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Abstract

The population-scaled mutation rate, 6, is informative on
the effective population size and is thus widely used in
population genetics. We show that for two sequences and
n unlinked loci, Tajima’s estimator (4), which is the aver-
age number of pairwise differences, is not consistent and
therefore its variance does not vanish even as n — oo.
The non-zero variance of 0 results from a (weak) corre-
lation between coalescence times even at unlinked loci,
which, in turn, is due to the underlying fixed pedigree
shared by all genealogies. We derive the correlation coeffi-
cient under a diploid, discrete-time, Wright-Fisher model,
and we also derive a simple, closed-form lower bound. We
also obtain empirical estimates of the correlation of co-
alescence times under demographic models inspired by
large-scale human genealogies. While the effect we de-

scribe is small (Var [é} /62 ~ O (N;1)), it is important
to recognize this feature of statistical population genet-
ics, which runs counter to commonly held notions about
unlinked loci.

Keywords. Coalescent Theory; Recombination; Het-
erozygosity; Effective Population Size; Pedigrees; Ge-
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1 Introduction

The population mutation rate, 6, is defined as 4N.u,
where N, is the effective population size and p is the
mutation rate per locus per generation. Two classic es-
timators were developed for 6, Watterson’s (based on
the number of segregating sites (Watterson, 1975)) and
Tajima’s (based on the average number of pairwise dif-
ferences (Tajima, 1983, 1989)). For a single pair of se-
quences, both estimators are identical (denoted here as
9) and equal to the number of differences between the
sequences.

Increasing the number of sampled individuals has lim-
ited ability to improve these estimates of 6, because
shared ancestry reduces the number of independent
branches on which mutations can arise (Rosenberg and
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Nordborg, 2002). Felsenstein (2006) showed that the vari-
ance of maximum likelihood estimates of 6 decreases ap-
proximately logarithmically with the number of individu-
als sampled. In contrast, the variance decreases inversely
with the number of independent loci. Thus, to increase
the accuracy of estimates of 6, it is generally more effec-
tive to increase the number of independent loci than the
sample size at each locus (see also e.g., (Pluzhnikov and
Donnelly, 1996) and references within).

Consider a set of n unlinked loci located on different
(non-homologous) chromosomes. We show here that even
as n — 00, the variance of the resulting estimate of 6 does
not converge to zero, in contrast to what we may have
naively assumed. This behavior results from the fact that
coalescence times, even at unlinked loci, are in fact weakly
correlated, due to the sharing the same fixed underlying
pedigree across all genealogies at all loci (Wakeley et al.,
2012). By conditioning on the number of shared genealog-
ical common ancestors, we derive a simple lower bound,
as a function of N,, on the variance of 6.

Unlinked loci may also be sampled from the same chro-
mosome, separated by an infinitely high recombination
rate. The correlation of coalescence times in such a case
is higher, as the two loci may travel together for the first
few generations. Therefore, the extent of the correlation,
and thereby, the variance of é7 also depend on the sam-
pling configuration. We derive the correlation coefficient
analytically, as a function of the configuration and the
effective population size, using a diploid discrete time
Wright-Fisher model (DDTWTF). This model is an exten-
sion of the haploid DTWEF model, previously advocated
by Bhaskar et al. (2014) for the study of large samples
from finite populations.

Our results for the variance of 6 were obtained under
the Wright-Fisher demographic model. To shed light on
the variance of § under more realistic demographic mod-
els, we run simulations based on real, large-scale human
genealogical data (Erlich, 2016). The pedigrees inspired
by different human populations differ from each other and
from the Wright Fisher pedigrees in a number of ways,
for example in the variance of the relatedness of any two
randomly chosen individuals. These differences lead to
differences in the variance of 8 for each population, even
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if they have the same effective population size.

2 The relation of the variance of ¢
to the correlation of the coales-
cence times

For a sample of size two at n loci, the estimator of 6 can
be expressed as

. 1 <. &
Oy =—>_0; (1)
=1

where él is the number of differences at locus i. If we
assume the loci are exchangeable, we have:

R Var [éz} _ o
Var [e(n)] - n Cov [9 @} it g (2)
n n
Under the standard coalescent model (Kingman, 1982),
0, is Poisson distributed with mean 2uT;, where T; is the
time until coalescence at locus ¢ in generations and u is
the mutation rate per locus per generation. Using the law
of total covariance,

Cov |:éz, éj} =E [COV |:éi, éleZ,TJ}}
+ Cov |:E [é2|:ru T]:| ,E |:9AJ|TZ, T]:|:|
= 4p*Cov [T}, Ty , (3)
since conditional on T; and T}, éi and éj are independent.
Thus, for infinitely many sites,
Var {HA} = lim Var [é(n)} = 4u*Cov [T}, Ty].  (4)

n—o0

Because T; is distributed exponentially with rate
1/(2N,) under the standard coalescent model (Kingman,
1982; Tajima, 1983), Var [T;] = 4N2. Since Cov [T}, T;] =
Corr [T;, T;] x Var [T;], we can write:

Var [é} = (4uN.)*Corr [T}, T}]

= 6?Corr [T}, T}] (5)
and we focus henceforth on the correlation of 7; and Tj.
Studying the correlation instead of the covariance allows
us, later on, to visually compare the results across differ-
ent effective population sizes.

We note that the variance of 6 is calculated over in-
dependent repeats over the entire evolutionary process,
including the generation of the population pedigree (fam-
ily relationships between all individuals), as well as the
gene genealogies. We elaborate below on this important
point (sections 3, 5, and the Discussion).

3 Modeling the effect of the
shared pedigree

In this section, we provide an intuitive derivation of the
role of the shared underlying pedigree in generating a
non-zero variance of 6.

