary windows may not encompass the strongest periods of climatic
sensitivity and may lead to erroneous biological interpretations. Therefore, there is a
need to consider a wider range of climate windows to better predict the impacts of
future climate change. We introduce the R package climwin that provides a number of
methods to test the effect of different climate windows on a chosen response variable
and compare these windows to identify potential climate signals. climwin extracts the
relevant data for each possible climate window and uses this data to fit a statistical
model, the structure of which is chosen by the user. Models are then compared using an
information criteria approach. This allows users to determine how well each window
explains variation in the response variable and compare model support between
windows. climwin also contains methods to detect type I and II errors, which are often
a problem with this type of exploratory analysis. This article presents the statistical
framework and technical details behind the climwin package and demonstrates the
applicability of the method with a number of worked examples.

Introduction 1

With the growing importance of climate change there are an increasing number of 2

studies seeking to understand the impact of climate on biological systems (e.g., [1–5]). 3

However, in many study systems the impacts of climate are likely to be different at 4

different times of the year (e.g., [4–6]), making it necessary for researchers to subset 5

their climate data to encompass a particular period of interest, here termed the climate 6

window (e.g., spring temperature, winter precipitation). However, this subsetting 7

decision is often made with little a priori knowledge on the relationship between climate 8

and the biological response, leading to the arbitrary selection of one, or few, climate 9

windows [7]. 10

The use of a limited number of arbitrarily selected climate windows hinders our 11

ability to make meaningful biological conclusions. If a trait, such as body mass or 12

offspring number, displays no response to an arbitrary climate window we cannot 13

determine if this is evidence of climatic insensitivity in our response variable or if the 14

choice of climate window is flawed. Even where we detect a relationship between 15

climate and our response, we cannot know whether there may be another point in time 16

at which climate has a much stronger and more biologically meaningful impact. With 17
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flawed conclusions there is a potential to overlook key periods of biological importance, 18

leading us to focus limited management and conservation resources in the wrong areas. 19

To overcome these issues, there is a need to test a greater number of climate 20

windows with fewer a priori assumptions. One solution is the use of a sliding window 21

approach [5, 8–11], where one varies (or slides) the start and end time of a climate 22

window to compare multiple possible windows and select a best window (Fig 1). 23

However, as these analyses are often done manually, comparison of a large number of 24

climate windows can be cumbersome and time consuming. Additionally, there is 25

currently no standardised method for testing or comparing climate windows, and we 26

have no knowledge on the performance of sliding window approaches, including the 27

possibility for false positives and false negatives (type I and II errors); precision and 28

bias of parameter estimates and model statistics (e.g., R2); and how these errors and 29

biases might depend on sample size and climate signal strength. There is a need for a 30

standardised and automated approach that can help streamline these frequently 31

performed analyses and make the testing and comparison of multiple climate windows 32

easy and accessible to the general scientific community. The package climwin, built in 33

R, creates a best practice method for this process. 34

Fig 1. Illustration of a sliding window approach. Shaded region represents a
climate signal (April 1st - June 1st), where a climatic predictor has the strongest impact
on the biological response. Each line represents a tested climate window. The start and
end time of windows is varied until we identify the best window (in red). This figure
demonstrates a sliding window analysis conducted at a monthly resolution, but such
analyses can use finer scale daily data.

In a previous paper, van de Pol et al. [7] provide a broad introduction to climate 35

window analysis for a general scientific audience, with practical details on how the 36

method can be applied using climwin. It proposes a step-wise approach for climwin 37

implementation that encourages users to identify all potential competing hypotheses, 38

including different potential climate variables (e.g., rainfall, temperature), climate 39

window types (relative or absolute; see Section 1.2), response functions (e.g., linear, 40

quadratic), and aggregate statistics (e.g., mean or maximum temperature). Each of 41

these hypotheses should then be tested and compared using a climate window analysis, 42

with the intention of identifying those hypotheses that are best supported by the data. 43

This paper is complementary to van de Pol et al. [7], building on the general 44

introduction to climwin by discussing the technical details of the package, both the 45

design of the package code and the statistical reasoning behind the proposed methods. 46

We discuss a number of topics not covered in the previous paper, including the 47

difference between absolute climate windows (e.g., May to June) and relative climate 48

windows (e.g., two preceding months) (Section 1.2); and the potential use of 49

multi-model inferencing in climate window analysis (Section 1.4). We expand upon the 50

commonly used sliding window analysis, discussed in van de Pol et al. [7], and propose 51

an alternative method for analysing climate, a weighted window analysis (Section 2); we 52

then consider the mechanisms available to account for errors and biases in both 53

methods (Section 3). Finally, we run through a worked example to demonstrate both 54

methods using a real world dataset (Section 4). 55

In combination, this paper and van de Pol et al. [7] provide a comprehensive 56

overview of climwin ; its strengths and weaknesses; and potential future directions for 57

the package. While climwin has been designed with climate analysis in mind, the 58

package can be applied to any analysis over a continuum (e.g., time or distance) using 59

climatic or non-climatic predictors. For example, climate window methods like those 60

provided in climwin have been used to analyse plant neighbourhood competition [12]. 61

Therefore, we expect climwin to have broad applicability both in climate change 62
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ecology and more broadly within the scientific community. 63

1 Sliding window analysis 64

1.1 Introduction 65

Model selection metrics 66

Early sliding window analyses used Pearson’s correlation coefficient to select among 67

different climate window models, where the best window was considered to be the one 68

with the strongest correlation between the climatic predictor and response (e.g., [8–10]). 69

Yet this method only works in simple Gaussian regression models, and there is no 70

possibility to include additional covariates or random effects terms or consider 71

non-linear effects of climate. 72

Later sliding window studies have used information criteria (IC; [13–15]) as a metric 73

for model selection among competing climate windows (e.g., [5, 11]). An IC-based 74

approach compares all candidate models (i.e. climate windows) and ranks them using a 75

chosen Information Criterion (e.g., Akaike, Bayesian or Deviance Information Criterion; 76

AIC, BIC and DIC respectively). This allows for comparison of any type of multiple 77

regression models, rather than correlation between two variables, and allows users to 78

assess model uncertainty and conduct multi-model inferencing (see Section 1.4). These 79

characteristics make an IC approach more suitable for analysis of climate windows, 80

where it is necessary to compare hundreds or thousands of different models with the aim 81

of determining a best window or group of best windows. An IC approach forms the 82

basis for all climate window comparisons in climwin. 83

Function slidingwin 84

climwin provides the function slidingwin for sliding window analysis. slidingwin 85

requires two separate datasets: one containing climate data (ideally at a daily scale) 86

covering the entire period of interest and one containing information on the response 87

variable, as well as any potential covariates. To properly test the relationship between 88

our biological response and climatic predictor, it is necessary for us to take 89

measurements that have different climatic histories. Ideally, this will involve a 90

combination of temporal and spatial replication, where we measure our response 91

variable over multiple years and/or sites. However, combining these two forms of 92

replication assumes that climatic sensitivity is consistent across time and space, which 93

may not always be the case (e.g., [16]). 94

A key feature of climwin is the ability for users to define a baseline model into 95

