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Abstract

This work presents a computational method for improving seizure detection for epilepsy diagnosis. Epilepsy is the second
most common neurological disease impacting between 40 and 50 million of patients in the world and its proper diagnosis
using electroencephalographic signals implies a long and expensive process which involves medical specialists. The
proposed system is a patient-dependent o�ine system which performs an automatic detection of seizures in brainwaves
applying a random forest classi�er. Features are extracted using one-dimension reduced information from a spectro-
temporal transformation of the biosignals which pass through an envelope detector. The performance of this method
reached 97.12% of speci�city, 99.29% of sensitivity, and a 0.77h−1 false positive rate. Thus, the method hereby proposed
has great potential for diagnosis support in clinical environments.
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1. Introduction

Epilepsy is the second most common neurological dis-
ease in humans after stroke (Guo et al., 2010). It is es-
timated between 40 and 50 million of patients su�ering
from this condition worldwide, which means 1% of the to-
tal world population (Tzallas et al., 2009; Guo et al., 2010;
Fatichah et al., 2014). Although there are several medical
treatments, 30% of the patient population have not a posi-
tive response to medication (Orosco et al., 2016) requiring
expensive and long diagnosis processes (Das et al., 2016).

Seizures are the typical indicators for epilepsy diagnosis
(Tzallas et al., 2009). A seizure is an abnormal excessive
and hyper-synchronized neural activity in the brain (Tza-
llas et al., 2009; Das et al., 2016; Orosco et al., 2016) and
it can be seen through electrical variations recorded from
the whole brain mass or speci�c sections on its structure
(Sierra-Marcos et al., 2015).

Among several imaging techniques of biosignals with
medical relevance (Teplan, 2002), electroencephalograms
(EEGs) are some of the most relevant alternatives. EEGs
are recordings of electrical time-dependent variations of
the brain activity (Teplan, 2002; Djemili et al., 2016). Al-
though the electrical amplitude measurable in each neu-
ron is small, the result of the synchronization in time and
phase of large neural networks during cognitive operations
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allows detecting the neuron electrical signals even at scalp
with EEG (Hesse et al., 2003).

There are several methods to recognize seizures using
electrical biosignals of the brain (Tzallas et al., 2009). It
was proved that epilepsy seizures are more distinguish-
able with electrical recordings in brain internal layers or
electrocorticograms (ECoGs). Hence, EEG contains sev-
eral distortions of the epilepsy signatures in comparison
with ECoG (Spyrou et al., 2016). Nevertheless, there are
several advantages of the former over other techniques:
It is safe, non-invasive, and easy to assembly (Hu et al.,
2011). Those characteristics established EEG as the de

facto standard, along with video monitoring for epilepsy
seizure diagnosis (Page et al., 2015).

Medical recommendations for seizure diagnosis often
include performing long brain activity recordings of pa-
tients (Tsiouris et al., 2015). Then, the obtained data are
analyzed by an expert in the area relying on subjective in-
spection (Samiee et al., 2015; Tsiouris et al., 2015; Spyrou
et al., 2016; Orosco et al., 2016) commonly based on the
visual information available (Das et al., 2016; Orosco et al.,
2016). This human dependency implies an expensive and
time-consuming process prone to errors due to the stored
data size (Tsiouris et al., 2015).

It is important to notice that not all epilepticform waves
appear during seizure intervals (Sierra-Marcos et al., 2015).
Paroxysmal activity is an abnormal synchronous discharge
of large ensemble of neurons and is strongly related with
seizure processes. Such activity can be detected in EEG
and is usually confused as an e�ectively epilepsy marker
(Tzallas et al., 2009). This abnormal cortical pattern can
appear during seizures (ictal) or in the interval between
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them (interictal) (Tzallas et al., 2009; Spyrou et al., 2016).
One of the bases of the present study is to explore and
use that uncommon interictal patterns as seizure predic-
tor factors.

