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1Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada4

2Department of Mathematics and Statistics, University of Ottawa, Ottawa, ON K1N5

6N5, Canada6

?Correspondence and requests for materials should be addressed to S.A.B.7

(sarisbro@uottawa.ca).8

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 26, 2017. ; https://doi.org/10.1101/070102doi: bioRxiv preprint 

sarisbro@uottawa.ca
https://doi.org/10.1101/070102
http://creativecommons.org/licenses/by-nc-nd/4.0/


2

Abstract9

Recent history has provided us with two severe viral outbreaks (Ebola and Zika) and10

one pandemic (Influenza A/H1N1). In all three cases, post-hoc analyses have given us11

deep insights into what triggered these outbreaks, their timing, evolutionary dynamics,12

and their phylogeography, but the genomic characteristics of outbreak viruses are still13

unclear. To address this outstanding question, we searched for a common denominator of14

these recent outbreaks, positing that genomes of outbreak viruses are in an unstable evolu-15

tionary state, while those of non-outbreak viruses are stabilized by a network of correlated16

substitutions that have been found to be prevalent. Here, we show that during regular17

epidemics, viral genomes are indeed stabilized by a dense network of weakly correlated18

sites, and that these networks disappear during pandemics and outbreaks when rates of19

evolution increase transiently. Post-pandemic, these evolutionary networks are progres-20

sively re-established. We finally show that destabilization is not caused by mutations21

targeting epitopes, but more likely by changes in the environment sensu lato. Our results22

prompt for a new interpretation of pandemics as being caused by, from an evolutionary23

standpoint, destabilized, unhealthy viruses.24

Keywords: Ebola virus, Influenza virus, Zika virus, outbreak, pandemic, correlated evo-25
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Introduction27

Viruses are engaged in a form of arms race with their hosts, in which each party endeavors28

to outpace the other [1]. Regular epidemics can therefore be seen as an equilibrium29

situation, where both the virus and the hosts coexist. Such a stable evolutionary strategy30

can however break down when the virus becomes extremely virulent, which can lead to a31

severe outbreak or even a pandemic. Recent history is rich in such examples with an Ebola32

virus outbreak in 2014 [2], a Zika outbreak in 2015 [3], and an Influenza pandemic in 200933

[4]. Despite all of these recent examples, in which the phylodymanics of these events were34

meticulously reconstructed, we still do not know what characterizes the evolutionary35

dynamics of outbreaks and pandemics. Here we address this outstanding question by36

contrasting the evolutionary dynamics of pandemic and non-pandemic viruses.37

As theory tells us that regular epidemics are the result of a dynamic equilibrium38

[5], we posit that outbreaks are associated with a disequilibrium at the genomic level.39

More specifically, we suggest that outbreaks involve destabilized viral genomes, where40

evolutionary stability is maintained by compensatory mutations, that can be epistatic or41

not, but that result in signals of correlated evolution. We predict that such signals are42

severely weakened during an outbreak. As these signals often lead to complex networks43

of interactions [6, 7], we test how the structure of these correlation networks is affected44

during an outbreak. We show that during an outbreak, viral genes are destabilized.45

Results46

Networks of correlated sites are destabilized during outbreaks. In search for47

evolutionary differences between regular epidemics and severe outbreaks, we first con-48

trasted the glycoprotein precursor (GP) sequences of the Ebola virus that circulated49
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before, and during 2014/2016 outbreak. For this, we identified the pairs of nucleotides50

that show evidence for correlated evolution in each data set, before and during the out-51

break. As in previous work [6, 7], we found that these pairs of sites form a network. A52

first inspection of these networks of correlated sites revealed a striking difference between53

pre-2014 and outbreak sequences: in particular at weak correlations, the pre-2014 inter-54

action networks are very dense and involve most sites of GP, while only a small number55

of sites are interacting in outbreak viruses (Figure 1). Furthermore, at increasing corre-56

lation strengths, outbreak networks become completely disconnected faster: at posterior57

probability Pr = 0.80 some sites still interact in pre-2014 proteins, while all interactions58

have disappeared from Pr = 0.60 in outbreak proteins (Figure 1). Similar patterns for59