which climate data will be added. This versatility allows for the analysis of data with a 96

variety of error distributions (e.g., Gaussian, binomial, Poisson), the inclusion of 97

multiple covariates, the use of mixed effects modelling, and different types of regression 98

models. Currently climwin is known to work with base R functions lm and glm [17], 99

mixed effects model functions from the package lme4 (lmer, glmer; [18]), and the cox 100

proportional hazard function from package survival (coxph; [19]). Technically, any 101

model that returns a log-likelihood or IC value can be integrated into climwin ; 102

however differences in syntax between different modelling packages have hindered our 103

ability to integrate more modelling functions. We aim to provide a greater number of 104

function options for model fitting in future versions. 105

As highlighted in the introduction, it is possible to vary a broad range of climate 106

window characteristics in slidingwin (e.g., temporal resolution of climate data, 107

aggregate statistic, model function). Varying different characteristics of the sliding 108

window analysis allows users to test a variety of climate window hypotheses and help 109
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identify potentially novel relationships between climate and the biological response. For 110

example, while we commonly consider mean climate, recent studies have highlighted the 111

potential importance of climatic range [20], rate of climate change [21,22], and climatic 112

thresholds [23]. However, although it is important to consider a diversity of climate 113

window characteristics in our analyses, changes in many of these characteristics can 114

slightly alter the technical details of the methods used in climwin ; therefore, we will 115

focus specifically here on the use of mean climate at a daily resolution. 116

1.2 Relative and absolute climate windows 117

It is possible that the date of measurement for each record in the response dataset will 118

vary within a sampling group (e.g., year or site). This may be due to constraints on the 119

expression of the response variable (e.g., the date at which offspring size can be 120

measured will depend on birth date) or practical limitations involved in data collection. 121

In cases where the variation in measurement time is small it is reasonable to assume 122

that all records will be influenced by climatic conditions at the same point in time; 123

however, as variation increases this assumption becomes less realistic. 124

To address this issue, climwin allows for the use of both absolute and relative 125

climate windows [24,25]. In an absolute climate window, we assume that all records are 126

influenced by climate at the same absolute point in time, allowing us to define windows 127

using calendar dates (e.g., mean March temperature). Absolute windows require the 128

user to provide a reference date, used as the start point for all fitted climate windows. 129

By contrast, a relative climate window assumes that each record will be impacted by 130

climate at different times depending on the time of measurement. Unlike absolute 131

window analysis, a relative window analysis will test the impact of climate x days before 132

the date of measurement. 133

Absolute climate window analysis is most useful for sampling populations with little 134

temporal variation or data sets where we lack any information on within-group variation 135

in trait expression (e.g., datasets with one aggregate measurement per group; mean 136

body mass of a population). However as temporal variation in the data increases 137

relative windows become more appropriate, particularly when searching for short-lag 138

climate signals. For example, large variation in moult timing of superb fairy wrens 139

(Malurus cyaneus) makes the use of an absolute climate window inappropriate as many 140

individuals will already have completed moulting before the start point of the absolute 141

climate window. In this case, a relative climate window (e.g., the 25 days before 142

moulting) is much more useful [25]. It should be noted however, that the output of 143

relative windows can often be more difficult to interpret at the population level as 144

individuals will vary in their climatic sensitivity. Thus the choice of an absolute or 145

relative window involves a trade-off between biological realism and ease of 146

interpretation. 147

Within-group centring 148

As an absolute window approach assumes no variation in response within a group it can 149

usually only explain between-group variation in the response variable. In comparison, a 150

relative window approach can explain both within- and between-group variation in the 151

response, potentially improving the explanatory power of any fitted climate window 152

model. In certain cases, users may wish to disentangle these within- and between-group 153

climate effects, as they may not necessarily be of equal interest or of the same 154

magnitude. For example, spawning dates of frogs showed a weaker within population 155

response to temperature than that observed across the whole of Britain [26]. climwin 156

can distinguish both effects by separating climate variables using a technique called 157

within-group centring [27], such that both the within- and between-group climatic 158
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sensitivity are estimated for each given time window using the parameter centre. 159

Whether one is interested in differentiating between these two types of variation will 160

inform the choice of window type. 161

1.3 How it works 162

Linking climate and biological data 163

The first step of the slidingwin function involves the linking and manipulation of the 164

date information provided in the climate and biological response data frames. As R 165

cannot automatically read date data, climwin converts this data into an R date format 166

using the function as.Date. Date information must be provided in a standard 167

dd/mm/yyyy format to ensure this process is successful. At this point, we also take into 168

account whether an absolute or relative window is used. Where an absolute window is 169

chosen, the date values of all biological records are changed to the reference day and 170

month provided by the user, with year remaining unchanged. 171

Using this new date information, slidingwin creates a data matrix containing the 172

relevant climate data for each record in the response data frame. For each biological 173

record we extract the climate data needed to fit all potential climate windows (e.g., 174

climate up to 365 days before measurement; Table 1). The amount of climate data 175

stored in this matrix will depend on the minimum and maximum number of days 176

considered in the analysis, determined by the range parameter. 177

Table 1. Example of a climate matrix built using slidingwin.

RecordID Measurement date (x ) Climate on day x Climate on day x - 1 Climate on day x - 2 ... Climate on day x - n
1 01/01/2015 5.2 6.0 2.4 ... 23.1
2 02/02/2015 4.8 5.2 6.0 ... 22.0
3 21/01/2015 4.5 2.4 7.5 ... 23.9

Climate data is stored for each day before the biological data was collected. Data will be stored up until day x - n, where n is set
by the user with the parameter range.

Model fitting 178

With a completed matrix we now possess all the necessary information to test different 179

climate windows. slidingwin uses nested for-loops to vary the start and end time of 180

climate windows. Where start and end time are acceptable (i.e. start time occurs before 181

end time) slidingwin will subset the climate matrix to include only climate data which 182

corresponds to the tested window. We use this data subset to calculate the aggregate 183

statistic (e.g., mean, max, slope), set using the stat parameter. 184

R> apply(climatematrix[, windowstart:windowend], 1, FUN = stat) 185

Where windowstart and windowend refer to the columns in the climate matrix from 186

which climate data is extracted. The user can decide to test a linear effect of climate, or 187

use more complex model structures (e.g., quadratic, logarithmic, inverse). The function 188

used to test climate is determined by the user with the func parameter. Before the 189

for-loops begin, we update the baseline model structure to be consistent with the level 190

of func, using a dummy climate variable . Carrying out this structure update before 191

entering the for-loops helps to reduce computational time. 192
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R> func <- "quad" 193

R> baseline <- glmer(Response ~ 1 + (1|ID), data = BiolData, family = poisson) 194

R> BiolData$climate <- rep(1, times = nrow(BiolData)) 195

R> baseline <- update(baseline, .~. + climate + I(climate^2), data = BiolData) 196

Once inside the for-loops, we can replace the dummy climate data with the climate 197

data extracted from the climate matrix. Using the update function we then refit our 198

model. 199

Information criterion 200

Once we have updated our model to replace the dummy climate data we can extract a 201

sample size corrected measure of AIC (AICc), using the function AICc from the package 202