3.1 Inconsistency of f due to the under-
lying pedigree

We begin with a general analysis of the inconsistency of
the estimator of 8. The value of # is a function of the
pedigree that connects the two individuals in our sam-
ple, where the pedigree itself is randomly drawn from a
demographic model (e.g., the Wright-Fisher model) with
parameter 6. If the sampled individuals happen to be
more closely related than average, then  will tend to un-
derestimate the true value of §. The opposite is true if the
sampled individuals are less closely related than average.

Let § be the probability that a randomly sampled pair
of individuals is very closely related, for example as full
siblings. Let ¢ be some arbitrary value smaller than the
difference between 6 and é*, where 6* is estimated from
a sample of full siblings. By sampling sufficiently many
loci (or gene genealogies), we could theoretically infer the
common ancestry of the sampled pair to any desired ac-
curacy. However, this would not give information about
the pedigree beyond the ancestry of the sampled pair,
and as the sampled pair is related more closely than av-
erage, 6* would underestimate 0. For this fixed e and
6, we therefore cannot find n large enough such that
Prob(|é(n) — 0] > €) < 6. This implies that there is no
convergence in probability, which means that this esti-
mate of 6 is not consistent. In turn, this inconsistency
implies that the variance of é(n) does not tend to 0 as n
increases.

3.2 A lower bound on the limiting vari-
ance

Next, we derive an intuitive lower bound on the lim-
iting variance of 6 for a sample of two loci on non-
homologous chromosomes, where according to Eq. (4),
we only need the covariances of T; and 7). To compute
these covariances, we condition on a vector of variables
{z} = x1, %2, ..., xg, where x4 is the number of shared an-
cestors g generations ago. The vector {z} is, in a sense, a
lower dimensional representation of the shared pedigree,
and can be used to compute the probability of coalescence
at each generation. For example, if 21 = 2 (full siblings),
then all loci have the same 25% probability of coalesc-
ing within a single generation. We only consider the first
G = log, N, generations, where N, is the (constant) effec-
tive population size, as it was shown that the effect of the
shared pedigree is important only up to ~ logy N, gener-
ations (Wakeley et al., 2012; Derrida et al., 2000; Chang,
1999). Beyond that time, almost all ancestors are shared,
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and the distribution of the contribution of each ancestor
to the present day sample is approximately stationary.
By the law of total covariance, we have:

Cov [T}, Tj] = E4) [Cov [T3, Tj|[{x}]]

+ Coviey [E[Ti{z}], E[T;{=}].  (6)
E{qy [Cov [T3, Tj|{z}]] ~ 0, because conditioning on the

pedigree, the loci are independently segregating. There-
fore:

Cov [TZ, Tj} = COV{x} [E [Tl|{$}] ,E
= Vargy [E[Ti[{z}]].- (7)

To compute E [T;|{z}], we condition on whether coales-
cence has occurred in the first G generations. If it has not
occurred, we assume that the process then behaves just
as the standard coalescent, or E [T;|no coal] = 2N, + G.

We can write:
E[Ti{z}] = 2N+ G)P
G

+) " gP (coal at g|{z}).

g=1

[T5[{z}]]

(no coal by G|{z})

(®)

As computed in Wakeley et al. (2012), the coalescence
probability is roughly given by P (coal at g|{z}) =
a(g) TIS2 1= ag))], alg) = xy/2%9!
and Prob{no coal by G|{z}} = H?_l [1—ag)].

Since a(g) <« 1 (see below), we approximate
P (coal at g|{z}) =~ «a(g) and P (no coal by G|{z}) =

1-— Zngl a(g). Thus,

where

G
E[Ti{z}] = 2N. + G) = > (2N +G —g)alg) (9)
g=1

and

G

ar | Y (2N + G -
g=1

¢ x

Z 22;1—1] !

g=1

Var oy [E[T;[{x}] ~

~ 4N?2Var

since G < N,.

In Supplementary Material Section S1, we provide a nu-
merical method to calculate the exact covariances of the
z4’s under a diploid, discrete-time Wright-Fisher model
(see the next section for definitions). To proceed here, we
assume that the z,’s are independent. While the x,’s are
clearly positively correlated, the independence assump-
tion allows us to derive a lower bound on Cov [T}, Tj],
and thereby, the variance of 6. Under that assumption,
Eq. (10) becomes

Var [z,4]
249 7

G
Vargy [E[Til{e}]] 2 N2 ) (11)

g=1

To compute the variance of x4, we note that the distri-
bution of z, is roughly hypergeometric with parameters
29 potential successes (the number of ancestors of one
individual), N, — 29 potential failures (all individuals in
the populatlon who are not ancestors of that individual),
and 29 draws (the number of ancestors of the other indi-
vidual), giving Var [z,] ~ 229(N, — 29)? /N3. We provide
the exact distribution of the variance of x4, in Supplemen-
tary Material Section S1. Substituting the hypergeomet-
ric variance in Eq. (11),

1 & - 29
Varey [E[Til{z}H] 2 Z (12)
e g:1
Using G = logy N, we have 25:1 (N"{# =
3log N,
It 28 + ) €y
using Eq. (7),
N,
Cov (5, T)) 2 2 (13)
Using Eq. (4) and 6 = 4uN,, we finally obtain
92
Var {9} R TN (14)

In summary, the variance due to the shared pedigree is
of order 62?/N., independently of the number of regions
n. Thus, as argued above, even for a large number of
chromosomes, the variance of 8 does not decay to zero,
but rather to a constant that depends on the effective
population size.

To intuitively explain the non-zero variance, we note
that the pedigree itself is the product of a stochastic
model (Wright-Fisher or another). Thus, even a fully
specified pedigree, as obtained by sampling infinitely
many loci, leaves uncertainty regarding the value of 6. In
other words, the uncertainty in the estimate of 6 results
from having at hand only a single instance of a pedigree
generated from the stochastic model governed by that pa-
rameter (see also Ralph (2015)).