the Influenza (both HA and NA) and Zika viruses (Figures S3-S5) suggest that during60

a severe outbreak, a destabilization of viral genes occurs, especially among sites that61

entertain weak interactions.62

Destabilization affects weakly correlated sites. To further investigate this desta-63

bilization hypothesis, we analyzed the structure of these networks with the tools of social64

network analysis [8]. Again, we found a consistent pattern when contrasting regular and65

outbreak viruses: at weak to moderate interactions (Pr ≤ 0.50), outbreak viruses have66

networks of smaller diameter, shorter path length, and reduced eccentricity (Figure 2a-67

c, columns 1-5). All these patterns point to fewer connected sites in outbreak viruses.68

Betweenness is smaller for outbreak viruses (except Ebola), and transitivity tends to be69

larger (except Zika). These last two measures also suggest that interactions among sites70

are weakened in outbreak viruses. Other networks statistics failed to show a clear pattern71

(Figure S6): in particular, there were no clear differences in terms of degree, centrality or72

homophyly – all properties that are not directly related to network stability.73
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Post-outbreak re-stabilization. Should these weak interactions play a critical role in74

the stabilization of viruses outside of pandemics, we would expect to observe the strength-75

ening of all the network statistics after the outbreak, as years go by. To test this prediction76

and estimate how long this re-stabilization process can take, we analyzed in a similar way77

all influenza seasons in the Northern hemisphere following the 2009 pandemic (until 2015-78

16). Consistent with our prediction, both HA and NA genes show a gradual transition79

between a typical pandemic state to a regular state in two-to-three seasons (Figure 2,80

column 5-6, respectively).81

Non-genetic sources of destabilization. To understand what the potential sources of82

this destabilization are, we assessed the involvement of viral antigenic determinants / epi-83

topes. Should mutations accumulating in such epitopes be responsible for destabilization,84

we would expect (i) that weak interactions in non-pandemic viruses involve mostly epi-85

topes, and (ii) that pandemics be associated with the disappearance of these interactions86

at epitopes first. Figure 3 shows no evidence supporting this hypothesis (X2 = 0.0663,87

df = 1, P = 0.7967): non-pandemic viruses show a small number of predicted epitopes88

in their interaction network, that do not act as central hubs of these networks, while89

pandemic viruses may actually show an enrichment in interacting epitopes. This suggest90

that non-genetic factors are likely responsible for the initial destabilization of the genome91

of pandemic viruses. Changes in their ecology / environment (vector) cannot be ruled92

out.93

Discussion94

To understand how evolutionary dynamics are affected during a viral outbreak, we com-95

pared non-outbreak and outbreak viruses. Based on the hypothesis that non-outbreak96
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viruses are in a stable evolutionary equilibrium, and that such a stability is mediated by97

correlated evolution among pairs of sites in viral genes, we reconstructed the coevolution98

patterns in genes of non-outbreak and outbreak viruses. In line with our prediction, we99

found that outbreak viruses exhibit fewer coevolving sites than their non-outbreak coun-100

terparts, and that these interactions are gradually restored after the outbreak, at least in101

the case of the Influenza (2009 H1N1) virus for both HA and NA.102

Two independent lines of evidence are consistent with our destabilization hypothesis.103

First, all three viruses showed temporary increases in their rate of molecular evolution104

during each outbreak [2, 3, 4]; such increases can be expected to tear down the coevolu-105

tionary structure, and hence, destabilize viral genomes. We showed that epitopes were106

not particular targets of this mutational process, which is hence most likely affecting sites107

randomly. Second, a probable cause of the epidemics can be identified in all cases studied108

here. For Influenza, the 2009 pandemic was caused by a chain of reassortment events109

that affected the two genes studied here, HA (triple-reassortant swine) and NA (Eurasian110

avian-like swine) [4]. Such exchanges of segments can very well destabilize the evolution-111

ary dynamics, at least of the implicated segments. A similar argument can made for both112