MuMIn [28]. However, AICc does not tell us whether a fitted climate window 203

improves upon the baseline model (i.e. a model containing no climate). Therefore, we 204

subtract the model AICc from the AICc value of the baseline model. This creates a 205

metric (∆AICc) that can be used to both compare individual climate windows to one 206

another and determine how well climate in any given window improves upon the 207

explanatory power of the baseline model. Currently all climwin functions use AICc as 208

their information criterion; however, there is potential for other criteria to be used in 209

the future. 210

Output 211

slidingwin returns three distinct objects. Firstly, slidingwin will return a data frame 212

containing information on the entire model set reflecting all fitted climate windows. 213

This data is sorted by ∆AICc, so that the best model (i.e. smallest ∆AICc value) is 214

listed at the top. With this data frame, the function plotdelta can be used to produce 215

a heat map representing the landscape of ∆AICc values for all fitted climate windows 216

(see Section 4). By examining the ∆AICc landscape the user can determine whether 217

multiple peaks of climatic sensitivity may be present in the data. Additionally, 218

slidingwin returns the best model (i.e. the model with the lowest value of ∆AICc) as 219

well as the climate vector used to fit this best model. 220

1.4 Multi-model inferencing 221

Until this point we have only discussed extracting a single best model from our 222

slidingwin analysis; however, we must be aware that there will be uncertainty in the 223

estimation of the best model. An IC approach provides well established methods to deal 224

with this uncertainty, using Akaike model weights (wi; the probability that model i is in 225

fact the best model within the model set; [15]). In practice, we often have little 226

certainty that the model with the lowest ∆AICc is in fact the best model, as a number 227

of top models can have very similar values of wi. This is particularly likely in climate 228

window analysis as climate data will often be strongly auto-correlated. Our worked 229

examples illustrate that the top models can have very similar values of both ∆AICc and 230

wi (see Section 4). Is it reasonable, therefore, to extract a single best window from a 231

sliding window analysis? 232

Ultimately, this will depend on one’s reason for using climwin. Although we often 233

discuss climate as the key point of interest, in some cases users may be more interested 234

in simply accounting for the effect of climate on their response variable, without much 235

concern for the exact nature of the climatic signal. In such a case, it makes sense to 236

extract and use the best climate window as this is, by definition, the climate window 237

that can best explain variation in the response variable. 238
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In other cases, we may be more interested in accurately calculating the timing of a 239

climate signal and/or the relationship between climate and our response. In these 240

scenarios, it makes much less sense to pick a single window as the difference in wi 241

between the top windows is likely to be small. As an alternative we can take a group of 242

models that make up a cumulative sum of wi. For example, we may group all those 243

models that include the top 95% of wi. With such a subset we can be 95% confident 244

that the best model is located within our new model set. This model set is often called 245

a ’confidence set’ [15]. We can then report values calculated from this subset of top 246

models using multi-model inferencing. 247

Measuring the percentage of windows included within a confidence set (C ) can help 248

users determine confidence in a given climate signal. If the models within the set make 249

up a small percentage of the total models tested (C is low; e.g., Fig 2a) we can be much 250

more confident that we have observed a real climate signal; however when no climate 251

signal occurs, the confidence set is likely to be much larger (C is high; e.g., Fig 2b). 252

climwin includes the plotting function plotweights that visualises different 253

confidence sets for a sliding window analysis and calculates the percentage of models 254

within the 95% confidence set (by default plotweights uses the 95% confidence set 255

although users can adjust this cut-off if desired). 256

Fig 2. Heat-map of 95%, 50% and 25% confidence sets for slidingwin
analysis. Where a strong climate signal occurs, models within the confidence sets
make up a small percentage of total models (a; 7%). Where there is no climate signal
the confidence set is much larger (b; 91%). A point with window start of 100 and
window end of 50 represents a climate window fitted using mean climate 50 - 100 days
before measurement date. Figures generated using plotweights.

When we are interested in estimating the timing of a climate window, it may be 257

useful to determine a median start and end time for all windows within the confidence 258

set. This can be acheived using the function medwin. Additionally, the function 259

plotwin can generate box plots illustrating the variation in start and end times. These 260

median values allow users to account for model uncertainty when estimating climate 261

window timing. Similarly, when a user is interested in estimating the relationship 262

between climate and the biological response we can draw information from a subset of 263

potential climate windows using model averaging [15]. A model averaged parameter 264

estimate is simply the sum of parameter estimates weighted by wi. With such model 265

averaging we can determine the average relationship between climate and our response 266

variable within the confidence set. Users can conduct model averaging using the 267

parameter estimates and model weight values presented in the slidingwin output. 268

Multi-model inferencing is fairly straight forward for datasets with a clear climate 269

signal, where the value of C is small, yet this will not always be the case. Large values 270

of C may occur when multiple climate signals are present in the data or when the 271

climate signal is weak (i.e. low R2), exacerbated by low sample size (Fig 3). Both the 272

median window location and model averaged parameter estimates are less informative in 273

situations where C is large as the 95% confidence set may include poor models with 274

spurious parameter estimates [29]. Where multiple peaks are present it can be 275

reasonable for users to adjust the range parameter within their slidingwin analysis to 276

approach each climate signal separately. However, when a large value of C is caused by 277

a weak signal model averaging is not advisable. 278
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Fig 3. Relationship between the percentage of models in the 95%
confidence set and climate signal strength. Percentage of models in the 95%
confidence set (C ) are shown for a very strong (R2 = 0.8), strong (R2 = 0.4), and
moderate climate signal (R2 = 0.2). Boxes represent median and inter-quartile range.
Data from 2,000 simulated datasets, see Section 3 for methods.

2 Weighted window analysis 279

2.1 Introduction 280

When testing climate windows using mean climate one effectively fits a weight function 281

to the climate data. Using a sliding window approach, we assume that all points 282

between the start and end time of a climate window influence the biological response 283

equally (i.e. a uniform weight distribution with sum of 1). Outside the window, climate 284

is assumed to have no influence on the response (i.e. a uniform distribution with sum of 285

0; Fig 4a). As we group time into discrete units (i.e. days, weeks, months), assuming a 286

uniform distribution leaves us with a finite number of potential climate windows to test, 287

allowing us to undertake a brute-force approach for climate window analysis, where we 288

systematically test all possible combinations of start and end time sequentially. 289

Fig 4. Examples of weight distributions generated with a) uniform, b)
Weibull, and c) Generalised Extreme Value probability distribution
functions.