4 Exact results for the correlation
of the coalescence times at un-

linked loci

In this section, we provide an exact derivation of the
correlation of coalescence times at unlinked loci under a
diploid, discrete-time, Wright-Fisher model. Further, we
consider multiple sampling configurations for those loci,
as explained below.

4.1 The sampling configurations

To compute the correlation of coalescence times at a pair
of unlinked loci, we first note that there are multiple ways
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by which two such loci can be sampled in two individu-
als (or sequences). The six sampling configurations are
shown in Figure 1. Four of these configurations involve
a sample of two individuals, and we start by describing
these.

In the first configuration, the loci are located effectively
infinitely far apart on the same chromosome in both in-
dividuals. This means that these loci will be coupled for
the first few generations, until separated by a recombina-
tion event. Once separated, they may later back-coalesce
onto the same chromosome, and again resume percolating
together through the pedigree for a period of time that is
expected to be short. (In the event of back-coalescence,
two ancestral loci not sharing genetic material come to
be located on the same chromosome, which essentially
undoes the effect of recombination.) In the second con-
figuration, the loci are on different homologous chromo-
somes, meaning they will necessarily be present in differ-
ent parents in the immediately preceding generation, as
each chromosome was inherited from a different parent.
It is then also possible for them to back-coalesce in later
generations. The third configuration is a mixture of the
first two: the loci are located on the same chromosome in
one individual, and on homologous chromosomes in the
other. In the fourth configuration, the loci are sampled
from non-homologous chromosomes in both individuals.
This configuration is different from the previous three in
that back-coalescence is not possible.

In the fifth and sixth sampling configurations, all se-
quences are sampled from a single individual. This is
common in practice, as measuring the heterozygosity in a
single individual does not require haplotype phasing. In
configuration 5, we sample two loci from the same chro-
mosome (and their pairs from the homologous chromo-
some). Given that each homologous chromosome must
originate from a different parent, in one generation the
sampled loci will transition to configuration 1 with prob-
ability 0.25, to configuration 2 with probability 0.25, and
to sampling configuration 3 with probability 0.5. In sam-
pling configuration 6, the sampled loci are on different
(non-homologous) chromosomes. This configuration is re-
duced in one generation to sampling configuration 4, and
therefore has the same correlation properties as that con-
figuration.

4.2 The DDTWF model

To study the correlation of coalescence times under the
different sampling configurations, we use a discrete-time
Wright-Fisher (DTWF) model. This class of models has
been advocated as an alternative to the coalescent when
the sample size is large relative to the population size, as
it can accommodate multiple and simultaneous mergers
(Bhaskar et al., 2014).

In our case, we assume non-overlapping generations, a
constant population size of N, diploid individuals, half of
which are males and half of which are females, random

mating between the sexes, no selection, and no migra-
tion. There are three possible events: recombination, co-
alescence, and back-coalescence. Because the population
size is finite, combinations of these events can occur in
a single generation. We also keep track of whether lin-
eages are in the same individual or not, as this determines
their trajectory in the immediately preceding generation.
We refer to this model as the 2-sex DDTWF. (Later, we
also consider a simplified (1-sex) DDTWF). The dynam-
ics of this 2-sex DDTWF model can be summarized by a
Markov transition matrix (Supplementary Material Sec-
tion S2) with 17 states, where the initial state is one of
the sampling configurations 1, 2, 3, or 5.

The model described above represents pairs of loci sam-
pled from either the same chromosome or homologous
chromosomes, as the notion of back-coalescence and re-
combination only applies for these cases. Nevertheless, we
found that the same transition matrix applies to sampling
configurations 4 and 6 (non-homologous chromosomes),
albeit with a different interpretation of the states (not
shown).

Given the transition matrix, we can write a system of
equations using a first step analysis for all states x such
that E[T;T;|x] > 0:

E[T,Tjl2] =Y purEl(T; + 1)(T; + 1)[k]
k
=1+ pukE[TIK] + D pon [Tk + Y par BT/ Ty |K]
k k k

= E[Ti|z] + E[Tjla] + Y par EITT;|K] — 1,
k

(15)

where p,j is the transition probability between states x
and k.

Solving this system of equations allows us to obtain ex-
act results for Cov [T}, T;|z]. As a note, E[T;|z] can be
different from E[Tj|z] depending on the state z. For ex-
ample, if the pair of lineages at locus i is located on two
different chromosomes in the same individual, whereas
the pair of lineages at locus j is located in two different
individuals, then E[T;|z] = E[T}|x] + 1. See more details
in Supplementary Material Section S2. To obtain the cor-
relation coefficient, we then normalize the covariance by
the variance of the coalescence time at a locus, which is
the same regardless of whether the lineages were sampled
from the same or from different individuals. The vari-
ance can be calculated using the aforementioned system
of equations with i = j.

Figure 2 shows the correlation coefficient of the coales-
cence times for each sampling configuration. The highest
correlation is found for configuration 1. As the two loci
are located on the same chromosome in both sampled in-
dividuals, they must have originated from the same par-
ent in the previous generation. Therefore, both loci either
both coalesce to the same parent or both do not, introduc-
ing correlation between the coalescence times. The effect
of this sampling configuration then persists, as long as
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there is no recombination. As N, increases, the correla-
tion decreases, as it is much more likely for a recombina-
tion event to occur before a coalescence event. Sampling
configuration 3 (two loci located far apart on the same
chromosome in one individual, and on different chromo-
somes in the second individual) shows the lowest correla-
tion. In fact, it is slightly negative for very small values
of N, for if one of the loci coalesces in the first genera-
tion, then it is impossible for the other locus to coalesce.
The correlation in other configurations is intermediate be-
tween those of configurations 1 and 3.