Several alternatives have been developed to recognize
seizures in EEG (Orosco et al., 2013; Alotaiby et al., 2014).
A �rst distinction between the approaches is the speci�c
domain of the EEG data on which they have focused: Time
series, frequency data, or spectro-temporal signals (Ahmad
et al., 2015; Das et al., 2015). Another signi�cant di�er-
ence is the set of features which each method obtained
in its analysis: Some studies utilized statistical, chaos the-
ory, or information theory parameters (Ahmad et al., 2015;
Das et al., 2015; Gill et al., 2015), while other e�orts ap-
plied data transformations such as singular value decom-
position (SVD) or principal components analysis (PCA)
(Zhao et al., 2016). A third prominent divergence among
the previously proposed methods is the level of arti�cial
intelligence dependency to perform a decision. A group
of methods was designed to detect epilepsy intervals with-
out needing classi�ers based on machine learning (Alotaiby
et al., 2014), while other studies required speci�c algo-
rithms to classify well the data. In the latter category, sup-
port vector machines (SVM), k-nearest neighbours (KNN),
and arti�cial neural networks (ANN) are frequently used
as classi�ers (Orosco et al., 2013; Alotaiby et al., 2014).

This study proposes a novel approach which obtained
a higher performance compared with other state of the
art studies. This method is a combination of several tech-
niques of signal processing and machine learning: Short
time Fourier transform, principal component analysis, max-
imum moving �lter and a random forest classi�er.

2. Materials

In this research, the data source relies on the CHB-MIT
electroencephalographic scalp database from the Physionet
project (Goldberger et al., 2000). The database stores in-
tractable epileptic seizures from several pediatric patients
at the Children's Hospital Boston (Shoeb et al., 2004;
Shoeb and Guttag, 2010). The data were collected for an
experiment which was conducted for monitoring patients
after withdrawal of the epileptic medication as an analysis
before a surgical intervention. The dataset was collected
in 23 cases from 22 di�erent subjects where one of them
was recorded again after 1.5 years.

The complete data package is compounded of 686 �les
saved in the European data format (EDF) representing
a total of 961.64 hours (Goldberger et al., 2000). The
seizure recording durations of each patient are detailed
in Table 1. All signals were measured with a sampling
frequency of 256Hz with 16 bits of resolution. Nearly all
�les were captured in 23 channels using the international
10-20 system of electrode positions and nomenclature.

Patient

ID

Number of

seizures

Seizure

average

durations

Seizure

maximum

durations

Seizure

minimum

durations

chb01 7 63.14 101 27

chb02 3 57.33 82 9

chb03 7 57.43 69 47

chb04 4 94.5 116 49

chb05 5 111.6 120 96

chb06 10 15.3 20 12

chb07 3 108.33 143 86

chb08 5 183.8 264 134

chb09 4 69 79 62

chb10 7 63.86 89 35

chb11 3 268.67 752 22

chb12 40 36.88 97 13

chb13 12 44.58 70 17

chb14 8 21.12 41 14

chb15 20 99.6 205 31

chb16 10 8.4 14 6

chb17 3 97.67 115 88

chb18 6 52.83 68 30

chb19 3 78.67 81 77

chb20 8 36.75 49 29

chb21 4 49.75 81 12

chb22 3 68 74 58

chb23 7 60.57 113 20

chb24* 16 31.94 70 16

Table 1: Recorded seizure durations of each patient.
It should be noted that chb02 and chb24 represent recordings of the
same patient but with a di�erence of 1.5 years between the record-
ing dates. However, they are identi�ed as di�erent subjects for the
experiment.

3. Method

This study proposes to use a mapping of a spectro-
temporal transform of the brain signals into a one-dimension
space for being used as input for a classi�er algorithm (Fig-
ure 1). Thus, the complete signal analysis could be ex-
plained using four processes: Data preprocessing, dimen-
sionality reduction, envelope detection, data regrouping,
and classi�cation.