Realistically however, the assumption that all points within a time window 290

contribute equally to a climate signal may not be true. The importance of climate will 291

likely change gradually, not abruptly, over time. As an alternative, one can determine a 292

weighted climate mean using a single fitted weight distribution, allowing each climate 293

record to take any weight value between 1 and 0. This allows for more biologically 294

realistic relationships between climate and the biological response. We call this method 295

a ’weighted window approach’. 296

climwin includes the function weightwin, based on the methods outlined in van de 297

Pol and Cockburn [25], which allows for the calculation of weighted climate means using 298

more complex weight distributions fitted using three parameters: scale, shape and 299

location. The location parameter allows users to adjust where the peak of the 300

distribution sits, similar to a sliding window approach (e.g., Fig 4b solid and dashed 301

lines). Unlike a sliding window analysis however, the scale and shape parameters allow 302

for users to also adjust the width (duration of window) and shape (e.g., exponential 303

decay or bell-shaped) of the distribution respectively. These three parameters are 304

optimised to achieve the lowest possible value of ∆AICc. 305

As the type of data used is the same, users can apply both the slidingwin and 306

weightwin function to the same set of data with no changes required. This allows these 307

two approaches to be used in complement to one another and directly compared 308

(section 2.4). 309

2.2 Weight distribution 310

In principle, any type of probability distribution function can be used to model a weight 311

distribution. So far two probability distribution functions are implemented in 312

weightwin that specifically reflect aspects of weight distributions that we think are 313

biologically relevant. The Weibull function is described by the three parameters shape, 314

scale and location and allows for a wide range of weight distributions (Fig 4b). 315
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Moreover, for specific values of shape and location the Weibull weight function reduces 316

to an exponential distribution, producing a weight distribution that reflects gradual 317

decay/fading memory effects (Fig 4b; [25]). 318

The second function is the Generalized Extreme Value (GEV) probability 319

distribution function, which allows for even greater flexibility as it includes functions 320

from the Frechet, Gumbel, and reverse Weibull families (Fig 4c). The GEV function 321

also has a shape, scale and location parameter but, in contrast to the Weibull, includes 322

left-skewed, right-skewed, as well as fairly non-skewed functions, which allows for the 323

comparison of even more refined competing hypotheses. In practice, the GEV function 324

can be harder to fit, as it is more likely to get stuck on local optima during convergence 325

due to the asymptotic nature of the shape parameter around the value zero [25]. 326

Importantly, both the Weibull and GEV probability distribution functions enforce 327

smoothing on the weight distribution. This is of particular importance when analysing 328

climate data, as data is likely to show strong auto-correlation. Furthermore, by 329

imposing smoothing the weight distributions are less likely to be impacted by single 330

extreme climatic events thus reducing the potential for overfitting bias. 331

2.3 How it works 332

weightwin works in a similar way to slidingwin. However, rather than varying 333

window start and end time using nested for-loops, weightwin varies the values of scale, 334

shape and location to minimise the value of ∆AICc, using the base optimisation 335

function optim in R. By default, we use a quasi-Newton method of optimisation, 336

described by Byrd et al. [30]. This allows for bounding of the shape, scale and location 337

parameters; however, users can employ alternative optimisation methods through the 338

method parameter in weightwin. Each set of scale, shape and location values is used to 339

generate a weight distribution using either the Weibull or GEV function. This 340

distribution is then used to calculate a weighted climate mean, which is added to the 341

baseline model with the update function. A value of ∆AICc is returned for the 342

optimisation function to assess. 343

Once the optimisation function has converged, the user will be provided with an 344

output showing the optimised weight distribution and a corresponding best model. 345

Additionally, users will be shown technical details of the optimisation procedure, which 346

can help users to adjust and improve the optimisation process if needed (e.g., alter the 347

initial values with parameter par or change the settings of the optimisation routine with 348

parameter control). 349

2.4 Comparing approaches 350

Using a weighted window approach provides a number of benefits over slidingwin 351

when assessing the impacts of climate. Firstly, by allowing for an infinite number of 352

potential weight distributions, weightwin can provide greater detail on the relationship 353

between climate and the response, such as the occurrence of exponential functions 354

reflecting fading memory effects of past climate. Additionally, by using more diverse 355

weight distributions, weightwin will often generate models with better ∆AICc values, 356

which may be especially important when users are most interested in achieving high 357

explanatory power, although one should be aware of potential over-fitting bias (Section 358

3). Furthermore, by using an optimisation routine weightwin often needs to test far 359

fewer models than slidingwin, allowing for more rapid analysis . 360

Despite these benefits, weightwin will not always be the most appropriate function 361

for all scenarios. Firstly, the nature of the fitted weight distributions means that 362

weightwin can only detect single climate signals, which forces users to detect and 363

compare potential climate signals with separate analyses. While step-wise peak 364
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comparison is also required in slidingwin, the brute-force approach allows for the 365

detection of multiple climate signals with a single analysis by observing the full ∆AICc 366

landscape. weightwin can also be more technically challenging, with users needing to 367

adjust starting values and optimisation settings (e.g., step size, optimisation method) to 368

find the global optimum (i.e. lowest value of ∆AICc). Such technical requirements may 369

limit the accessibility of the weightwin function to the general user. Additionally, 370

weightwin can only be used for testing mean climate, with no capacity to consider 371

other aggregate statistics. Therefore, whether one chooses to use weightwin or 372

slidingwin will depend on the aggregate statistic of interest, the level of detail desired, 373

and the user’s technical knowledge. 374

Ideally, we recommend the use of slidingwin and weightwin in conjunction to 375

improve our understanding of climate windows. The slidingwin approach can be used 376

to explore general trends in the climate data and broadly identify climate signals, 377

including circumstances where multiple climate signals are present. When climate 378

signals are detected using mean climate, the weightwin function can then provide 379

greater detail on the specific climate signals observed in the slidingwin approach. 380

2.5 Alternative approaches 381

As discussed above, a limitation of using weightwin is the inability to detect and 382

compare multiple climate signals in a single analysis. This issue is a necessary 383

consequence of the assumptions built into the Weibull and GEV functions, forcing us to 384

identify and analyse each climate signal separately. Although slidingwin improves 385

upon this issue somewhat by allowing for multiple signal detection, step-wise signal 386

comparison is still required. Yet multiple climate signals may be fairly common and the 387

ability to test and compare these simultaneously would be useful. 388

With advances in computing and statistics a number of data-driven methods to 389

tackle high-dimensional problems like climate analysis have become common, such as 390

machine learning, least absolute shrinkage and selection operator (LASSO) and 391

functional linear models using splines [12]. These alternative methods offer additional 392

flexibility compared to Weibull and GEV functions, by allowing for the detection of 393

multiple signals with a single analysis (e.g., [12]). Furthermore, they open up the 394

possibility of multi-dimensional climate window analysis, analysing multiple climate 395

variables at the same time, potentially improving upon the uni-dimensional analysis 396

currently employed in climwin. 397

Splines in particular may provide a suitable alternative for weighted window analysis, 398

as they are ideally suited for modelling a smooth function over a continuum (e.g., 399

time; [12,31]). In their work, Teller et al. [12] successfully apply a spline function to 400

assess climate signals, demonstrating the ability to detect multiple climate signals 401

within a single weight distribution. Encouragingly, the spline method was able to 402

outperform functions generated by random forest machine learning and LASSO 403

methods, especially at higher climatic resolution that will be common in climate window 404

analyses (e.g., weeks instead of months). The use of splines may reduce the limitations 405

currently encountered by weightwin, and incorporating splines is a priority for future 406

climwin versions. 407

However it should be noted that the effectiveness of spline functions, in comparison 408

to LASSO and machine learning, was found to vary depending on the characteristics of 409

the data used ( [12]; their Fig 6). Users of climwin will likely analyse a wide variety of 410

data types and seek to answer a broad range of questions. One should be aware that no 411

single method may be ideal for all questions, and it may be more appropriate to consider 412

a range of possible climate window methods and provide a mechanism to compare them. 413

