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Summary 13 

A central aim, from basic neuroscience to psychiatry, is to resolve how genes control 14 

brain circuitry and behavior. This is experimentally hard, since most brain functions 15 

and behaviors are controlled by multiple genes. In low throughput, one gene at a time, 16 

experiments, it is therefore difficult to delineate the neural circuitry through which 17 

these sets of genes express their behavioral effects. The increasing amount of publicly 18 

available brain and genetic data offers a rich source that could be mined to address this 19 

problem computationally. However, most computational approaches are not tailored to 20 

reflect functional synergies in brain circuitry accumulating within sets of genes. Here, 21 

we developed an algorithm that fuses gene expression and connectivity data with 22 

functional genetic meta data and exploits such cumulative effects to predict 23 

neuroanatomical maps for multigenic functions. These maps recapture known 24 

functional anatomical annotations from literature and functional MRI data. When 25 

applied to meta data from mouse QTLs and human neuropsychiatric databases, our 26 

method predicts functional maps underlying behavioral or psychiatric traits. We show 27 

that it is possible to predict functional neuroanatomy from mouse and human genetic 28 

meta data and provide a discovery tool for high throughput functional exploration of 29 

brain anatomy in silico.  30 

 31 

Introduction 32 

The wealth of data from brain initiatives and the increasing amount of functional genetic 33 

information creates opportunities to mine these resources for insights into the genetic and 34 

neuronal organization of brain function and behavior. Recent studies correlated brain gene 35 

expression maps with structural information to enhance our understanding of genetic and 36 

anatomical parcellations of the brain (1, 2) and its functional networks (3). These studies have 37 

been used, for instance, to explore development and physiological regulation of structural 38 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 11, 2016. ; https://doi.org/10.1101/070037doi: bioRxiv preprint 

https://doi.org/10.1101/070037


Ganglberger et al. 

Functional neuroanatomy from genes 

2 

 

connectivity and extract functional networks in silico (Supplementary Note 1). Collectively, 39 

these results suggest that functional genetic information, brain gene expression data and 40 

connectomes can be successfully used for functional exploration of the brain (Supplementary 41 

Fig. 1).  42 

Here, we mine these resources to understand how genes control behavior. A major challenge 43 

in this regard is that behaviors are inherently multigenic and, consequently, identifying the 44 

neural networks through which these gene sets interact to express that function is not trivial. 45 

Discovery tools that give computational predictions would provide an ideal entry point into 46 

this problem.  47 

Most established approaches that map genetic information to brain data relate gene co-48 

expression correlation of functionally grouped genes with structural connectivity (2–5). 49 

Correlative analysis primarily dissects brain organization based on the similarities of regional 50 

gene expression (Supplementary Note 1). It primarily reflects transcriptomic similarities, 51 

globally or for subsets of genes, but it is not tailored to directly predict functional synergies 52 

accumulating over multiple genes. Motivated by this methodological gap, we sought to 53 

develop algorithms that fuse genetic information (sets of functionally related genes) with 54 

brain data to generate functional neuroanatomical maps underlying a given brain function or 55 

behavior in silico. 56 

 57 

We hypothesize that functional synergies of gene sets are best reflected in their cumulative 58 

weights on higher order features of structural (connectomes) or functional (resting state) brain 59 

networks. Based on this, we developed a method that generates functional neuroanatomical 60 

maps of functionally related gene sets from literature meta-analyses or genetic databases. We 61 

demonstrate that cumulative gene expression reflects those functional synergies. Calculating 62 

the effects of cumulative gene expression on different network measures (6, 7) proved to be 63 

sufficient for predicting functional neuroanatomy of multigenic brain functions and behavior. 64 

When applied to gene sets from genome wide association studies, quantitative trait loci 65 

(QTL) analyses or neurogenetic databases, these calculations allowed to predict brain circuits 66 

underlying complex behavioral traits in mice and human. 67 

Results 68 

The method was developed on the Allen Mouse Brain Atlas (AMBA) gene expression and 69 

connectivity data framework (8, 9), a widely used mouse brain database. The mouse brain is 70 

currently the most advanced template for integrated network studies of mammalian brains 71 

with extensive gene expression and connectomic information available (8, 9). However, the 72 

method as such is general and can be applied straight forward to data from any other species 73 

such as human. The code has been optimized for low cost parallel computing.  74 

Specifically, our method employs genetic-functional associations as inputs for weighting 75 

brain data. We fused a set of genes associated with a given brain function or behavior with 76 

gene expression maps and connectome (as structural brain network) (Fig. 1). We define the 77 

input set T of genes out of a genome-wide set G. The spatial brain gene expression data is 78 

imported pre-aligned to a common reference space from AMBA. The gene expression data 79 

consists of ordered lists of gene expression densities (10) retrieved from the AMBA for a set 80 

of spatial grid positions D = {di}i=1..n and stored as gene expression density volumes D(T) and 81 

D(G). Gene expression density is not location invariant. For example, cortical and thalamic 82 

areas have a higher mean gene expression density than the rest of the brain. Spatial bias 83 
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introduced by this variance was compensated by the standardization (Z-Score) of 84 

D(T) genome-wide, such that expression density distributions at every spatial position are 85 

standard-normal distributed over G. Subsequently, these data sets were standardized in their 86 

spatial distribution pattern to adjust for differences between genes within the overall brain 87 

expression density.  88 

Next, we sought to determine the cumulative genetic weight of T in D and calculated the 89 

synergy S, defined as the trimmed mean of the normalized D for all genes in set T. Trimming 90 

reduced sampling artifacts in gene density maps, like image artifacts that appear as outliers 91 

with high density scores (e.g. air bubbles) (11). The functional relation between genes and 92 

neuroanatomy is expressed by weighting either incoming or outgoing connections of every 93 

spatial sample point by S. Given the directed AMBA connectome as a connectivity 94 

matrix C ∈ Rn x n (where rows represent source regions, and columns target regions), an 95 

incoming- or outgoing-weighted connectome is defined as the row- or column-wise 96 

multiplication of C by S. To account for higher order synergies within functional maps, we 97 

computed those maps from incoming and outgoing node strengths as local network measures 98 

(12) in the weighted connectomes. For statistical evaluation, we compared the position-99 

wise node strength measures to randomly drawn gene sets (n=1000) from the genome-wide 100 

set G by Z-tests (Fig. 1). We adjusted the False Discovery Rate (FDR) of the p-values with 101 

the Benjamini-Hochberg (13) method. The results in this paper are all significant under a 102 

FDR <5% (unless indicated otherwise). Ultimately, these operations generated a p-value map 103 