Figure 2 also shows results for a simplified DDTWF
model, which is similar to the 2-sex DDTWF, except that
individuals are monoecious and we do not keep track of
whether lineages are in the same individual or not. There
are fewer states in this model than in the 2-sex DDTWF,
and it is therefore significantly easier to analyze. The sim-
plified model displays a slightly higher correlation com-
pared to the 2-sex model for N, < 40, but is a good
approximation otherwise (as we also show in Section 6).
More details on both models are given in Supplementary
Material Section S2.

5 Simulations

5.1 Wright-Fisher simulations

In this section, we use simulation of the 2-sex diploid,
discrete-time Wright-Fisher model to support our analyt-
ical results from Section 3.2. To estimate the correlation
coefficient of the coalescence times at two loci, we first
simulate many Wright-Fisher pedigrees and sample, for
each pedigree, two individuals from the current genera-
tion. We set the population size N, to be the same in ev-
ery generation, with equal numbers of males and females.
We then consider two loci on non-homologous chromo-
somes and simulate the path through the pedigree that
connects the two lineages at each locus to their most re-
cent common ancestor. In each generation and for each
locus, lineages that are found in the same individual coa-
lesce with probability 1/2, in which case the coalescence
time is recorded. Loci on different chromosomes in the
same individual coalesce neither in that generation nor in
the previous generation.

We repeat this process multiple times for each pedi-
gree to obtain an estimate of E [T'|ped]. We then com-
pute its variance over many simulated pedigrees to ob-
tain Varpeq [E [T|ped]]. By the same logic as Eq. (7)
above, Varpeq [E [T'|ped]] is equal to Cov [T}, T;]. To ob-
tain the correlation coefficient, we divide Cov [T}, T}] by
Var [T] = Varpeq [E [T'|ped]]+Epea [Var [T'|ped]]. The sim-
ulation results are shown in Figure 3. Our analytical
lower bound, which, based on Egs. (14) and (5), can
be written as Corr [T;,T}] 2 1/(12N), is well supported
by the simulations, and is in fact relatively tight.

5.2 Simulations based on real human
pedigrees

The Wright-Fisher model is only one way to generate
pedigrees having a given effective population size. In real
human populations, pedigrees have complex structures
that depend on their geographical region. For example,
there are different rates of consanguineous marriages in
different countries (Bittles and Black, 2015), different dis-
tributions of the number of children per family, and differ-
ent mating structures, leading to differences in the num-
ber of full-siblings and half-siblings. To gain insight on
the effect of these differences on the ability to estimate 6,
we constructed a Wright-Fisher-like model, but which is
constrained by patterns of real human pedigrees. Specifi-
cally, we used the FAMILINX database, compiled by Erlich
(2016), which carries information on about 44 million in-
dividuals from different countries.

We extracted genealogical data for three countries
(Kenya, Sweden, USA) from FAMILINX; these countries
were arbitrarily selected among those with sufficient data.
We then used these genealogies to simulate pedigrees
by breaking down and reassembling small family units,
as previously described for a different dataset (Wakeley
et al., 2012). Specifically, we first split the genealogies
into two-generational family units of children and their
parents. To belong to a unit, a child must share at least
one parent with at least one other child in the family unit.
Because FAMILINX contains data on more than the three
countries we chose, then in order not to create a bias in fa-
vor of smaller, simpler family units, we only require that
the first sampled child be in the corresponding country
data set. These family units then serve as building blocks
to generate pedigrees with the same mating patterns and
distribution of the number of children as in the reference
population. Under these models, the effective population
size N, is not guaranteed to equal the census population
size. Therefore, to determine the effective population size
for each model, we estimated N, as half the empirical
average time until coalescence across randomly sampled
pairs and random pedigrees. We could then fine-tune the
census size, for each country, until reaching a pre-specified
N.. Once the pedigrees were generated, we simulated ge-
nealogies through those pedigrees as described in Section
5.1. Additional details are provided in Supplementary
Material Section S3.

For each country and for a range of N.’s, we then
used the simulated data to compute the correlation co-
efficient of the coalescence times, as in Section 5.1 (i.e.,
Varpeq [E [T'|ped]] divided by Var [T]). The results, shown
in Figure 4, demonstrate that Corr [T},T}], and conse-

quently, Var {é}, vary across populations, and are higher

in the FAMILINX-inspired models compared to the Wright-
Fisher model. A plausible explanation is that in the
Wright-Fisher model, the ratio of half siblings to full-
siblings is much higher than in the human pedigrees; this
implies higher variance in the degree of relatedness in
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many real-world pedigrees relative to Wright-Fisher pedi-
grees. Therefore, it would be more difficult to estimate 6
(i.e., the variance of 6 will be higher) in real-world pop-
ulations than based on the expectation from the Wright-
Fisher model. Further deviations are expected if we were
to impose realistic first-cousin mating rates (Bittles and
Black, 2015).

6 Linked sites and model compar-
isons

We have so far only studied unlinked sites; however, our
analytical results for the DDTWF models can be rela-
tively easily extended to the case of linked loci. Such an
extension is important, since, for example, the covariance
of coalescence times at two loci is directly related to the 72
measure of linkage disequilibrium (McVean, 2002). Quan-
tifying the behavior of different models in terms of the
covariance of coalescence times can thus provide insight
into the importance of certain modeling assumptions.

In the DDTWF model with linked sites, the transition
probabilities are expressed in terms of the per generation
recombination probability, r, which has been so far set
to 0.5. The transition matrix of Supplementary Material
Section S2 is straightforward to adapt for any r < 0.5,
and the covariance or correlation coefficient of the coales-
cence times can be computed. The correlation coefficient
under the 2-sex DDTWF model is plotted in Figure 5 vs
the scaled recombination rate p = 4N,r, showing perfect
agreement with simulations.