By incorporating a range of alternative methods, such as sliding and weighted window 414

methods, climwin offers a broad toolbox for analysis of a wide range of questions. 415
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3 Assessing method performance 416

Although sliding and weighted window approaches can help us identify climate signals, 417

there has so far been limited systematic testing of the performance of these methods 418

and no way to assess the likelihood that a detected signal is genuine. While Teller et 419

al. [12] employed some method comparison using model correlation (i.e. the correlation 420

of observed parameter estimates with predicted estimates), we still possess little 421

knowledge on potential bias inherent to climate window analyses; the precision of the 422

climate window coefficients and model statistics (e.g., slope, R2, window duration); or 423

the rates of type I and type II errors. climwin includes mechanisms to test and 424

account for many of these potential errors and biases, providing a standard method for 425

testing current and future climate window approaches. 426

In this section, we will discuss two of these mechanisms, data randomisation and 427

k-fold cross-validation, and quantify their ability to reduce type I and II errors and R2
428

bias respectively. Although we focus here on only two potential biases, users should be 429

aware that biases in other metrics also occur (e.g., slope and window duration bias) and 430

the approaches to account for these biases may differ [7]. Ultimately, the mechanisms 431

one employs to account for potential bias will depend on which metric we most 432

accurately want to predict. 433

3.1 Data randomisation 434

To estimate the probability that a given result represents a false positive (type I error) 435

we can calculate the expected distribution of ∆AICc values in a data set where no 436

relationship exists between climate and our response variable. climwin provides the 437

function randwin, which randomises a given dataset (i.e. removes any climate signal) 438

and conducts a sliding window analysis to extract a value of ∆AICc. randwin reorders 439

the date variable in the original response data frame, allowing us to maintain any 440

relationship between the response variable and other covariates and maintaining 441

auto-correlation within the climate data while still removing any relationship between 442

climate and the response. Following this randomisation procedure, randwin will run a 443

climate window analysis on this new set of data from which we extract the ∆AICc of 444

the best model. 445

The randomisation process is repeated a number of times, defined by the user with 446

the parameter repeats. We recommend a large number of randomisations (e.g., 1,000) to 447

best estimate the distribution of ∆AICc values that could be obtained from a climate 448

window analysis on a dataset with no climate signal (∆AICcrand). We can then 449

determine the percentile of ∆AICcrand that exceeds the value of ∆AICc observed in our 450

analysis, allowing us to calculate the likelihood that a given ∆AICc value might occur 451

by chance (termed P∆AICc). P∆AICc can be obtained using the function pvalue. 452

Although conducting a large number of randomisations is the best method to guard 453

against false positives, running this many randomisation can be impractical. Many 454

analyses will use large datasets and/or complex models that can take multiple hours to 455

run. Running time will also be impacted by the range over which the analysis covers, 456

with the number of models run during a sliding window analysis increasing 457

approximately quadratically with analysis range (Eq. 1). 458

models =
range ∗ (range+ 1)

2
(1)

For a sliding window analysis covering a year (range = c(365, 0)) climwin will 459

fit over 67,000 models. 460
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Consequently, carrying out 1,000 or even 100 randomisations may simply take too 461

long for many users. Yet it is still important that we are able to protect against the 462

possibility of false positives. As an alternative, climwin includes a metric that can be 463

used to estimate the probability of false positives with a limited number of 464

randomisations (e.g., 5 - 10). 465

To empirically derive an alternative metric, we analysed a range of simulated 466

datasets where the occurrence of a real signal was known. We generated groups of 2,000 467

datasets, each with a range of sample sizes (10, 20, 30, 40, or 47 datapoints) and levels 468

of climate signal strength (climate signals with an R2 that was very high [0.80], high 469

[0.40], moderate [0.20], or where no signal was present). Our simulated datasets were 470

intentionally small, which allowed us to derive a potential metric that is able to function 471

well in challenging situations. Many climate analyses will use datasets with many more 472

data points by employing temporal and spatial replication. The performance of the 473

metric will often be much better in these circumstances. 474

We assigned each dataset a binary value (SignalTrue) depending on whether it 475

contained a real signal (1) or no signal (0). For every dataset, we then ran a full 476

slidingwin analysis and extracted metrics for the best model, here after termed the 477

observed result (R2, sample size, ∆AICc, and the percentage of models within the 95% 478

confidence set [C ]). In addition, we ran each dataset either with k-fold cross-validation 479

(with k = 10 folds; see Section 3.2) or without. In total, we tested 80,000 different 480

datasets. For each of these datasets we then used randwin, with repeats = 5, to 481

determine the median value of ∆AICc and C from randomised data. From this we 482

calculated two new metrics: 483

∆D = ∆AICcobserved −median(∆AICc5 randomizations) (2)

∆C = Cobserved −median(C5 randomizations) (3)

We divided our simulation results in half to generate a training and test dataset that 484

we could use to calculate our new metric. We expected that the effectiveness of ∆D and 485

∆C would vary with both sample size and the use of cross-validation. We therefore 486

divided our training dataset again to separate those datasets that used cross-validation 487

and those that didn’t. For each of these two training datasets we then fitted two 488

potential models: 489

Logit(SignalTrue) ∼ β0 + β1∆D + β2N + β3∆D ∗N (4)

Logit(SignalTrue) ∼ β0 + β1∆C + β2N + β3∆C ∗N (5)

where N is the sample size of the dataset used to calculated the values of ∆C and 490

∆D. 491

Both with and without cross-validation, Eq. 5 was clearly the best supported 492

(∆AICc < -2,500), suggesting that ∆C is the best metric to determine the likelihood of 493

a real signal. Therefore, we determine the likelihood that a given value of ∆AICc has 494

occurred by chance with our new metric (PC) to be: 495

PC =
1

1 + exp(−0.54 + 1.95 ∗ ∆C + 0.08 ∗N + 0.31 ∗ ∆C ∗N)
(6)
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for datasets analysed without the use of cross-validation, and 496

PC =
1

1 + exp(−0.62 + 11.56 ∗ ∆C + 0.06 ∗N + 6.88 ∗ ∆C ∗N)
(7)

for datasets analysed with the use of 10-fold cross-validation. 497

Finally, we used our test dataset to determine the rate of misclassification for our 498

new metric, PC. Specifically, we calculated the rate of false negatives in datasets where 499

we knew a signal was present and the rate of false positives in those datasets where no 500

signal existed. 501

PC was able to provide a good estimate of the reliability of a signal, with average 502

rates of misclassification generally low (Fig 5; mean false negative rate = 0.10, mean 503

false positive rate = 0.17). The effectiveness of PC was strongly influenced by both 504

sample size (Fig 5) and climate signal strength (Fig 6), with misclassification rates 505

dropping well below the overall average when sample size and signal strength increased 506

(e.g., false negative rate = 0.02 when N = 30, R2 = 0.4; Fig 6). Sample size also had a 507

strong influence on false positive rates which decreased with increasing sample size (Fig 508

5b). These results are not necessarily surprising as misclassification is common when 509

dealing with weak effects and small sample sizes, but it highlights the importance of 510

using large sample sizes when conducting these types of exploratory analyses and the 511

need for caution when interpreting results from small datasets. 512

Fig 5. Relationship between sample size (N ) and misclassification rate of
climate signals. Misclassification rate calculated using the metric PC both with
10-fold cross-validation (dashed line) and without cross-validation (solid line). Metric
tested on datasets where a) a climate signal is present and b) a climate signal is missing.
Note that misclassification in a) denotes false negatives while in b) it denotes false
positives.