(a p-value for every sampling position) for every effect and brain function. To add structural 104 

context, these maps were combined (minimum p-value of effects) and projected onto the 105 

connectome, building structural networks of functionally weighted nodes that are functionally 106 

related to the input gene set. A detailed description can be found in the Supplementary 107 

Experimental Procedures. 108 

To assess if this computational approach allows to identify function-specific brain circuitry, 109 

we focused on several well-studied gene sets, for which functional associations and 110 

functional neuroanatomy are comprehensively documented: genes associated with 111 

dopaminergic signaling, social behavior, feeding, hypothalamic–pituitary–adrenal (HPA) 112 

stress axis and synaptic plasticity. With these gene sets, we recaptured known functional 113 

neuroanatomy from literature.  114 

For instance, genes associated with social behavior recapitulated their known functional 115 

neuroanatomy (Fig. 2A, Supplementary Data 1) (14–20). Similarly, we were able to pick up 116 

the functional neuroanatomy (Supplementary Data 3 Case 1-10A,B,C, Supplementary Data 1) 117 

for other functionally-associated gene sets (Supplementary Data 3 Case 1-10D) including 118 

dopamine (DA) signaling, which revealed the classical DA reward VTA-ACB pathway and 119 

also motor-related connections like SN-GP (21–24). The method allowed detecting the 120 

known feeding-related neuroanatomy based on genes associated with feeding, like orexin, 121 

neuropeptide Y (NPY), Agouti related protein (AgRP), proopiomelanocortin (POMC), 122 

melanocortin or leptin receptors (25–28). Different stress and fear/anxiety-related genes 123 

accumulate in the HPA axis, areas involved in control and regulation of stress and brain 124 

regions involved in processing fear/anxiety (29–34). We also investigated gene sets for 125 

synaptic plasticity, learning and memory. As expected, these genes highlight major sites of 126 

behavioral and functional plasticity in the brain (e.g., cortex, hippocampus, amygdala) (35–127 

44). 128 
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To assess these predictions quantitatively, we collected the ground truth in form of network 129 

nodes representing regions functionally associated with these 10 gene sets from literature 130 

(Supplementary Data 2). We calculated the F1-score (45) of precision and recall for a binary 131 

classification of the ordered voxel-wise p-values. We used this with first order network 132 

measures (expression site; genetic weight at the node itself) and second order network 133 

measures (incoming/outgoing node strength from/to nodes with accumulated genetic weight, 134 

as well as Hub score, Authority score, Closeness, Betweenness, and Eigencentrality) (Fig. 135 

2B). The computational predictions correlated significantly with the known functional 136 

neuroanatomy from literature (Fig. 2B, bottom, right bar), indicating that our method 137 

assembles meaningful functional neuroanatomical maps from genetic data.  138 

The predictive power increased from first order measures (Fig. 2B, bottom, middle bar) to 139 

second order measures (Fig. 2B, bottom, right bar). This indicates that second order network 140 

measures detected regions not identified by gene expression alone, yet are integrated within 141 

the same neuroanatomical map. Results for node strength showed that the prediction accuracy 142 

was superior to other network measures, and is therefore sufficient for further analysis. 143 

Importantly, our approach is calculated at 100 m voxel resolution, free from a priori 144 

constraints from anatomical annotations and fully compatible with small rodent MRI. Thus, it 145 

is suitable to refine structure-function relationships beyond neuroanatomical scales and has 146 

the potential to identify additional nodes and subdivisions within predefined anatomical 147 

regions with possible distinct physiological functions.  148 

To further support our findings, we overlayed computed functional maps with those obtained 149 

experimentally with fMRI. Important in the context of this paper, pain data offers the 150 

possibility to link genetics with actual fMRI (46–48) in mice. In fact, for the pain-related 151 

gene sets (Supplementary Note 2, Supplementary Table 3 and Supplementary Data 3 Case 152 

11-30d), the in silico predicted functional maps in mouse brain were reproducing large 153 

portions of the functional neuroanatomy observed with Blood-Oxygen-Level-Dependent 154 

functional magnetic resonance imaging (BOLD fMRI data, warped onto the AMBA reference 155 

space by optimized ANTS (49) parametrization) in vivo (Fig. 3A, b). This further 156 

substantiates the validity of our approach. While our method seemed to fit best with sets of 157 

>4 genes (Supplementary Fig. 2), predictions were also informative at the single-gene level. 158 

Functional imaging data of Cacna2d3 mutants, a highly conserved pain gene, revealed altered 159 

thalamo-cortical connectivity and synesthesia after thermal stimulation in mutant mice (50). 160 

The predicted maps computed from Cacna2d3 alone (Fig. 3A, top right) recaptured pain 161 

functional neuroanatomy from fMRI (Fig. 3A, bottom left, 3B) and pain maps that are 162 

affected by this gene (Fig. 3A, bottom right, Fig. 3B). Nevertheless, the single gene 163 

operations will depend heavily on the gene itself, and so we recommend to use gene sets for 164 

the most efficient and accurate functional neuroanatomy integration.  165 

Based on these results, we explored yet unknown or only partially described effector 166 

networks of behavioral traits investigated in genetic screens or association studies. One of the 167 

challenges is that behavioral traits are largely multigenic and identifying the neural circuitry 168 

through which these traits are expressed is difficult. We expanded our analysis on pain and 169 

included fear/anxiety and autism spectrum disorder (ASD) gene sets (Supplementary Note 2) 170 

from publically available databases and published meta-studies (Supplementary Table 3). In 171 

some cases, large gene sets were clustered using the DAVID platform to parcellate them into 172 

functional category-linked subsets, and so in those cases genes are not only related by the 173 

analyzed trait, but also regarding sub-functions annotated in the database. When supplied 174 

with these gene sets, our computational method extracted meaningful functional maps 175 
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(Supplementary Data 3 Case 11-30). These maps, of which node-wise comparisons are in line 176 

with their functional annotation from literature, give a comprehensive representation of 177 

functional genetic synergies underlying the respective trait (Fig. 4A, green squares). 178 

Interestingly, we also identified nodes so far not clearly linked to investigated functions, 179 

therefore extracting potential novel functional elements (Fig. 4A, blue squares). These nodes 180 

might be part of the same functional network and participate in shaping the internal states of 181 

the mammalian brain. 182 

Extending our approach to human template based on resting state networks from fMRI (as 183 

functional brain networks) demonstrated that the methodology can be generalized to other 184 

species. Cross-validation with the meta-studies (Supplementary Data 4, Supplementary Table 185 