3.1. EEG data processing

Initially, some characteristics must be explained about
EEG. It exhibits several unique features: It is nonstation-
ary, nonlinear, and frequency-variant. The nonstationary
property denotes there is no period of time where the exact
signal will be repeated (Natarajan et al., 2004; Yan et al.,
2015). Also, as a non-linear time series (Natarajan et al.,
2004), EEG does not allow superposition or homogeniza-
tion, preventing anticipating future values using a linear
combination of the previous ones:

f

(
c

n∑
i=1

xi

)
6= c

∑
f (xi) (1)
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Figure 1: Work�ow of the seizure detection process: Data preprocessing, dimensionality reduction, envelope detection, data regrouping, and
classi�cation.

where c is a real constant, {x1, x2, . . . , xn−1, xn} are the
sampling instants, and f (xi) is the point related with a
instant xi.

Associated to the last attribute, variations in the in-
formation source on di�erent conditions or activities are
linked with alterations in the spectral response of the brain
biosignals (Yan et al., 2015).

Several techniques have been developed to extract in-
formation of EEG time series. The majority of them can
be grouped in two categories: Nonlinear feature extraction
processes and time-frequency transformations.

The �rst group is comprised of the nonlinear analysis
techniques based on information and chaos theory tools.
This kind of methods use parameters which can be used
successfully with non-linear and multivariate time series
(Natarajan et al., 2004). The most frequent feature in this
category is the signal entropy, which is a thermodynamic-
inspired quantity to describe the amount of information
(Awan et al., 2015; Iqbal et al., 2015). The Hurst expo-
nent, which measures the signal self-similarity, allowing
detecting time dependences, is often used as another sta-
tistical feature. Another parameter, the Lyapunov expo-
nent, which measures the sensitive dependence of the data
regarding to their initial conditions, is a representative of
the chaos theory derived metrics (Natarajan et al., 2004).

The second group is made of spectro-temporal trans-
formations. Information in the brain electrical signals is
stored with frequency variations (Yan et al., 2015). For
this reason, it is useful to analyze the deviations which
appear in the frequency domain. The conventional al-
ternative is a discrete Fourier transform or a fast Fourier
transform (Alotaiby et al., 2014). However, these kind of
mathematical tools are focused in stationary data series
and cannot be directly applied in EEG (Natarajan et al.,
2004).

A typical approach to analyze nonstationary signals

is splitting them in several time intervals, or time win-
dows, such that it could be obtained spectral features while
partial time information is retained (Tzallas et al., 2009).
In this perspective, a direct method is short time Fourier
transform (STFT), also known as Gabor transform, which
splits the complete signal in several �xed-length windows
and applies a Fourier transform in each slot. A signi�cant
disadvantage of this method is the �xed time-frequency
resolution. However, it showed an optimal response to
detect seizures (Samiee et al., 2015; Yan et al., 2015). Al-
ternative methods such as Wavelet transforms (WT) or
Wigner-Ville distributions (WVD) allow to obtain better
resolution. Nonetheless, either there is no a relationship
between the local frequencies and the measured time (as
in the case of WT) or nonlinear signals added to the trans-
formed data (as in the case of WVD) (Yan et al., 2015).

Applying only frequency transforms over EEG data
could lead to information loss due to their non-stationary
condition (Al-Manie and Wang, 2015). Therefore, STFT
was selected as the procedure to map signal into a time-
frequency plane (Wang et al., 2015). For a given discrete
function x [n], the STFT is calculated shifting a small slid-
ing window g [n] of a ∆t length over the time series to
obtain the frequency spectrum in each time interval:

G {x [n]} [m, f ] =
∞∑

n=−∞
x [n] g [n−m] e−j2πfn (2)

where n and m are sampling instants, and f is the signal
frequency.

Due to the fact that the signal is not continuous (it
is sampled at �xed periods) there are several limitations
in the process of STFT calculation. A �rst restriction is
linked with its discrete nature, making the time resolution,
which is the minimum time interval when frequency infor-
mation is retrieved, to depend on the length of points ∆n
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and the window g [n]:

∆t = ∆n · fs (3)

Another constraint is the frequency resolution. STFT
only obtains frequency amplitudes with the form fi = ni ·
∆f, ni ∈ Z. Additionally, the resolution in frequency ∆f
is calculated with the following expression:

∆f =
fs

2∆n
(4)

For the datasets described here, it was used a time
window ∆t of 39 microseconds, which allowed a range of
10 frequency intervals with a resolution ∆f of 12.8 Hz.