Fig 6. Relationship between climate signal strength (R2) and
misclassification rate of climate signals. Misclassification rate (false negative)
calculated using the metric PC at sample sizes of 10 (solid line), 30 (dashed line) and 47
(dotted line) with a) no cross-validation and b) 10-fold cross-validation.

For this exercise, we considered a signal to be identified when PC < 0.5 (i.e. when 513

PC calculated that there was a better than even chance that a given signal was real). 514

The point that one chooses to distinguish between real and false signals will ultimately 515

involve a trade-off between false positive and negative rates. A lower more conservative 516

cut-off would reduce the chance of false positives but simultaneously increase false 517

negative rates. As an alternative to cut-off values, we encourage the reporting of the full 518

values of PC and P∆AICc as a means of documenting the confidence in a given result, 519

rather than trying to classify signals as either real or not. 520

3.2 k-fold cross-validation 521

While PC and P∆AICc can help test the rates of false positives and negatives, they give 522

us no indication of the reliability of the parameter estimates and model statistics 523

derived from our best model (e.g., R2, slope, window duration). k-fold cross-validation, 524

provided in slidingwin, can be a key tool to help account for any potential biases in 525

these estimates that might arise from overfitting [32]. k-fold cross-validation involves 526

the division of a dataset into k training datasets (of length N − N
k ) and k test datasets 527
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(of length N
k , with k ≤ N), where N represents sample size. Once these training and 528

test datasets are partitioned, slidingwin fits each climate model to one of the training 529

datasets and its predictive accuracy is then tested on the corresponding test dataset. To 530

measure predictive accuracy, mean square error (MSE) of the training fit to the test 531

data is used to calculate the AICc: 532

AICcmodel = N ∗ log(MSE) + 2ρ+
2ρ(ρ+ 1)

N − ρ− 1
(8)

(where ρ is the number of estimated model parameters) and subsequently compared 533

to the AICc of the baseline model, also determined using the training dataset, to obtain 534

∆AICcmodel. This procedure is repeated k times (once for each test dataset), after 535

which the ∆AICcmodel is averaged across all folds to obtain the cross-validated 536

∆AICcmodel. The total number of folds used, is set by the user with the parameter k in 537

the slidingwin function. 538

Cross-validation is used in slidingwin to improve the ∆AICc predictions of each 539

climate window, the out-of-sample ∆AICc, which is then used to improve the model 540

selection process. Each climate window is ultimately fitted to the full dataset, so all 541

other parameter estimates and model statistics (e.g., R2) have not been cross-validated. 542

However, our more conservative model-selection process is able to greatly reduce the 543

bias in the estimation of climate signal R2, reducing the inherent optimistic bias 544

observed in climate window analyses conducted without cross-validation (Fig 7). 545

Fig 7. Performance of slidingwin in estimating the true R2 value of a
climate signal. Performance determined at varying sample sizes with very high R2

(0.80; top left), high R2 (0.40; top right), and moderate R2 (0.20; bottom) both without
cross-validation (black) and with 10-fold cross-validation (white). Points represent
median R2 estimates from 2,000 simulated datasets. Error bars represent inter-quartile
range. The horizontal dashed line shows the true value of R2 used to generate the
simulated datasets.

To determine the optimum value of k for R2 estimation, we generated groups of 546

1,200 datasets each with a known climate signal (R2 = 0.22) and varying sample sizes 547

(10, 20, 30, 40, or 47 datapoints). For each sample size group, slidingwin analysis was 548

conducted varying the value of k (0, 2, 4, 6, 8, and 10-folds), so that 200 datasets were 549

tested for each level of sample size and k-folds. Because k cannot exceed N, k = 10 was 550

used as the largest number of folds. We found that increasing the number of folds 551

consistently improved estimation of R2 across all sample sizes, with k = 10 providing 552

the best estimate of R2 (Fig 8). 553

Fig 8. Effect of cross-validation folds (k) on the median R2 estimation of
k-fold cross-validated slidingwin analysis. Data generated using 200 simulated
datasets. The horizontal dashed line shows the true value of R2 used to generate the
simulated datasets (R2 = 0.22). R2 was estimated using 0, 2, 4, 6, 8, or 10-folds (black
to white respectively). Sample sizes of 10, 20, 30, 40, and 47 were used. Error bars
represent inter-quartile range.

Although cross-validation greatly improves R2 estimation, users should be aware 554

that R2 bias is not completely removed by cross-validation and the goodness-of-fit of 555

the best model from slidingwin may still be overly optimistic. Additionally, like data 556

randomisation, k-fold cross-validation can substantially increase the computational time 557

of slidingwin, and users will need to consider a trade-off between reducing R2 bias 558

and analysis time. 559
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While data randomisation and k-fold cross-validation improve our detection of 560

climate signals and our estimates of climate signal R2, neither of these methods can be 561

reliably used to simultaneously combat all potential biases in climate window analysis. 562

For example, although cross-validation can effectively reduce bias in R2 it will also 563

increase false positive rates, particularly at low sample sizes (Fig 5b). Ultimately, 564

therefore, the methods chosen to reduce bias in climate window analysis will differ 565

depending on the particular parameters of interest. 566

4 Worked examples 567

This section provides examples applying the climwin package to real data. We use the 568

Chaff and ChaffClim datasets, included with the package, to run both a sliding 569

window and weighted window analysis. As part of this analysis, we demonstrate the use 570

of multi-model inferencing to determine the median start and end time of a climate 571

signal and conduct model averaging on parameter estimates. In addition, we conduct 572

k-fold cross validation and data randomisation to determine PC and P∆AICc. 573

4.1 Analysis with slidingwin 574

Our analysis of the Chaff dataset focuses on the impact of mean temperature on the 575

annual average laying date of the common chaffinch (Fringilla coelebs) over a 47 year 576

period (1966-2012; with data provided by the British Trust for Ornithology). We first 577

carry out a sliding window analysis on our data using slidingwin. 578

Function syntax 579

To begin, we set the structure of our baseline model using the base lm function. 580

R> baseline = lm(Laydate ~ 1, data = Chaff) 581

Although we use a simple baseline model for illustration, it is possible to include 582

covariates and random effects terms into the baseline model, as well as using different 583

model functions (e.g., lmer, coxph). We next specify the climatic variable of interest 584

using the parameter xvar (xvar = list(Temp = Chaff$Temp)), and include both the 585

climate and biological date data with the parameters cdate and bdate 586

(cdate = ChaffClim$Date, bate = Chaff$Date). As our Chaff dataset contains no 587

within-year variation, we conduct our analysis using absolute climate windows 588