Ebola and Zika viruses, as a change of host was implicated in the Ebola outbreak [2],113

and a change of continent in the case of Zika [3, 9, 10]. These corresponding changes114

of environment (sensu lato) might have triggered the destabilizations observed here. In115

addition to such environmental changes, it is very likely that destabilization reflects a116

complex interaction between the genetics of viruses, their demographic fluctuations and117

environmental changes.118

One outstanding question is about the importance of weak patterns of coevolution119

within a gene: how can it be explained that it is essentially weak correlations (around120

Pr = 0.25) that distinguish non-outbreak from outbreak viruses? In recent study on121
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mice, four phenotypes were quantitatively analyzed following large intercrosses, and linear122

regressions on pairs of quantitative trait loci were used to detect non-additive effects, i.e.,123

epistasis; it was then showed that most epistatic interactions were weak and, critically,124

tended to stabilize phenotypes towards the mean of the population [11]. Viruses are not125

mice, and all correlations that we detect are probably not involved in epistatic interactions,126

but both this work in mice and the evidence presented here go in the same direction:127

weak interactions have a stabilizing effect on viral genes and their phenotype (epidemics).128

It is further possible that the intricate nature of these weak correlation networks has129

higher-order effects [11], that in turn increase canalization and hence may help viruses130

weather environmental and genotypic fluctuations [12]. The elimination of these many131

weak interactions has a destabilizing effect that may be caused or lead to outbreaks. This132

calls for a new interpretation of pandemics that, from an evolutionary point of view,133

appeared to be caused by unhealthy or diseased viruses. While the evidence shown here134

does not support the causal nature of this relationship, monitoring correlation networks135

could help forecast imminent outbreaks.136

Methods137

Sequence retrieval. Nucleotide sequences were retrieved for three viruses: Ebola, Zika,138

and Influenza A, for select protein-coding genes, chosen because they represent the most139

sequenced genes for each of these viruses. All sequences were downloaded in May 2016140

(Table S1).141

For Ebola, the virion spike glycoprotein precursor, GP, was retrieved as follows. A142

GP sequence (KX121421) was drawn at random from the 2014 strain used previously143

[7] and was employed as a query for a BLASTn search [13] at the National Center for144
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Biotechnology Information. A conservative E-value threshold of 0 (E < 10−500) was used,145

which led to 1,181 accession numbers. As most of these accession numbers correspond146

to full genomes, while only GP is of interest, we (i) retrieved all corresponding GenBank147

files, (ii) extracted coding sequences with ReadSeq [14] of all genes, (iii) concatenated the148

corresponding FASTA files into a single file, (iv) which was then used to format a sequence149

database for local BLASTn searches, and (v) used GP from KX121421 in a second round150

of BLASTn searches (E < 10−250, coverage > 75%).151

In the case of Zika, sequences of 252 complete genomes were retrieved from the Virus152

Pathogen Resource (www.viprbrc.org). The RNA-dependent RNA polymerase NS5 was153

specifically extracted by performing local BLASTn searches as described above.154

Full-length Influenza A sequences were retrieved directly from the Influenza Virus155

Resource [15]. Only H1N1 sequences circulating in humans for the hemagglutinin (HA)156

and neuraminidase (NA) genes were downloaded. Two types of data sets were constructed:157

one containing pandemic and non-pandemic sequences circulating in 2009, the pandemic158

year, and one containing pandemic sequences circulating from August 1 to July 31 of159

each season in the Northern temperate region between 2009/2010 and 2015/2016 (seven160

seasons in total). Only unique sequences were retrieved.161

Phylogenetic analyses. Sequences were all aligned with Muscle [16] with fastest op-162

tions (-maxiters 1 -diags). Alignments were visually inspected with AliView [17] to remove163

rogue sequences and sequencing errors. Phylogenetic trees were inferred by maximum164

likelihood under the General Time-Reversible model with among-site rate variation [18]165

with FastTree [19]. As outbreak sequences (Ebola and Zika viruses) cluster away from166

non-pandemic sequences, we used the subtreeplot() function in APE [20] to retrieve167

accession numbers of pandemic sequences and hence separate them from non-pandemic168
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sequences with minimal manual input. FastTree was used a second time to estimate169

phylogenetic trees of the subset alignments, with the same settings as above.170

Network analyses of correlated sites. Amino acid positions (“sites”) that evolve171

in a correlated manner were identified with the Bayesian graphical model (BGM) in172