2) reveals similar findings for both (Fig. 4A,b), demonstrating its versatility for functional 186 

exploration of the human brain in health and disease in silico.  187 

Discussion 188 

We have developed a computational method to integrate genetic, gene expression and 189 

connectomic information from brain and genomic initiatives for rapid functional exploration 190 

of the brain in silico. We found that, in the brain, functionally related genes are not 191 

distributed at random but assemble into specific maps, which recapitulate functional 192 

anatomical annotations or functional data from fMRI. Cumulative effects, from expression 193 

sites alone (Fig. 2B, red bar), reflect functional synergies within functionally related genes, 194 

which are not directly fitted by transcriptomic similarities, usually derived from correlative 195 

analysis (Supplementary Note 1). The predictions further improved by second order network 196 

measures, which incorporate functional synergies of local gene expression that manifest in 197 

the context of higher-order interactions within the brain architecture. Incoming/Outgoing 198 

node strength (Fig. 2B, green bar) performed best, but not significantly better than Hubs & 199 

Authorities or Eigencentrality. This implies that nodes with the strongest effect on the 200 

network are either primary expression sites, or source/target sites thereof. Betweenness and 201 

Closeness, indicators of shortest paths in networks, outlined small distinctive nodes, that are 202 

part of functional neuroanatomy, but failed to predict the entirety of functional 203 

neuroanatomical annotations (explaining the seemingly random F1-score in Fig. 2B). The 204 

ground truth in its entirety might naturally be best explained by node strength, which reflects 205 

compounded functional synergies of regions and their afferent and efferent connections. 206 

Taken together, by fusing cumulative gene expression and best-fit network measures, we 207 

provide an optimized tool that reliably predicts functional neuroanatomical maps from 208 

genetic information.  209 

When applied to gene sets from behavioral genetics, we demonstrated that our workflow can 210 

extract putative effector network nodes as functional brain maps which can be used to explore 211 

trait-specific circuitries. These explorations allowed to refine known functional 212 

neuroanatomy (Fig. 4, green squares). For instance, the anatomy of thalamo-cortical and 213 

cortico-cortical connections in thermal pain processing can be dissected to fine anatomical 214 

resolution (e.g., Supplementary Data 3 Case 11E, red arrows, note layer specificity) which 215 

could not be achieved with fMRI (Fig. 3A, wt). The method, based on startle response QTLs, 216 

extracted a specific and strong connection between PVT and central amygdala 217 

(Supplementary Data 3 Case 22E, red arrows). Interestingly this connection recently emerged 218 

as central element in fear control (51, 52). Similarly, for ASD, we identified many cortico-219 

cortical connections (Supplementary Data 3 Case 23-29E, red arrows) with prediction 220 

accuracy reaching individual layers. Among similar lines, the method uncovered circuitry 221 
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within regions functionally not yet associated with specific traits (Fig. 4, blue squares). For 222 

instance, the functional association of visual cortex with pain processing (53), motor cortex 223 

with startle response (54) and hypothalamic circuitry in autism (55), whose roles are 224 

understudied in the context of the respective trait or psychiatric condition, specifically at the 225 

fine anatomical or circuit level.  226 

This can be particularly useful to pursue studies of causative role of genetic variance linked 227 

to mental diseases with unknown ethiopathology or complex course/symptomatology (with 228 

e.g., gene associations in GWAS studies as input). The method provides a holistic description 229 

of the functional neuroanatomy of a given gene set related to a meta study or behavioral trait. 230 

As such, it allows to rank order the most promising candidate regions. It has the potential to 231 

refine the functional parcellation of the brain beyond anatomical resolution, especially when 232 

performed with multiple functionally grouped gene sets at large scales. Importantly, the 233 

candidate nodes, in particular those previously not associated with those conditions, can serve 234 

as promising entry points for functional circuit dissection, e.g., with opto- and 235 

pharmacogenetic methods. 236 

The functional relation underlying our study can be exploited to associate gene sets with 237 

specific brain functions or brain functions with specified gene sets (Supplementary Fig. 1). 238 

Importantly, our strategy applies to other neural systems (beyond mouse and human) for 239 

which genetic information, gene expression maps and connectomes are, or will be, available 240 

and allows exploration of functional brain organization in cases where actual functional data 241 

is difficult, if not impossible, to obtain. 242 
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 376 

Figure 1. Computational workflow. A functionally-related gene set 377 
serves as input (1). For this gene set, gene expression data is retrieved 378 
(2), normalized and used to calculate a cumulative genetic effect (3). 379 
The cumulative effect is used to weight a structural connectivity matrix 380 
column or row wise (4). On the weighted network, network measures 381 
are computed and statistically evaluated by Z-tests against a null 382 
distribution (network measures based on random gene sets) (5). The 383 
output is a voxel-wise p-value map for every network measure. The 384 
results can be evaluated by computing correlation with ground truth 385 
from literature or fMRI. 386 
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Figure 2. Recovery of known functional anatomy from test gene sets. (A) Clustered nodes of a functional 387 
anatomical map associated with a gene set for social behavior, overlayed with structural connectivity (grey 388 
arrows). The top-ranked networks include olfactory bulb (MOB), olfactory tubercle (OT), endopiriform nucleus 389 
(EPd), substantia innominata (SI), hypothalamus (HY) and hypothalamic nuclei (dorsomedial nucleus of the 390 
hypothalamus (DMH), lateral hypothalamic area (LHA, not indicated by label), ventromedial hypothalamic 391 
nucleus (VMH)), hippocampus (particularly CA2 region), midbrain (MB), including periaqueductal gray (PAG) 392 
and ventral tegmental area (VTA, not indicated by label), and nucleus accumbens (ACB). The pseudo-color 393 
scale of the nodes (colored voxels) indicates the voxel-wise accumulation of genetic weights, the intensity of the 394 
edges (arrows) the structural strength of the connection between the nodes. Loops indicate within node 395 
connections. For a complete list of abbreviations see Supplementary Tab. 1. (B) Top, Integration of first and 396 
second order network measures. The asterisk indicates a node with accumulated genetic weight. Red and green 397 
indicate sites with increased weight in first and second order measures, respectively. Bottom, Node-wise 398 
comparison of predicted maps to ground truth for 10 test sets. F1-scores increase from random classification to 399 
expression sites and to second order network measures significantly (Benjamini & Hochberg corrected One-way 400 
ANOVA on ranks, Ingoing & outgoing network strength vs Expression sites; p<0.05, Ingoing & outgoing 401 
network strength vs Random; p<0.001, Expression sites vs Random; p<0.05, Eigencentrality vs Random; 402 
p<0.01, Hubs & authorities vs Random; p<0.05). The individual F1 scores for each prediction are shown as 403 
dotted lines. Bars indicate median and interquartile range. Incoming & Outgoing node strength, Hubs, 404 
Authorities, Closeness, Betweenness and Eigencentrality were tested, node strength showed the highest F1 score.  405 
  406 
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 407 
Figure 3. Computed functional maps correlate with BOLD fMRI 408 
of pain-related states. (A) Similarity of functional maps nodes 409 
predicted for analgesia gene sets and Cacna2d3 gene (top) to nodes 410 
with heat evoked fMRI responses (bottom). The highest ranked 411 
nodes include striatum (STR), paraventricular nucleus of thalamus 412 
(PVT), bed nuclei of stria terminalis (BST), pallidum (PAL), central 413 
amygdalar nucleus (CEA), sensory cortices (somatosensory areas 414 
(SS), visual areas (VIS), auditory areas (AUD)) and olfactory 415 
tubercle (OT) and correspond to those identified by fMRI. Color 416 
bars indicate −log10-scaled p-values (top) and heat stimulus 417 
responses (% BOLD signal changes) in wt animals (bottom left) or 418 
differences (in heat responses between Cacna2d3-/- and wt 419 
animals BOLD signal changes in Cacna2d3-/- - BOLD signal 420 
changes in wt animals) (bottom right). For a detailed list of brain 421 
regions see Supplementary Tab. 1. (B) Voxel-wise Spearman 422 
correlations of p-value maps predicted from pain gene sets with 423 
BOLD fMRI responses. Bars indicate median and interquartile range 424 
of Spearman’s  Wilcoxon signed rank test against =0 (n=5, W+ 425 
(15) =15, W-(15) =0, *pone-tailed <0.05).  426 
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 427 