These results now enable us to compare the exact 2-
sex DDTWF model to the simplified DDTWEF model,
as well as to the coalescent with recombination and its
Markovian approximations. Let p = 4Nr. Under the an-
cestral recombination graph (ARG) (Griffiths and Marjo-
ram, 1997), which is the standard model for the coalescent
with recombination, the covariance of coalescence times
at two loci satisfies (e.g., Simonsen and Churchill (1997)),

18+p

Covarc [T, 1] = 18+ 13p + p2°

(16)

Under the Sequentially Markov Coalescent (SMC)
(McVean and Cardin, 2005), each new genealogy (follow-
ing recombination) depends only on the previous geneal-
ogy (as opposed to the ARG (Wiuf and Hein, 1999)),
and the new coalescence time must differ from the previ-
ous time (no back-coalescence allowed). In this case, we
have,

1

Covsmc [TuTj] = m

(17)

The SMC’ model (Marjoram and Wall, 2006) is a variant
of SMC where back-coalescence is allowed. Under SMC’

(Eriksson et al., 2009; Wilton et al., 2015),

Covsmer [T, Tj] = 2p/2€fp/4(_p)71/27p/4 (18)

) )

(The covariances of Eq. (16)-(18) are also equal to their
respective correlation coefficients, since Var [T] = 1 un-
der either the ARG, SMC, and SMC’). In Figure 6, we
compare the correlation of 7; and 7T across the different
models as a function of p for N, = 100 and different values
of r. The ARG provides a very good approximation un-
der these conditions. In turn, the SMC’ model shows very
slight deviations compared to the ARG, while, as previ-
ously shown, the SMC model deviates more substantially
(Wilton et al., 2015).

The 2-sex DDTWF model is compared to the simplified
DDTWF model in Figure 7. Compared to the full 2-sex
model, the simplified model is an extremely good approx-
imation even for N, as small as 100: the maximum differ-
ence in the correlation coefficient (across different values
of r) between these two models was less than .005 (see
also Figure 2). Therefore, the simplified model should be
preferred due its much reduced complexity. For N, = 10,
we observe a more noticeable difference between the 2-
sex and the simplified DDTWF models, with a maximal
difference around .025.

7 Discussion

Increasing the size of the sample is known to have limited
ability to improve estimates of 8, as the individuals in
the sample share most of their genealogy (Rosenberg and
Nordborg, 2002). For this reason, it was recommended
to use data from many unlinked gene loci from a small
number of individuals (Felsenstein, 2006). While this in-
tuition still holds, we have shown that the estimator of
0 based on the average number of pairwise differences at
many loci is not consistent and has non-zero variance,
even when sampling infinitely many loci. We have pro-
vided an approximate lower bound for the variance for loci
on non-homologous chromosomes, as well as exact results
for diploid, discrete time Wright-Fisher models under var-
ious configurations of two sampled loci.

Fundamentally, the non-zero variance of 4 is a result the
underlying pedigree shared between all loci. The shared
pedigree itself is assumed to be a single draw from a
random demographic process (Wright-Fisher or another),
with a characteristic effective population size. Thus, even
if we were able to perfectly characterize the single pedi-
gree at hand, we cannot hope to infer with complete cer-
tainty the parameters of the demographic model. It is
worth noting that one can adopt a different (philosophi-
cal) view, under which the pedigree itself is the subject of
inference, and is not a product of a random demographic
process (Ralph, 2015). Under such a view, there is no such
thing as an estimator of the effective population size.
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The analytical results in this paper are based on the
Wright-Fisher model. To gain insight on the behavior
of more realistic demographic models, we adapted the
Wright-Fisher model according to the family structure
of real human populations. The results demonstrated
that the correlation of coalescence times is higher in the
human-inspired models than in the WF model; therefore,
# should be more difficult to estimate than expected un-
der the pure WF model.

When using a demographic model, it is not always clear
which features of the real population are crucial (e.g., two
sexes, diploidy, etc.), or whether simplified models could
display similar characteristics. We used our analytical
framework to study the correlation of coalescence times
as a function of the scaled recombination rate, p, for the
2-sex and the simplified DDTWEF models, and compared
the results to the coalescent with recombination and its
Markovian approximations. We found that, as expected,
for sufficiently large effective population size (N 2 100),
the results for the coalescent (as well as for its SMC’
approximation, but not for SMC) were extremely close
to those of the DDTWF models. In contrast, differences
were observed for N = 10, even between the 2-sex and
the simplified DDTWF.

We have focused here on a sample of two individuals at
two loci. For unlinked loci, we showed that the variance
of 6 for any number of loci is reduced to the two-loci prob-
lem. Extending the sample size to more than two indi-
viduals is expected to be significantly more complicated.
Deviations between the coalescent and the discrete time
haploid Wright-Fisher model for increasing sample sizes
were recently studied and shown to be important for real-
istic human demographic histories (Bhaskar et al., 2014).
We similarly speculate the presence of a shared pedigree
to have an increasingly significant effect on the variance
of Tajima’s estimator as the sample size grows, but this
analysis is left for future studies.
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Sampling configuration 1 @ @
Sampling configuration 2 @ @
Sampling configuration 3 @ @
Sampling configuration 4 @ @