(type = "absolute") with a reference day of April 24th (refday = c(24, 4)), 589

equivalent to the earliest biological record in our data. 590

As we have no a priori knowledge on when a climate signal might occur, we test all 591

possible climate windows over the period of a year (range = c(365, 0)), considering 592

the linear effect (func = "lin") of mean temperature (stat = "mean"). With all 593

these elements, our final function is shown below: 594

R> SLIDING <- slidingwin(baseline = lm(Laydate ~ 1, data = Chaff), 595

xvar = list(Temp = ChaffClim$Temp), 596

cdate = ChaffClim$Date, bdate = Chaff$Date, 597

type = "absolute", refday = c(24, 4), 598

range = c(365, 0), func = "lin", stat = "mean") 599

By default, slidingwin will assume daily climate data is used to test climate 600

windows. However, in cases where the resolution of climate data is coarser, users can 601

alter the parameter cinterval to use either weeks or months. 602
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Results 603

The object SLIDING is a list item with two separate elements. We can firstly examine a 604

summary of our results using the combos item, a truncated version of which can be see 605

in Table 2. 606

R> SLIDING$combos 607

Table 2. Output of combos item from an absolute sliding window analysis.

response climate type stat func ∆AICc Start End betaL
Laydate Temp absolute mean lin -84.01 46 0 -3.86

Testing the relationship between mean temperature and laying date in the common
chaffinch (Fringilla coelebs) using a reference day April 24th.

The combos item provides a summary of our sliding window analysis and a brief 608

overview of the best fitted climate window, showing us the ∆AICc, start and end time, 609

and slope of the best window. It should be noted that climwin allows for multiple 610

hypotheses to be tested in a single function (e.g., effect of mean and maximum 611

temperature), in which case the combos item will provide a summary of all tested 612

hypotheses. For this example, we can see that the best climate window detected in our 613

analysis falls 46-0 days before our reference date (April 24th), equivalent to mean 614

temperature between March 9th and April 24th. 615

We can look at the results further in the full model selection dataset, a truncated 616

version of which can be seen in Table 3. 617

R> head(SLIDING[[1]]$Dataset) 618

Table 3. Top five climate windows detected using slidingwin with an absolute
window approach.

Window start Window end ∆AICc Temperature β (days/oC) Standard error wi

46 0 -84.01 -3.86 0.25 0.06
47 0 -83.46 -3.85 0.25 0.05
74 0 -83.41 -3.79 0.25 0.05
75 0 -83.20 -3.78 0.25 0.04
73 0 -83.13 -3.80 0.25 0.04

Window start and end time are measured in days before April 24th.

In Table 3 we can see that there are a number of climate windows that exhibit 619

similar model weights (wi) to our best window. To understand how these other windows 620

influence our result we can determine the median window size of the 95% confidence set 621

with our function medwin and calculate model averaged parameter estimates for the 622

same confidence set. 623

R> medwin(SLIDING[[1]]$Dataset) 624

R> dataset <- SLIDING[[1]]$Dataset 625

R> ConfidenceSet <- dataset[which(cumsum(dataset$ModWeight) <= 0.95), ] 626

R> sum(ConfidenceSet$ModelBeta*ConfidenceSet$ModWeight) 627
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Median window size from the 95% confidence set is slightly wider than our best 628

window (73 - 1; February 11th - April 23rd), although the median and best window still 629

contained over 60% of the same days. The best window shows a strongly negative 630

relationship between temperature and laying date (β = -3.86 days/oC, 95% CI = -4.35 - 631

-3.37; Table 3), very similar to the model averaged relationship (β = -3.60 days/oC). 632

Multi-model inferencing tells us that the average laying date of F. coelebs advances by 633

3.6 days for every 1oC increase in mean temperature between February 11th and April 634

23rd. 635

Although these results point to the presence of a strong climate signal in F. coelebs 636

laying date, we cannot be sure that this result has not occurred due to chance. To test 637

this possibility, we next run the randomisation procedure using the function randwin, 638

with repeats = 5. 639

R> SLIDING.RAND <- randwin(repeats = 5, 640

baseline = lm(Laydate ~ 1, data = Chaff), 641

xvar = list(Temp = ChaffClim$Temp), 642

cdate = ChaffClim$Date, bdate = Chaff$Date, 643

type = "absolute", refday = c(24, 4), 644

range = c(365, 0), func = "lin", stat = "mean") 645

The output of the randwin function can then be used to run the function pvalue to 646

return a value of PC. 647

R> pvalue(dataset = SLIDING[[1]]$Dataset, 648

datasetrand = SLIDING.RAND[[1]], metric = "C", sample.size = 47) 649

From this function, we can conclude that the likelihood of observing such a climate 650

signal by chance is very small (PC = 5.89e-16). 651

Although this provides us with information on the best model, it does not tell us 652

whether multiple peaks may be present. Our final step should therefore be to examine 653

the ∆AICc and model weight landscape (Fig 9). In this case, there is only a single clear 654

∆AICc peak (red; Fig 9a), which is mirrored in the small size of the confidence set (C ) 655

(Fig 9b). We can therefore discount the possibility of multiple peaks. 656

Fig 9. Output of absolute sliding window analysis. Analysis testing the
relationship between mean temperature and laying date in the common chaffinch
(Fringilla coelebs) using a reference day April 24th. (Left) Heat map of ∆AICc (AICc of
null model - AICc of climate model) for all fitted climate windows. (Right) 95%, 50%
and 25% confidence sets for all fitted climate windows. The best fitted climate window
(lowest value of ∆AICc) is circled. Plots generated using plotdelta and plotweights
functions.

Using k-fold cross-validation 657

Above, we have focused on estimating the window duration and slope using multi-model 658

inferencing. However, in other circumstances we may be more interested in determining 659

the strength of the detected climate signal (R2). As R2 estimations using slidingwin 660

can be biased at low sample size and/or effect size, k-fold cross-validation should be 661

employed to improve the accuracy of our R2 estimate. To conduct our slidingwin 662

analysis with k-fold cross-validation we incorporate the parameter k into the 663

slidingwin function (k = 10). 664
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R> SLIDINGK <- slidingwin(baseline = lm(Laydate ~ 1, data = Chaff), 665

xvar = list(Temp = ChaffClim$Temp), 666

cdate = ChaffClim$Date, bdate = Chaff$Date, 667

type = "absolute", refday = c(24, 4), 668

range = c(365, 0), func = "lin", stat = "mean", 669

k = 10) 670

Looking at the combos object, we can see that the best model selected using 671

cross-validation has a very similar window duration and slope to that calculated using 672

multi-model inferencing in our first sliding window analysis (Window duration: 75 - 0, 673

February 9th - April 24th; window slope: -3.78 days/oC, 95% CI = -4.27 - -3.30; Table 674

4). 675

R> SLIDINGK$combos 676

Table 4. Output of combos item from an absolute sliding window analysis.

response climate type stat func ∆AICc start end betaL
Laydate Temp absolute mean lin -11.07 75 0 -3.78

Testing the relationship between mean temperature and laying date in the common
chaffinch (Fringilla coelebs) using a reference day April 24th and 10-fold cross-validation.