Figure 4. Predicting effector functional maps of behavioral traits from mouse and human genetic meta data. (A) 428 
Left, Node-wise comparison of predicted mouse functional anatomy for pain, fear and autism, divided into 429 
different functional subcategories, to functional neuroanatomical annotations from literature for the top 100 430 
p-value ranked nodes. Right, Quantification of the qualitative assessment. There is a significant overlap between 431 
predicted maps and functional neuroanatomical annotation (n=342; Fisher's exact test, p<0.0001). (B) Left, 432 
Node-wise comparison of predicted human functional anatomy for pain, fear and autism, divided into different 433 
functional subcategories, to functional neuroanatomical annotations from literature for the top 100 p-value 434 
ranked nodes. Right, Quantification of the qualitative assessment. There is a significant overlap between 435 
predicted maps and functional neuroanatomical annotation (n=288; Fisher's exact test, p<0.0001).  436 
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Supplementary Information 437 

Supplementary Figures 1-2. 438 

Supplementary Data 1. P-values of first and second order effects for all cases based on 439 

region (mouse and human). 440 

Supplementary Data 2. Ground truth generated from literature. 441 

Supplementary Data 3. Functional neuroanatomical maps, significant regions and 442 

network visualization of all cases used in this paper for mouse. 443 

Supplementary Data 4. Significant regions of all cases used in this paper for human. 444 

Supplementary Table 1. Anatomical abbreviations. 445 

Supplemental Experimental Procedures  446 

Mouse Data 447 

The mouse connectome was retrieved as (structural) connectivity from all 2173 available 448 

injection sites (state March 2016) to their target sites given as image data, detailing 449 

projections labeled by rAAV tracers via serial two-photon tomography (9). Those sites are 450 

added up to a connectivity matrix which covers about 15 percent of the right hemisphere as 451 

source regions, and about 100% as target regions. The AMBA connectome (right hemisphere 452 

injections) was mirrored onto (left hemisphere) AMBA gene expression data. In order to also 453 

take weak connections into account, the connectome was binarized by a threshold according 454 

to Oh, S. W. et al. (9), Extended Data Figure 7, that minimizes the amount of false positive 455 

connections. The gene expression density is interpolated to a 100 micron resolution to match 456 

the resolution of the connectome. A Matlab script for downloading the gene expression for T 457 

and for G, as well as the AMBA connectome is provided on request. 458 

Human data  459 

Gene expression by region retrieved from the Allen Human Brain Atlas (56). The Allen 460 

Institute provides an affine transformation to MNI152 (57) space by its API. We used resting 461 

state functional connectivity from the Human Connectome Project (58), which is also in 462 

MNI152space (57). 463 

Mathematical description  464 

Input data is a functionally related gene set, more precisely a certain brain function or 465 

behavioral trait represented as a list of genes. Spatial gene expression and connectomic data 466 

were retrieved from AMBA. 467 

 468 
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Data retrieval was performed via the AMBA API. It allows the download of 3D spatial gene 469 

expression patterns(8) for available genes at given grid positions with a resolution of 200 470 

microns.  471 

We retrieve for n grid positions P ={pi}i=1,…,n, pi ∈ ℝ3 and each available gene g in the mouse 472 

genome G ={gj}j=1..m (or at least a random drawn subset) the gene expression density  473 

d(pi,G) := di(G) = (di1,….,dim)    |    i=1,…,n  474 

and store it as gene expression density volume  475 

D(G) = (d1(G),….,dn(G))T
i=1..n = (dij) i=1..n j=1..m ∈  ℝ𝑛𝑥𝑚 476 

This is also done for the gene function/trait associated gene set T = {tk}k=1,…,l being a subset 477 

of G, resulting in the expression density volume D(T) ∈  ℝ𝑛𝑥𝑘.  478 

 479 

Normalization of the function/trait specific expression density volume D(T) is performed 480 

over the genomic as well as over the spatial domain. At first, standardization in the genome 481 

space is performed so that every spatial sample point has a distribution of gene expression 482 

densities with a mean of 0 and a standard deviation of 1 over the whole genome G 483 

dik
gene normalized = (dik -µi )/ σi          |      ∀ dik ∈ D(T) 484 

where µi = µ((dij) j=1,..,m) and  σi = σ(di((dij) j=1,..,m), dij ∈ D(G).   485 

This normalization compensated for spatial bias in the mean density. For example, the 486 

cerebral cortex and thalamic areas have a higher mean density than the rest of the brain.  487 