Sampling configuration 5

Sampling configuration 6

Figure 1: The sampling configurations. Sampling configurations 1 to 4 involve a sample of two individuals,
depicted by two circles. Sampling configurations 5 and 6 involve a single individual, depicted by a single circle. The
lines within each circle correspond to two pairs of homologous chromosomes. The two loci are indicated by squares
and diamonds.
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Figure 2: Correlation of coalescence times for a sample of size 2. We plot the correlation coefficients for the

different sampling configurations under the 2-sex DDTWF and the simplified DDTWF vs the effective population
size N.. The calculations are described in detail in Supplementary Section S2.
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Figure 3: Analytical lower bound for the correlation of coalescence times at unlinked loci. We plot the
correlation coefficient of the coalescence times at unlinked loci sampled from non-homologous chromosomes under
the 2-sex, diploid, discrete-time Wright-Fisher model (green circles) as a function of the effective population size Ne.
The analytical lower bound (Corr [T;,T;] 2 1/(12N)) is plotted as a solid line.
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Figure 4: The correlation coefficient of coalescence times at two unlinked loci under synthetic pedigrees
constructed using the Familinx dataset. Results are shown for three countries, as well as for the 2-sex DDTWF
model. The correlation coefficient is plotted vs the effective population size N, (see the main text on how N, was
set for the FAMILINX pedigrees). The two loci were sampled from non-homologous chromosomes. It can be seen that
the correlation depends on the structure of the pedigree in ways that cannot be summarized by N,.
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Figure 5: The correlation coefficient of coalescence times at two linked loci under the 2-sex DDTWF
model. The correlation coefficients are plotted as lines for two values of N, vs the scaled recombination rate p = 4Nr.
Simulation results are shown as + symbols. The two loci were sampled in configuration 1.
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Figure 6: A comparison of the correlation coefficient of the coalescence times at two linked loci under
models of increasing complexity. We compare the ARG, SMC, SMC’, and the 2-sex DDTWF with N, = 100,
across different values of p = 4N.r. The predictions of the ARG and SMC’ are very good approximations for those
of the 2-sex diploid Markov Chain model (for the value of N, shown here).
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Figure 7: A comparison of the correlation coefficient of the coalescence times at two linked loci between
the 2-sex and the simplified DDTWF models. We plot the difference between the correlation coefficients of
the two models for N, = 10 and N, = 100 and for different values of r. The predictions of the two models slightly
diverge at N, = 10.
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Supplementary Material

Extended methods and analytical results

S1 The number of shared ancestors

In this section, we derive the covariance of the number of shared ancestors at each generation for the 2-sex
diploid discrete-time Wright-Fisher model (DDTWF), denoted x4 in section 3.2 of the main text. The model
is defined in Section 4.2 of the main text and Section S2 below. We proceed in three steps.

S1.1 Distribution of the number of ancestors from one generation to the next

Consider a single individual in a population with non-overlapping generations in the 2-sex model. Each
generation g, there are Ny males and N, females, where Ny + N,, = N, and typically Ny = N,,, = N, /2.
Let y, be the number of ancestors of a particular individual at generation g in the past. During the first few
generations, the number of ancestors grows very fast, and we expect y, ~ 29. As the number of ancestors
in a given generation starts to approach the size of the population, the ancestors overlap with one another,
and the growth of ancestors slows down until an equilibrium distribution is reached. We are interested in
modeling the exact distribution of the number of ancestors in generation g + 1, y4+1, given the number of
ancestors in generation g, y,.
We can first divide the number of ancestors in generation g + 1 into males and females:

Yg1 =T+ M, (1)
where F' is the number of fathers of individuals in y4, and M is the number of mothers of individuals in y,.

We have
(") £1S2(yg: f)

P(F = f|y9) = (Nf)yq ’ (2)

where S5 is the Stirling number of the second kind. The intuition behind this formula is that there are (A;f )
possible ways of choosing f fathers among the N available. There are then f! possible orderings of these
chosen males. The Stirling number of the second kind is the number of ways we can partition a set of y,
individuals into f categories. We divide all this by the total number of ways of making y, choices of fathers
among the Ny available, or (Ny)¥?. Likewise,

N

P(M =mly,) = (m)ym!Sa(yy, m)

(Nm)? ' )

We then obtain the following convolution for the number of ancestors a in generation g + 1,

a—1

P(yg1 = alyy) = > P(F = fly))P(M = a — fly,). (4)
=1

The numbers y1, ..., y¢ form a Markov Chain. The preceding formula defines the transition matrix of y441
given y,.

If we did not have a 2-sex model, but instead a bi-parental monoecious model, the formula for the number
of ancestors in generation g + 1 would be the following simpler expression,

(ie)a!Sg(Zyg,a)'

s (5)

P(yg+1 = alyy) =
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S1.2 Overlap in the number of ancestors each generation

In the previous subsection, we described the distribution of the number of ancestors at each generation. Here,
we start with a sample of two individuals, A and B, and are interested in the distribution of the number of
shared ancestors each generation. If this sample consists of a pair of full siblings, then the number of shared
ancestors grows according to the formula provided in the previous section, as full siblings share all of their
ancestors.

Let X, be the set of common ancestors in generation g, A, be the ancestors of A that are not in X, and
B, the set of ancestors of B that are not in X,. Let |4,|, |By| and | X,4| (= z, in the notation of the main
text) be the cardinality of these three disjoint sets. Let F'4 be the set of fathers of individuals in Ay, and let
|Fa| be the cardinality of F4. Likewise, we define Fx, Fg, |Fx|, and |Fg|. Given |A4|, |By|, and |X,|, the
distribution of |Fy4|, |Fg|, and |Fx| is as described in the previous subsection,

() £182(|Agl, £)
Ag) B 4]
Ny

5 ) _ (9)11a(1Byl, 1)
g NI

Xg) _ (180X, )

X,
Ny

P (FA| s , ©)

P (FB| y 7 )

(8)

P <|FX =f

The number of fathers in common between individuals in A, and X, z,, follows a hypergeometric distribu-
tion with Fx success states, Ny(41) — |Fx| failure states, and |Fs| draws,

() ()

|[Fal—zq ) 9
) )

The probability that individuals in B, have x; fathers in common with individuals in X,4, and a; fathers
in common with individuals in A, (but not with individuals already in X), given that |Fa N Fx| = x4, is
defined by a trivariate hypergeometric distribution,

P(|FAﬂFx‘:$a):

(lFX|)<|(FA—FxﬂFA|)(fol(FXUFA)\)
|FAmFX::ca>= . v S ()
(|F,§\)

The number of shared male ancestors in generation g + 1 is [X¢y41)| = [Fx| + ap, the number of male
ancestors exclusive to A is [Af,11)| = [Fa| — ap — 24, and the number of male ancestors exclusive to B is
|Bf(g+1)| = |FB| — ay — xp. To obtain the number of shared female ancestors, |X,,441)|, we use the same
protocol, except replacing Ny by N,,. Finally, to derive the joint distribution of X1, Ag41 and By11, we
take the convolution over the number of male and female ancestors.