3.2. Data dimensionality reduction

Electroencephalograms are multivariate data and their
computed features have a high dimensionality, 230 dimen-
sions in this research, which di�cults their visualization
and processing (Birjandtalab et al., 2016). This prob-
lem, known as �the curse of dimensionality�, could impact
the classi�er performance increasing misinterpretations or
overinterpretation of the data (Ahmad et al., 2015). Com-
mon procedures to reduce these inconveniences rely on se-
lection of the most signi�cative features.

There are several methods previously used for reduc-
ing EEG data dimensionality: Principal component anal-
ysis (PCA) (Alotaiby et al., 2014), independent compo-
nent analysis (ICA) (Vigário et al., 2000), T-distributed
stochastic neighbor embedding (Birjandtalab et al., 2016),
and local sensitive hashing (LSH) (Perronnin et al., 2010).
After several experiments (not shown) of speediness and
memory consumption, PCA was selected as the method of
this study.

PCA is a technique which linearly transforms the orig-
inal variables into other uncorrelated ones. These result
variables, known as principal components, are orthogonal
among them. The PCA transformation is performed in
such a way that the �rst principal component accounts
for the highest variablity in the data, the second princi-
pal component accounts for the second highest variablity
in the data, and so on (Patel et al., 2015). Therefore,
all components are assigned to a score which denotes the
variance of the partial set they represent of the data (Czar-
necki and Gustafsson, 2015). In this way, one can keep the
components with highest scores to reduce data dimension-
ality.

In (Zhao et al., 2010), it was studied the in�uence of
di�erent mapping functions, or kernels, and PCA along
with a support vector machine classi�er with EEG data.
It was shown three dimensions could reach up to 100%
of accuracy in several conditions concerning the classi�er
settings, the type of mapping function, and the kind of
mental state analyzed.

PCA was applied over the EEG multivariate time se-
ries maintaining only the component with maximum score.
The aim of mapping to only one dimension is allowing to

represent graphically the whole brain signal in one chart
maintaining a relationship between the signal shape and
the EEG epilepsy state.

3.3. Signal envelope detection

Previous experiments (not shown) have revealed sev-
eral associations between the PCA reduced data and the
seizure marks. This connection is apparently related to
the PCA signal shape as it can be seen in Figure 2. It
should be noted that this behavior corresponds to ampli-
tude modulated signals. In consequence, it was applied an
envelope detection process over the PCA signal. There are
several methods available for this goal: Hilbert transform,
pass band �lters, and hysteresis transform. However, after
a trade-o� analysis between processing time and resultant
shape, it was selected the simplest o�-line method: The
moving maxima �lter.

The moving maxima �lter is a process that consists in
creating a new series h [n] from an original series g [i] such
that each point n represents the maximum value between
g [n] and g [n + ∆n]:

h [n] = h′ [n∆n] = max
n≤i≤n+∆n

{g [i]} (5)

An equivalent method was developed in (Zhang and
Smith, 2001). It had been applied to the analysis of evolu-
tion indexes in �nancial time series. As it will be explained
later, the goal of this �lter is �nding the envelope of the sig-
nal in mechanism similar to amplitude demodulator, only
depending on the time period ∆n, which was de�ned as
10 seconds in the present project.

3.4. Re-sequencing frequency-time data

One of the assumed hypotheses of this study is con-
sidering the prediction of a current individual state as a
variable dependent on the current data point and a �xed
set of past values after the EEG signal processing:

y [n] =
m⋃
i=0

{x [n− i]} (6)

Following this argument, the enveloped data were reorga-
nized in blocks of �xed size. The block size m could have
an in�uence in the �nal system ability to detect a seizure
state and it may be tested with several values. However,
due to the limitations related with the data size, only two
block sizes were selected: 30 and 70 seconds.