In a second stage, standardization is performed for Dgene normalized (T) = ( dij
gene normalized)  in the 488 

spatial domain, so that each gene in T has a distribution of gene expression densities with a 489 

mean of 0 and a standard deviation of 1 over all sample positions 490 

dij
gene-space normalized = (dij

gene normalized - µj )/ σj    |   ∀ dij
gene normalized ∈ Dgene normalized(T), 491 

                  gj ∈  T 492 

where µj
gene normalized

 = µ (dik
gene normalized)k=1,…,l) and σj

gene normalized
 = σ (dik

gene normalized)k=1,…,l), dik 493 

∈ D(T). We replaced missing values with 0 (which is the most likely value that a value can 494 

have after normalization in genome space) for the calculation of µj and σj to compensate for 495 

missing lateral slices from AMBA. 496 

 497 

Effect calculation is based on the trimmed mean of the gene-space normalized densitiy of all 498 

genes in the function/trait set, that is called synergy S = (s(pi)) i=1..n where  499 

s(pi)  = µtrimmed((dik
gene-space normalized)k=1,…,l)   |    i=1,…,n , dik ∈ D(T) 500 

With the synergy S, several effects can be computed. Effects are divided into first order and 501 

second order effects: 502 
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First order effects do not take the context of the network into account. The synergy S is a 503 

first order effect itself, since S represents the gene function/trait association of every 504 

sample point. Other first order effects would be the µ((dik
gene-space normalized)k=1,…,l)   (which 505 

is not robust to image artifacts like bubbles), or max((dik
gene-space normalized)k=1,…,l)   506 

,((dik
gene-space normalized)k=1,…,l)    507 

Second order effects show the influence of the function/trait in the context of the 508 

network. The function/trait-network association is expressed by weighting either 509 

incoming or outgoing connections of every sample position by S, depending on the 510 

scope of interest (afferent or efferent connections). Given a directed connectome as 511 

connectivity matrix  512 

C = (cvw)v,w = 1..n  ; C ∈ R n  x n   513 

where the rows represent the source regions, the columns target regions, either an 514 

incoming Cweighted in or outgoing Cweighted out weighted directed connectome is defined as 515 

Cweighted out = (𝑐vw
𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑜𝑢𝑡

)w= 1,…,n =  s(pv) * (cvw)w = 1,…,n      |    ∀ v = 1..n 516 

Cweighted in = (𝑐vw
𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑖𝑛

)v = 1,…,n    =  s(pw) * (cvw)v = 1,…,n     |    ∀ w = 1..n 517 

The second order effects on the network are computed by local network measures such as 518 

incoming/outgoing node strength, hubs, authorities, closeness, betweenness and 519 

eigencentrality on both incoming and outcoming weighted connectomes Cweighted in and 520 

Cweighted out. We showed in Fig. 2B, that incoming/outgoing node strength performed best on 521 

predicting our test data and is therefore stated exemplary. The  incoming node strength (sum 522 

of incoming connections for every node) of Cweighted in and Cweighted out is defined as 523 

INweighted out  = (inweighted out(pv))v=1..n  where  524 

inweighted out(pv) = ∑ 𝑐vw
𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑜𝑢𝑡𝑛

𝑤=1  |  ∀ v = 1..n  525 

INweighted in  = (inweighted in(pv))v=1..n  where 526 

inweighted in(pv) = ∑ 𝑐vw
𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑖𝑛𝑛

𝑤=1  |  ∀ v = 1..n 527 

and the outgoing node strength (sum of outgoing connections for every node) as 528 

OUTweighted out = (outweighted out(pw))w=1..n  where 529 

outweighted out(pw)  = ∑ 𝑐vw
𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑜𝑢𝑡𝑛

𝑣=1  |  ∀ w = 1..n  530 

OUTweighted in = (outweighted in(pw))w=1..n  where 531 

outweighted in(pw)  = ∑ 𝑐vw
𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑖𝑛𝑛

𝑣=1  |  ∀ w = 1..n  532 

Statistical evaluation of the computed effects (first and second order) are performed by 533 

comparing them to the effects of random drawn gene sets (genome-wide randomized 534 

function/trait-gene association) from the genome G.  535 

1. Calculate the network effects for a function/trait T. 536 

2. Draw >=1000 random set of genes from the genome G with equal size of T. 537 

3. Calculate the first and second order effects for every random set.  538 
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4. P-values for the effects of T can be computed for every spatial sample position by 539 

performing a Z-test against the null-distribution represented by the >=1000 540 

random effects since every spatial sample point is normally distributed in the gene 541 

dimension (verified by KS tests). 542 

The significance of INweighted out can be interpreted as nodes that are receiving from primary 543 

expression sites (regions with high S), while OUTweighted in shows regions projecting to  544 

primary expression sites.  P-value calculations of INweighted in and OUTweighted out are 545 

numerically equal to the p-value calculation of  S (for a node degree>0), since for those cases 546 

the sum of incoming and outgoing connections are constant factors when compared to 547 

random effects. We point this out to clarify the p-value calculation of INweighted in and 548 

OUTweighted out  can be substituted by S for computational reasons. 549 

inweighted in(pv)  =  ∑  𝑛
𝑤=1 s(pv) * cvw = s(pv) *  ∑  𝑛

𝑤=1 cvw      |   ∀ v = 1..n 550 

outweighted out(pw) =  ∑  𝑛
𝑣=1 s(pw) * cvw = s(pw) *  ∑  𝑛

𝑣=1 cvw       |   ∀ w = 1..n 551 

Due to the multiple comparison problem, we adjust the FDR of the p-values of the effects by 552 

the Benjamini-Hochberg (13) method. The results in this paper are all significant under a 553 

FDR <5% (if not indicated otherwise). 554 

Output is a p-value map (a p-value for every spatial sample point) for every effect. In this 555 

paper, S, IN, OUT are used due to their fast computation, simplicity and biological 556 

significance.  557 

Code availability  558 

The code for retrieving data (gene expression, mouse connectome) from the AMBA API 559 

consists of a Matlab script whose single input parameter is a .csv with function/trait 560 

information as a list of gene symbols and Entrez IDs. The main algorithm was implemented 561 

as an R-script that uses the generated files (downloaded data from AMBA) of the Matlab 562 

script to normalize, calculate and carry out a statistical evaluation to generate p-value maps 563 

and structural network visualization for every testcase. The statistical evaluation, which was 564 

randomized because of the extent of the computational task, is parallelized. 565 

MATLAB- and R-codes will be made publically available under an open source license for 566 

non-commercial use upon acceptance of the paper for publication. 567 

Figure generation  568 

Figures were generated with a R-script that will be provided on request. It uses the p-value 569 

maps of the method to generate slice-views of different effects, heatmaps with statistical 570 

measures of the effects and gene expression, clustered networks, csv-files with raw data and 571 

precision-recall heatmaps (for data with ground truth). 572 

Slice-views: Slice-views show 11 maximum intensity projections of 5 sagittal slices each 573 

of a 132x80x114 voxel volume (which represents spatial sample positions) that shows 574 

the left hemisphere of the mouse brain. Slice-views are used to visualize a log-scaled 575 

mapping of first order p-values (of S), second order incoming node strength IN (regions 576 

that are targets of first order regions) and second order OUT (regions projecting to first 577 
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order regions). At the bottom-right corner is a color-bar, indicating the minus log10-578 

scaled p-values, the threshold for false positive FDR (10% solid line, 5% dotted line). 579 