SpiderMonkey [21] as implemented in HyPhy [22]. Briefly, ancestral mutational paths173

were first reconstructed under the MG94×HKY85 substitution model [23] along each174

branch of the tree estimated above at non-synonymous sites. These reconstructions were175

recoded as a binary matrix in which each row corresponds to a branch and each column176

to a site of the alignment. A BGM was then employed to identify which pairs of sites177

exhibit correlated patterns of substitutions. Each node of the BGM represents a site and178

the presence of an edge indicates the conditional dependence between two sites. Such179

dependence was estimated locally by a posterior probability. Based on the chain rule for180

Bayesian networks, such local posterior distributions were finally used to estimate the full181

joint posterior distribution [24]. A maximum of two parents per node was assumed to182

limit the complexity of the BGM. Posterior distributions were estimated with a Markov183

chain Monte Carlo sampler that was run for 105 steps, with a burn-in period of 10,000184

steps sampling every 1,000 steps for inference. Analyses were run in duplicate to test for185

convergence (Figures S1-S2).186

The estimated BGM can be seen as a weighted network of coevolution among sites,187

where each posterior probability measures the strength of coevolution. Each probability188

threshold gives rise to a network whose topology can be analyzed based on a number189

of measures [8] borrowed from social network analysis. We focused in particular on six:190

average diameter: length of the longest path between pairs of nodes; average betweenness:191

measures the importance of each node in their ability to connect to dense subnetworks;192
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assortative degree: measures the extent to which nodes of similar degree are connected to193

each other (homophyly); eccentricity: is the shortest path linking the most distant nodes194

in the network; average strength: rather than just count the number of connections of195

each node (degree), strength sums up the weights of all the adjacent nodes; average path196

length: measures the shortest distance between each pair of nodes. All measures were197

computed using the igraph package ver. 1.0.1 [25]. Thresholds of posterior probabilities198

for correlated evolution ranged from 0.01 (weak) to 0.99 (strong). LOESS regressions199

were then fitted to the results.200

Epitope analyses. Epitopes were predicted using the NetCTL 1.2 Server [26]. Briefly,201

Cytotoxic T lymphocyte (CTL) epitopes are predicted based on a neural network algo-202

rithm trained on a database of human MHC class I ligands. Epitopes can be predicted203

for 12 MHC supertypes (A1, A2, A3, A24, A26, B7, B8, B27, B39, B44, B58, B62), that204

are broad families of very similar peptides for which independent neural network models205

have been generated. As such, we ran the epitope prediction for each supertype inde-206

pendently, on non-outbreak and outbreak viruses. Circos plots were generated with the207

circlize package ver. 0.3.10 in R [27]. Scripts and sequence alignments used are available208

from github.com/sarisbro.209
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Figure 1. Correlation network of pre-outbreak and outbreak Ebola viruses. Networks of
correlated sites in the GP protein are shown in each panel. The top row shows networks for the viruses
circulating before the 2014 outbreak (blue); the bottom row shows networks for outbreak viruses (red).
Each column shows networks for different strengths of correlation, from weak (Pr = 0.05) to strong
(Pr = 0.95). Nodes represent animo acid sites, and edges correlations. Node sizes are proportional to
diameter.
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Figure 2. Network properties between pandemic and non-pandemic viruses. Results are shown for Ebola (column 1), Zika
(2) and Influenza viruses: for HA and NA circulating in 2009 in (3) and (4), respectively, and for pandemic viruses circulating between
the 2009-10 (deep red) and the 2015-16 (deep blue) season in (5) and (6). Pandemic viruses are show in red, while non-pandemic ones
are in blue. Shading: 95% confidence envelopes of the LOESS regressions. Five network measures are shown: (a) diameter, (b) average
path length, (c) eccentricity, (d) betweenness, and (e) transitivity.
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Figure 3. Interacting residues in pandemic and non-pandemic viruses. Results are shown
for Ebola at weak correlations (Pr = 0.20). Coevolving positions in the alignment are identified with
arabic numbers; for those that are predicted to be epitopes, supertypes (A1, A2, etc.) are shown.
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