In this way, we can derive a transition matrix 7. The entries T;j; of the transition matrix give the
probability of entering state j = (|Ag+1l, |Bg+1l, | Xg+1]) given state i = (|44l |Bgl, | Xql)-

We plot the dynamics of the number of shared ancestors along the generations in Supplementary Figure
1. The distribution of the number of shared ancestors in generation g is obtained by considering the g-th
power of T, assuming a sampling configuration of (1,1,0) and then summing over the probabilities of all
configurations with same | X,].

Finally, consider the simpler bi-parental monoecious model, and let K4, Kp, and Kx be the parents of
individuals in Ay, By, and X, respectively. As in the previous subsection,

NV k1Sy (2| Ay, k)
P <|KA = k‘Ag) _ &) N;A"‘ 9 (11)

P(lFBﬂF)d = xp and |FBﬂFA‘ =ayp
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Distribution of the number of shared ancestors each generation
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Supplementary Figure 1: The distribution of the number of shared ancestors in each generation
for the 2-sex DDTWF model. We used N, = 8. The process reaches an equilibrium distribution after
about 7 generations.

and similarly for Kp and Kx. As above, the number of parents in common between individuals in A, and
Xg, T4, follows a hypergeometric distribution,
[Kx |\ (Ne—|Kx]|
(i) .
(x5)

The number of parents common to By and A, or X, is similarly given by

P(|KAﬂKx‘ :a:a)z

() (T Rl

(\i{v;ﬂ

As above, we have | X 11| = |Kx|+ ap, |Ag+1| = |Ka| — ap — 24, and |Bg11| = |Kp| — ap — 2. This fully
specifies the distribution of the configuration in generation g 4+ 1, given the configuration in generation g.

P(|KBQK)(| = a3 and |KBQKA| = ayp | ‘KAﬂKx| :xa):

S1.3 Variance and covariances of the number of ancestors each generation

Finally, we calculate the covariances between the number of shared ancestors in generations ¢ and 7,
Cov(z;, ), using the transition matrix T derived as described in the previous section. Let state 0 be
the index of the sampling configuration, (1,1,0). We have, for i < j,

Covlz;, z;] = Elz;z;] — E2|E[z;] = Elz;E[z;|2;]] — Elzi|E[z;]

= zc: (zP(xi =z) Z kP(x; = k|z; = z)) - i zP(x; = 2) zﬁ:zP(xj = z). (14)
2=0 k=0 2=0 2=0

L. King et al. 351


https://doi.org/10.1101/069989
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/069989; this version posted August 17, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

Covariance, N =10 Correlation, N =10
) (o) @) @) @ @ @ @
2+ 2
3t 3
4t 4
h a5t 5
i3 6
TH 7
B 8

Supplementary Figure 2: The covariance and correlation of the number of shared ancestors
across the generations. In the left panel, we show the covariance of the number of shared ancestors,
x4, for each generation g, and for N, = 10. The diagonal represents the variance of the number of shared
ancestors, and is highest in generations 3-5. In the right panel, we show the correlation coefficients. The
correlation between x, and x44, decreases with g.

Each value of the number of shared ancestors, z is represented by multiple states of the transition matrix.
We refer to the set of these states as “Conf z”, or

P(zi=2z)= Y T0][]. (15)
¢eConf z

Thus,

Ne Ne Ne N
> <ZP(:C¢ =2) Y kP(z; = klz; = z)) =Yz Y TO> kY Tk (16)

z=0 k=0 z=0 (e€Conf z k=0 ~keConf k

We plot the covariances and correlations for the 2-sex DDTWF model and for N, = 10 in Supplementary
Figure 2 .

We note that the entire derivation of this section can be generalized to the case when the number of
males and females is allowed to differ as well as change along the generations.

S2 The DDTWF models
S2.1 The 2-sex DDTWF model and transition matrix

The notation we use to label the states in this transition matrix is derived from the notation of Wakeley
and Lessard (2003), who used a similar transition matrix to analyze patterns of linkage disequilibrium in a
2-locus multi-deme model. The notation is explained in Supplementary Figure 3. For example, state {12,12}
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Supplementary Figure 3: The states of the 2-sex DDTWF model. Circles represent individuals;
the two lines within each individual represents a pair of homologous chromosomes; the square represent the
first locus and the diamond represents the second locus. For example, {12,12} corresponds to the sampling
configuration 1 in main text Figure 1.

represents the case where two copies of the first locus are located in two different individuals, and on the
same chromosome as this first locus is the second locus. The comma separates the different chromosomes on
which genetic material os tracked, and the numbers 1 and 2 represent the loci on each chromosome.

In state {(12,12)}, the parentheses indicate that the tracked pairs of loci are present on two different
chromosomes in the same individual. If the tracked lineages are on different chromosomes of the same
individual, then they must be located in different individuals in the previous generation. So, for example,
state {(1,1)} transitions to state {1,1} in one generation with probability 1.