Slice-views of all testcases can be found in Supplementary Data 3 Case 1-30A, B, C.  580 

Heatmaps: Heatmaps in Supplementary Data 3 Case 1-30D and Supplementary Data 4 581 

show the log-scaled p-values of first and second order effects as well as single gene 582 

effects (gene expression density of a gene vs gene expression density of the genome) for 583 

every significant region (a region that has at least one voxel with significant first or 584 

second order effect). The regions are color-coded (on the left side) corresponding to the 585 

AMBA, and given by their acronym on the right side. Similar information can be found 586 

in the attached csv files (Supplementary Data 1) which contain the region-wise p-values 587 

of first and second order effects. 588 

Clustered network graphs: We clustered our test sets via hierarchical clustering with 589 

Ward's Criterion (59) using the R function hclust(*, "ward.D2"). To ensure that 590 

voxels with similar connections are within the same cluster, they are clustered by their 591 

Pearson-correlation coefficient of their connectivity. To visualize the clusters, we plotted 592 

a sagittally-projected heatmap of their combined p-value (minimum p-value of effects), 593 

surrounded by labels. The connectivity between clusters is shown by the sum of 594 

connectivity (normalized by injection volume) between the clustered regions given as 595 

grey-scale. All graphs can be found in Fig. 2A and Supplementary Data 3 Case 1-30E. 596 

F1-score bar-chart: Based on available ground truth from the literature (Supplementary 597 

Data 2), we calculated the F1-score (45) based on the precision and recall for a binary 598 

classification of ordered p-values. It doesn't take the true negative rate into account, 599 

which is acceptable for the following reason: The literature-based ground truth is region 600 

based. This means we can identify 601 

 true positives (a positive classified voxel within a region of the ground truth) 602 

 false positive (a positive classified voxel outside a region of the ground truth) 603 

but not 604 

 true negative (a negative classified voxel outside a region of the ground truth), 605 

since the total set of regions of the functional neuroanatomy are still unknown 606 

 false negatives (a negative classified voxel within the ground truth), since it is 607 

possible that only a subset of the ground truth region is specific for functional 608 

neuroanatomy.  609 

For the calculation of the F1-score, respectively precision and recall, the precision is 610 

computed as the ratio of true positive voxels to the amount of positive voxels. For a 611 

voxel-based recall, a false negative rate would be necessary, and so we used the region-612 

based recall, the ratio of positive classified regions to ground truth regions. We defined a 613 

positive classfied region if at least 5% of the voxels of a region is positive (to account for 614 

noise). P-value maps for the F1-score bar chart were computed at 200 micron resolution 615 

due to extensive computational network measures. 616 

  617 
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Technical resources  618 

We used the Amazon elastic cloud computing service with an "r3.8xlarge" instance (32 cores, 619 

244 GB RAM) (60). More than 100 GB RAM is recommended, 40 GB alone to hold the 620 

connectivity matrix in the memory. Additional memory is needed for parallel processing 621 

(approximately 3 GB per core). We tested the R-scripts with 30 cores. The computation uses 622 

about 200 GB Ram and takes between 1 and 2 hours per testcase (depending on the amount 623 

of genes in a set) to calculate the p-values for first and second order effects. The clustering 624 

for the circle-graphs are also parallelized. Depending on the size of the significant areas, 625 

clustering takes between 30 minutes to 3 hours. 626 

General statistics  627 

Unless indicated otherwise, data were tested for normality by Kolmogorov–Smirnov or 628 

D'Agostino & Pearson tests at <0.05 and analyzed non-parametrically if tests didn’t pass. 629 

Predicted functional neuroanatomy maps were compared to ground truth from fMRI using a 630 

Spearman correlation of the −log10-scaled voxel-wise p-value of predicted nodes, set to 631 

p=10-3 for all p<10-3, to BOLD heat responses of wt animals or differences in BOLD heat 632 

responses in Cacna2d3 mutant vs. wt animals, respectively. To compensate for registration 633 

errors between the AMBA reference space and fMRI data, these comparisons were 634 

performed on volumes downsampled to 400 m spatial resolution.  635 
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Supplementary Note 1 648 

Investigating functional and structural brain network data and its analysis is an ongoing 649 

challenge (61). Bullmore and Sporns (61) described the exploration of structural and 650 

functional brain networks as a multi-stage approach, beginning with the separate creation of 651 

structural and functional connectivity matrices based on anatomical parcellations. Network 652 

measures, such as node degree, node strength, hubs, centrality, betweenness etc., indicate 653 

network properties of interest when compared to equivalent measures of a population of 654 

random networks (null-distribution). A local (region-wise) or global (Mantel-test) (62) 655 

comparison reveals functional and structural correspondences of the networks.  656 

The integration of genetic information facilitates insight into the influence on neuronal 657 

activity and structural organization of the brain (1). French and Pavlidis (1) compared cortical 658 

and subcortical regions of a rat connectome (63) and AMBA gene expression data (8) using 659 

Spearman’s rank correlation to show that brain regions with similar expression patterns have 660 

more similar connectivity profiles. The similarities are close enough that a computational 661 

model by Ji et al (64) could predict structural connectivity by gene expression profiles. 4048 662 

genes with coronal spatial expression data were used as individual features in a sparse model 663 

to obtain a predictive accuracy of 93% on anatomical parcellations. A follow up study proved 664 

that this also works on mesoscale-resolution (voxels at 200 micron resolution) (65). 665 

A combined approach of comparing structural connectivity, gene co-expression correlation 666 

and functional networks was investigated by (3). Resting-state fMRI networks (default-mode, 667 

salience, sensorimotor and visuospatial) were used as a starting point to identify functionally 668 

related cortical regions in mice and humans. The strength fraction (scaled node strength of 669 

gene co-expression networks) between those regions was significantly more similar than to 670 

the remaining brain regions (tested by permutation tests). Genes that are related to the four 671 

functional networks were identified by ranking them by their marginal influence on the 672 

strength fraction. A gene co-expression matrix including only top-ranked genes was 673 

compared to structural connectivity using the Mantel procedure (62) and were significant 674 

compared to a sample of 10,000 random gene sets. (2) used Spearman’s rank correlation 675 

between node degree of structural connectivity and gene co-expression of gene sets related to 676 