Although window duration and slope are similar to our previous analysis, the value 677

of ∆AICc is much less negative, due to the conservative nature of ∆AICc calculation 678

when using cross-validation (i.e. ∆AICc is calculated on a smaller test dataset). This 679

more conservative ∆AICc estimation will also lead to much larger values of C (Fig 10), 680

which will often remove the possibility for users to conduct multi-model inferencing. 681

However, even though the model weight landscape shows less compelling evidence of a 682

climate signal, by running randwin with cross-validation and calculating PC, we find 683

that the likelihood of getting such a value of C by chance when using 10-fold 684

cross-validation is still very small (PC = 1.10e-11). 685

Fig 10. Heat-map of 95%, 50% and 25% confidence sets for an absolute
sliding window analysis. Analysis testing the relationship between mean
temperature and laying date in the common chaffinch (Fringilla coelebs) using a
reference day April 24th and 10-fold cross-validation. Shading levels represent 95%, 50%
and 25% confidence sets for all fitted climate windows. Plots generated using the
plotweights functions.

Once we are confident in our climate signal result we can then examine the summary 686

of the best model to gain an estimate of strength for the climate signal. 687

R> summary(SLIDINGK[[1]]$BestModel) 688

In this case, the strength of the climate signal detected in F. coelebs laying date is 689

particularly strong (R2 = 0.83). 690

4.2 Analysis with weightwin 691

Using slidingwin we have been able to identify a negative relationship between mean 692

temperature and F. coelebs laying date. Yet we have so far assumed a uniform weight 693

PLOS 18/23

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 14, 2016. ; https://doi.org/10.1101/069427doi: bioRxiv preprint 

https://doi.org/10.1101/069427
http://creativecommons.org/licenses/by-nc/4.0/


distribution when calculating mean temperature. To gain more insight into the detected 694

climate signal, we can next run a weighted window analysis using weightwin. 695

Firstly, we want to determine the best starting distribution to use for the weightwin 696

optimisation procedure, using the included explore function. We can experiment with 697

the shape, scale and location parameters for a Weibull distribution to determine a 698

reasonable starting weight distribution for our optimisation procedure (Fig 11). 699

R> explore(shape = 3, scale = 0.2, loc = 0, weightfunc = "W") 700

Fig 11. Weight distribution calculated using a Weibull probability
distribution function. Distribution shows the relative importance of climate over
time (days). (Left) Values of shape, scale and location used as starting parameters for
weighted window analysis. (Right) Output from weightwin analysis showing the relative
influence of temperature on the average annual laying date of the common chaffinch
(Fringilla coelebs). Weight distribution shows that temperature has the strongest
influence on laying date immediately before the reference date (April 24th) but slowly
decays as we move further into the past. Plots created using the function explore.

Most of the parameter values will be the same between weightwin and slidingwin, 701

but we must provide additional information on the type of probability distribution 702

function being used (in this case Weibull, weightfunc = "W") and the starting values 703

of our three optimisation parameters, taken from the explore function 704

(par = c(3, 0.2, 0)). Additionally, both the parameters k and stat are not used in 705

weightwin. 706

R> WEIGHT <- weightwin(baseline = lm(Laydate ~ 1, data = Chaff), 707

xvar = list(Temp = ChaffClim$Temp), 708

cdate = ChaffClim$Date, bdate = Chaff$Date, 709

type = "absolute", refday = c(24, 4), 710

range = c(365, 0), func = "lin", 711

weightfunc = "W", par = c(3, 0.2, 0)) 712

In contrast to the uniform distribution assumed by slidingwin, our analysis with 713

weightwin returned a rapidly decaying weight distribution, with temperature having 714

the largest impact on laying date close to April 24th and rapidly declining further into 715

the past (Fig 11). Furthermore, by examining the WeightedOutput item generated by 716

weightwin, we can see that the explanatory power of this weight distribution (∆AICc) 717

is much greater than that generated with the uniform distribution assumption in 718

slidingwin (-84.01 v. -100.42; Table 5). 719

R> WEIGHT$WeightedOutput 720

Table 5. Output of an optimised weight distribution (Weibull function)
testing the relative influence of temperature on the laying date of the
common chaffinch (Fringilla coelebs).

∆AICc shape scale location model β standard error
-100.42 2.99 0.32 -0.26 -4.28 0.23

Once again, however, we cannot be sure that such a result could not occur by chance 721

and so we can compare our result to those from a randomised dataset using randwin. 722
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In this case, however, the smaller computational time required to run weightwin allows 723

us to increase repeats to 1,000. Note, however, that we must specify we are running a 724

weighted window analysis with the argument window = "Weighted". 725

R> WEIGHT.RAND <- randwin(repeats = 1000, window = "weighted", 726

baseline = lm(Laydate ~ 1, data = Chaff), 727

xvar = list(Temp = ChaffClim$Temp), 728

cdate = ChaffClim$Date, bdate = Chaff$Date, 729

type = "absolute", refday = c(24, 4), 730

range = c(365, 0), func = "lin", 731

weightfunc = "W", par = c(3, 0.2, 0)) 732

With 1,000 randomisations, we are able to use the more reliable P∆AICc to estimate 733

the probability that we would observe such a largely negative value of ∆AICc by chance. 734

R> pvalue(dataset = WEIGHT$WeightedOutput, 735

datasetrand = WEIGHT.RAND[[1]], metric = "AIC") 736

Once again, we find that the probability of observing such a weight distribution by 737

chance is very small (P∆AICc < 0.001). Therefore, our analysis using climwin provides 738

good evidence that laying date in F. coelebs is strongly impacted by temperature over 739

late winter and early spring (February - April) with a decaying relationship over time. 740

4.3 Replication 741

The worked examples above can be replicated using functions and data included with 742

climwin. The full release version of climwin (version 1.0.0) is available from the 743

Comprehensive R Archive Network at 744

http://CRAN.R-project.org/package=climwin. The current pre-release version of 745

the package can be accessed on GitHub https://github.com/LiamDBailey/climwin. 746

The worked examples above use the Chaff and ChaffClim datasets included with the 747

full release version of the package. All code was written by Liam D. Bailey and Martijn 748

van de Pol and can be used freely according to the General Public License (GPL), 749

version 2. 750

5 Conclusion 751

The way in which previous research has tested and compared the effects of climate has 752

tended to require arbitrary a priori selection of a limited number of climate windows, 753

curtailing our ability to make meaningful conclusions. Climate window analyses, such as 754

sliding and weighted window analyses, improve on these methods by reducing the need 755

for a priori assumptions. Yet until now, we have lacked a standardised and accessible 756

way in which to carry out such analyses, nor any way to assess method performance. 757

We introduced the R package climwin, which provides an easy and versatile toolbox 758

for analysing the impacts of climate using a number of potential methods and includes 759

metrics to assess the performance of these methods. This toolbox will allow for the 760

greater utilisation of more sophisticated climate analyses within the general scientific 761

community and consequently improve our understanding of the impacts of climate. 762
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used to generate Figures 5 - 7. 765

S2 File. Simulated data used to test optimum cross-validation folds. 766
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