The set of all possible states in our model is : {}, {1,1}, {2,2}, {(1,1)}, {(2,2)}, {1,1,2,2}, {(1,1),2,2},
(11,22}, {1.2,(1.2)}, {(1,1).22)}, {(1.2),(1.2)}, {12,1,2}, {(12,1).2}, {(12.2),1}, {12,(1,2)}, {12,12} and

{(12,12)}. We show the communicating states in this transition matrix in table S2.1.
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S2.2 The simplified DDTWEF model

We also consider a simplified version of this model, a monoecious bi-parental DDTWF model. In this model,
we do not keep track of whether lineages are in the same individual or not. The diploidy only comes into
play in that recombination is impossible in a haploid context. The complete list of states in this model
is: {}, {1,1}, {2,2}, {1,1,2,2}, {12,1,2}, and {12,12}, far fewer than in the 2-sex DDTWF model. For this
reason, this model can only be used to show the effect of a limited number of sampling configurations.
For example, it is not possible to model sampling configuration 2, where loci are sampled from different
homologous chromosomes in the same individual. We show a matrix of communicating states in table S2.2.

Simplified diploid DTWF model

State coal 1,1 2,2 1,1,2,2 12,1,2 12, 12
coal 1 0 0 0 0 0
1,1 1 1 0 0 0 0
2,2 1 0 1 0 0 0
1,1,2,2 1 1 1 1 1 1
12,1,2 1 1 1 1 1 1
12,12 1 1 1 1 1 1

The cell at coordinates (i,j) is 1 if the probability of transitioning to state j starting from state i
in one generation is non-zero.

S2.3 The expected generation time in both models

If two lineages are located in two different individuals, then the probability they coalesce in a single generation
is just 1/(2N.). However, if they are present in different chromosomes of the same individual, they must
have originated from two different individuals in the previous generation. Because of this, the expected time
until coalescence will be different than 2N, in the 2-sex DDTWF, as opposed to in the simplified DDTWF
where it is just equal to 2/N,.

The process retains some memory of the fact that lineages were initially sampled in two different indi-
viduals. Indeed, the time until coalescence at generation g, given no coalescence in any previous generation,
will be different than the expected time until coalescence at generation g + 1, given no coalescence in any
previous generation. As g increases, this difference in coalescence times decreases from one generation to the
next, and the process converges to an average generation time.

Consider a pair of lineages in two individuals. In generation g + 1, given that no coalescence events have
occurred in any of the previous g generations, the probability of the two lineages to coalesce is

1 1
Clg+1) = 1P(F(g)|No Coal at 1,...,9) + gP(H(g)|No Coal at 1,..., g), (17)

where P(F(g)|No Coal at 1,...,g) and P(H(g)|No Coal at 1,..., g) are the probabilities that the two lineages
are located in full siblings and half siblings, respectively, in generation g, given no coalescence in that
generation or any of the previous generations. Next, we write

P(F(g),No coal at g|No coal at 1,...,g — 1)
P(No coal at g|No coal at 1,...,g — 1)

P(F(g)|No Coal at 1,...,g) = (18)
The denominator is simply given by 1 — C(g). For the numerator, we note that for the two lineages to arrive
at full siblings in generation g, then first, we must exclude the possibility that the lineages are at the same
individual in generation g (given no previous coalescence), which happens with probability 2C(g) (since the
probability of coalescence is half the probability to arrive at the same individual). Second, the probability
that these two individuals share both parents is 1/(N./2)?. Therefore,

P(F(g)[No Coal at 1,..., g) = 11—25(;9)) (N:/2)2'

(19)
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In the same way, we have

1-2C(g) 2 Ne/2-1
P(H(g)|No Coal at 1,...,9) = - C((g)) N7 ]\/7 o

(20)

By solving C(g + 1) = C(g), we obtain the limiting coalescence probability as a function of N,. As the
equilibrium distribution of the time until MRCA is geometric, the equilibrium generation time is the inverse
of the probability of coalescence each generation, or

B 2N,
1+N.—/1+NZ

This generation time is always slightly greater than 2N,.E[T;]/2N, converges to 1 as N, becomes large.

E[T}]

(21)

S3 Building pedigrees with Familinx

We simulated our FAMILINX-based pedigrees over GEN = 100 non-overlapping generations. For each genera-
tion, we selected family units at random from the data until the total number of children across all family
units was greater than some pre-determined N, (the population census size). In addition, we required the
total number of parents among the selected family units to be less than or equal to N.. Then, we connected
the GEN generations together by randomly assigning each parent in generation g to be one of the children in
generation g + 1, disallowing sibling mating. Finally, we connected the first and last generation so that the
pedigree is cyclical, with a period of GEN generations.

As a note, this procedure will not be appropriate for datasets where a substantial number of family units
contain only one child, because the algorithm requires the number of children to be greater than or equal
to the number of parents. When many families have only one child, families with more children will be
over-sampled, and the family structure of our constructed pedigrees will be very different from the family
structure we are attempting to replicate.

The value of N, was chosen to generate pedigrees with a target effective population size, N.. For each N,
we estimated the effective population size of our pedigree by calculating the average time until coalescence
over 50 sampled pairs, and setting N, as half of that time. We then discarded the pedigree unless this value
is within oy, of the target N, where oy, is the standard deviation of the observed coalescent effective sizes
for a population of size N, = N, in a Wright-Fisher model. We constrain our pedigrees to be close to the
target effective population size because we want to make sure that the higher covariance we observe in the
FAMILINX pedigree simulations relative to the WF model is not only due to potentially higher variance of
Ne.

We note that under our algorithm, some information on the country-specific pedigree structure is lost
by breaking large genealogies into family units (e.g., inter-generational correlations in family size, or the
rate of first and second cousin matings). Nevertheless, sufficient information is retained so that pedigrees
with the same N, generated based on data from different countries are distinguished by their correlation of
coalescence times (main text Figure 4).
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