Gene Ontology groups (cellular composition and biological process) to assess how structural 677 

connectivity is genetically driven. Connectivity related Gene Ontology groups were also used 678 

by Fulcher and Fornito (66). They showed that the mean gene co-expression correlation of 679 

groups related to biological processes are higher for connections involving structural “hubs” 680 

(node degree over threshold) vs non-hubs indicates topological specializations of 681 

interregional connections. Structural network hubs were also found to correspond to known 682 

functional networks from the literature (4, 5). Compared to other studies (1–3, 66) which 683 

used node strength or variations of it, Rubinov and Sporns (12) assessed other structural 684 

network parameters, such as community structures, hierarchical modules, high-low cost sub-685 

networks etc. 686 

An overview of related work and its modalities can be found in Supplementary Table 1. 687 

Apart from Fakhry and Ji (65), who used high-resolution prediction, the studies cited were 688 

computed on anatomically parcellated mouse brains (Richiardi and Altmann (3) also used 689 

human data). Our approach was performed on 100-micron grid parcellation. In contrast to 690 

Richiardi and Altmann (3), where functionally related gene sets were products of their 691 

marginal influence on resting-state networks, we used functionally-linked gene sets as the 692 
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entry point of our method. Fulcher and Fornito, as well as French et al. (2, 66) showed the 693 

influence of Gene Ontology groups of biological processes on structural networks, while our 694 

approach utilized sets from gene association studies (database-mining, QTL analyses or 695 

SNPs) and that can be directly linked to certain behavioral or mental features. Known 696 

functional networks from the literature confirmed our results as well as the correlation with 697 

resting state fMRI. 698 

Comparing gene co-expression correlation to structural connectivity is a common approach 699 

for assessing brain structures with genetic functionality (1–3, 64–66, 4, 5). The novelty in our 700 

paradigm is weighting structural connectivity with functionally related, cumulative gene. It is 701 

not only comparing networks, but it shows the direct effect of functionally related gene 702 

expression on brain anatomy. Those effects were encountered by node strength, which we 703 

proved to be a sufficient indicator, but also with various other network measures.  704 

 705 

Supplementary Note 2 706 

Pain sensation is biomedically one of the most important brain functions. While physiological 707 

sensation is essential to protect the organism and to avoid harm, it is very often a result of 708 

diseases or pathological/abnormal processes when the sensory information does not reflect 709 

the factual danger from the environment. Pain gene sets from mice and human were taken 710 

from literature and databases (Supplementary Data 2) (67, 68). pre-clustered or pre-assigned 711 

to subcategories based on behavioral phenotype (nociception, analgesia, hypersensitivity) or 712 

functional annotations (Gene Ontology (GO)), calcium signaling = calmodulin 713 

binding+calcium ion transport associated genes related to pain processing). For the human 714 

case we chose a metastudy combining SNPs associated with pain sensitivity or we extracted 715 

subcategories (obtained using the DAVID platform based on functional annotation) from the 716 

database for pain-related genes. We also used the Calcium signaling category as a set based 717 

on evolutionary conserved pain genes. Importantly, the effector networks from most of these 718 

gene sets could be linked to known pain-related areas in the brain (46, 48, 69, 70), but also 719 

other regions such as piriform and entorhinal cortices, nucleus accumbens and VTA (Fig. 720 

4A). Functional neuroanatomy maps from these gene sets, and the single gene Cacna2d3, 721 

were also compared to fMRI pain responses of wt and mutant animals, respectively (50) (Fig. 722 

3A). The maps derived from the gene sets (except nociception) were similar to the expected 723 

pain network from the mouse fMRI (Fig. 3A). The Cacna2d3-dependent maps identified by 724 

our method retraced Cacna2d3’s functional genetic effects on pain processing in fMRI in 725 

regions like striatum, olfactory areas, somatosensory cortex, hippocampus, hypothalamus, 726 

paraventricular nucleus of thalamus (PVT) and basal ganglia. Similarly, for the human gene 727 

sets (Fig. 4B), we obtained the brain regions known to be involved in pain processing, 728 

including central grey, PVT, insular and somatosensory cortex, but also VTA – as in the 729 

mouse case – or higher order associative cortices which are responsible for self-awareness 730 

and conscious perception of pain.  731 

Fear and anxiety-related genes were retrieved from JAX QTLs database (mouse) or from 732 

literature (mouse and human) (71, 72), pre-assigned to behavioral phenotypes (startle 733 

response, exploration, anxiety, depression and panic disorder). Again, the computed maps 734 

(mouse and human) contained nodes with a fitting functional annotation, like fear-related 735 

regions in the amygdalar complex, prefrontal cortex, thalamic or midbrain structures (73–78). 736 

Moreover, the main nodes detected by our method are in line with their associated functional 737 
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subcategory, e.g. startle behavior was linked to insular cortex and PVT, while mental 738 

disorders were linked to insular cortex, ACB and VTA (Fig. 4A). For the panic disorder 739 

category, we can see differences in cortical regions identified for mouse and human. For 740 

example, human data, unlike the mouse, lacks vmPFC, somatosensory or motor corices, 741 

while we did not detect the auditory cortex in the mouse brain (Fig. 4).  742 

For autism-related genes, we retrieved 183 genes implicated in behavioral phenotypes in 743 

mouse models of ASD and 739 autism-associated genes in humans from Autdb database 744 

(79) and clustered the genes with DAVID (80), for further analysis, we chose functional 745 

annotation categories that were the most relevant for ASD modeling: linked to behavior, 746 

cognitive abilities, synaptic functions and cellular level processes. Similar to the other gene 747 

sets, the computationally predicted maps contained nodes related to autistic brain function 748 

(71, 81–88), in the case of the human brain several cortical, subcortical and cerebellar areas 749 

were not identified (Fig. 4B).  750 

To sum up, we were able to identify most of the known functionally involved brain regions 751 

for all of the investigated categories based on mouse and human data. Additionally, for 752 

different specific subcategories the method identified functionally relevant structures which 753 

were found at the highest positions in rank-order lists. Taking together all the data, the 754 

method can also be a useful tool for identifying novel functional targets, potentially involved 755 

in traits linked to the genetic input. With this, we can bridge already known functional 756 

systems using potential new -still unexplored - connections or even identify new functional 757 

networks. For more detailed information please see Supplementary Data 1, 2, Fig. 3, 758 

Supplementary Data 3 Case 11-29 (for mouse) and Supplementary Data 4 (for human). 759 
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 Focus 
Spatial gene co-

expression 
Functional data 

Fusing/comparing data with structural 

connectivity 
Quantitative network analysis 

Predicting functional 

neuroanatomical maps from 

fusing brain networks with 

genetic information 
 

Mouse, whole 
brain, voxels at 

100-micron 

resolution 
 

Human, whole 

brain, 415 regions 

Cumulative effect 
(trimmed mean co-

expression) of gene sets 

Functional related gene sets 
from literature and gene 

association studies (QTL 

analyses) + Gene Ontology 
 

Known functional networks 

from the literature  

 

Resting-state fMRI (heat 

response) 

Weighting structural/functional connectivity with 
functionally related, cumulative gene sets to show 

their effect on the network via network measures 

 
Comparing network nodes to known functional 

networks from the literature and fMRI data 

 

 

Network measures: Node 
strength, Hub/Authority, 

Betweenness, Closeness, 

Eigencentrality 
 

Comparing network measures of 

functional weighted networks 

with empirical null distribution 

(random-functional weighted 

networks) 

(Review) Complex brain 

networks: graph theoretical 

analysis of structural and 

functional systems (61) 

various, but 

especially human 

- fMRI, electrophysiological 

techniques (EEG, MEG or 

MEA) 

Network measures of interest and compare them to 

equivalent parameters of random networks 

various (e.g. node degree, 

clustering coefficients, motifs, 

hubs, centrality, modularity) 

Integrative analysis of the 

connectivity and gene 

expression atlases in the mouse 

brain (64) 

Mouse, whole 

brain, 301 brain 

regions 

4048 genes (with non-zero 

expression and available as 

coronal sections)   
 

Genes were used as 

individual features in the 
prediction model  

- Using gene co-expression data to predict discretized 

(binarized by threshold) structural connectivity 

- 

High-resolution prediction of 

mouse brain connectivity using 

gene expression patterns (65) 

Mouse, whole 

brain, voxels at 
200-micron 

resolution 

4000 genes (with non-zero 

expression and available as 
coronal sections)   

 

Genes were used as 
individual features in the 

prediction model  

- Using gene co-expression data to predict discretized 

(binarized by threshold) structural connectivity 

- 

Relationships between gene 

expression and brain wiring in 

the adult rodent brain (1)  

Rat connectome, 

142 distinct 
regions of nearly 

half the brain 

volume 
 

Mouse, whole 

brain, 142 regions 

Gene expression 

correlation of 17,530 genes 
(filtered by unexpressed 

genes) 

- Spearman’s rank Correlation between gene 

expression and node degree of structural connectivity 
 

Mantel correlation of connectivity graph and gene co-

expression networks 
 

Comparing connectivity between single genes 

(thresholding the structural connectivity with regions 
where single genes are expressing) 

Node degree of structural 

connectivity 
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Correlated gene expression 

supports synchronous activity 

in brain networks (3) 

Mouse, 1777 
nodes in cortical 

regions 

 
Human, cortical 

regions 

Pearson 
Correlation genome wide 

4 resting-state fMRI networks 
(default-mode, salience 

sensorimotor and visuospatial) 

Compare strength fraction (=network measure) of 
gene co-expression correlation within/outside 

functional networks 

 
Marginal influence of each gene on strength fraction 

 

Comparing Mantel correlation of connectivity graph 
and transcriptional similarity  

 

Comparing Mantel correlation of structural/functional 
connectivity 

Comparing strength fraction 
(scaled node strength) of gene-co-

expression networks inter vs intra 

functional networks 

Wiring cost and topological 

participation of the mouse brain 

connectome (4) 

Mouse, whole 
brain, 112 regions 

Gene expression 
correlation of 3380 genes 

(with non-zero expression 

and available as coronal 
sections) 

Known functional networks 
from the literature 

Compared hubs to known functional networks from 
the literature 

 

Compared gene expression profiles (nodal 
participation) to network hubs 

Network measures: Community 
structures, hierarchical modules, 

hubs, high-low cost subnetworks 

Adolescence is associated with 

genomically patterned 

consolidation of the hubs of the 

human brain connectomes (5) 

Human, 308 

cortical regions 

Gene expression 

correlation of 20,737 genes 

Gene sets related to synaptic 

transmission, regulation of 

glutamatergic signaling and 
potassium ion channels 

Compared gene expression profiles to network hubs, 

modular community structures and connection 

distance of structural covariance matrix by correlation 

Network measures: Node degree 

and Closeness-Centrality 

Large-Scale Analysis of Gene 

Expression and Connectivity in 

the Rodent Brain: Insights 

through Data Integration (2) 

Rat connectome, 
142 distinct 

regions of nearly 

half the brain 
volume 

 
Mouse, whole 

brain, 142 regions 

Gene expression 
correlation of gene sets of 

cell types and biological 

process division (Gene 
Ontology) that are related 

to connectivity 

Cell-type enriched gene sets, 
Gene sets of Gene ontology 

groups (limited to biological 

process division) 

Spearman’s rank Correlation between gene 
expression and node degree of structural connectivity 

of a (cell-type enriched or GO group) gene set 

compared to empirical-null distribution (resampled 
gene sets) 

 

Node degree of structural 
connectivity 

A transcriptional signature of 

hub connectivity in the mouse 

connectome (66) 

Mouse, whole 

brain, 213 brain 

regions 

Pearson 

Correlation genome wide 

 
Mean co-expression of 

functional groups of genes 

31 distinct functional groups of 

genes from biological process 

division (Gene Ontology) 

Comparing mean gene co-expression correlation of 

functional groups for structural connections involving 

hubs vs non-hubs 

Defining structural “hubs” as 

nodes with a node degree > k 

 760 

Supplementary Table 2: Outline of related work with focus on the quantitative analysis of networks that are either functional, 761 

structural, derived from gene expression, or a combination thereof. 762 
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MOUSE HUMAN 

P
a
in

 

Meta-study: 

Database 
Functional classes according to the 

Pain database (67) 

Common human genetic variants (89–

91) + Functional analysis with DAVID 

(80) 

Meta-study: 

literature screen  
SNPs (89) 

Experimental 

data (literature) 

Neuronal-specific RNAi knock-down strategy in adult Drosophila (68) + 

Functional clustering 

 

                    

F
ea

r
 

Meta-study: 

Database 
Functional classes from JAX 

database: QTLs (72)  

Meta-study: 

literature screen 
Multidisciplinary integration of human (71, 90) and mouse (71, 91, 92, 93, 

94)  data 

 

                    

A
u

ti
sm

 

Meta-study: 

Database 

Collection of all genes connected to ASD in humans and relevant animal 

models (AutDB) (79) + Functional analysis (DAVID) (80) 

Supplementary Table 3. Summary of mouse and human functional genetic data collection. 763 
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