3.5. Machine learning: Balancing and classi�cation

The last step in the method was applying a machine
learning algorithm. Nevertheless, due to the typical im-
balance of this kind of datasets (Tsiouris et al., 2015), the
points marked as seizure comprise a very small set in com-
parison to the interictal intervals. In consequence, �rstly,
it was applied the SMOTE algorithm over the data for
treating the imbalance problem. In (Fergus et al., 2015),
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Dataset CHB01_04 Dataset CHB03_03 Dataset CHB03_04

Seizure
marks

1-D data

Envelope
data

Figure 2: Graphical comparison between the PCA converted data and its envelope regarding the seizure marks in the datasets CHB01_04,
CHB03_03 and CHB03_04.

this oversampling technique was used efectivelly in other
EEG analysis to improve recognition over noise datapoints
which were not considered in the original dataset.

After the application of the SMOTE method, a random
forest classi�er was con�gured and executed. Random for-
est is an ensemble learning algorithm which uses multiple
decision trees (Shiratori et al., 2015). Its working method
consists in creating a �xed number of random sets from the
original training set using random feature selection and a
bootstrapping method. For each new set, a di�erent deci-
sion tree is trained without pruning. Thus, each instance
decision is based on the majority vote obtained from the
decision trees (Peker et al., 2015; Shiratori et al., 2015).

Several studies have shown that random forest works
satisfactorily with featured extracted from EEG (Patti
et al., 2015; Peker et al., 2015; Shiratori et al., 2015). Also,
in the seizure-speci�c context, (Wang et al., 2015) found
average accuracies greater than 96% using this classi�er
on the epilepsy dataset of the University of Börn.

In this study, the random forest algorithm was con�g-
ured to work with 100 decision trees without prune restric-
tion. It was utilized the random forest implementation of
the WEKA API 1.7.0 (Hall et al., 2009).

4. Results

The method proposed in this work was applied to the
physiological signals stored in the CHB-MIT database.
Every channel was processed with the STFT transform,
and the dimensionality of the multivariate set was reduced
using PCA. Then, it passed through an envelope detec-
tor and, �nally, the detected envelope was reorganized in
blocks of �xed length to be processed by a random forest
classi�er.

As it was mentioned previously, it was selected two
possibilities at the re-sequencing process: Blocks of 30 and
70 seconds. Di�erent sizes showed the in�uence of a seizure
interval, ictal or interictal, regarding to the past values of
the transformed signal.

Each de�ned con�guration was tested and executed
with the proper software tools, with 10-fold cross valida-
tion as evaluation method. Regarding the performance in-
dexes, it was used standard parameters: accuracy (ACC),
speci�city (SPE), sensitivity (SEN), and false positive rate
(FPRe) (Ahmad et al., 2015; Gill et al., 2015; Iqbal et al.,
2015; Tsiouris et al., 2015; Das et al., 2016; Orosco et al.,
2016; Zhao et al., 2016):

ACC =
TN + TP

TN + TP + FP + FN
(7)

SPE =
TP

TP + FN
(8)

SEN =
TN

TN + FP
(9)

FPRe =
FP

time (in hours)
(10)

where TP is the number of true positives, TN is the quan-
tity of true negatives, FP is the amount of false positives,
FN is the number of false negatives, and time is a unit of
analysis time. It should be noted that FPRe is measured
in samples per hour (h−1).

Each data block, or instance, is considered positive (P)
when it is within any of the seizure intervals that was la-
beled by the human specialists, or is identi�ed as negative
(N) when there is no seizure evidence in the EEG. Thus,
the prediction is considered as a true negative or a true
positive when the class de�ned by the algorithm matches.
Hence, if the algorithm estimated a seizure event and the
patient has no seizure, the prediction is �agged as a false
positive, or in the other hand, as a false negative when
the algorithm indicated an absent of seizure while there is
evidence about the patient su�ered it during that interval.

The obtained results were compiled in Tables 2 and
3. The experiments showed a good performance with data
blocks of 30 seconds, reaching average sensitivity of 89.73%,
speci�city of 94.77%, FPRe of 6.87h−1, and accuracy of
92.46%. However, increasing the data block size to 70 sec-
onds signi�cantly improved the performance. The average
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Patient

ID

ACC (%) SEN (%) SPE (%) FPR/h

chb01 96.55 94.38 98.38 2.27

chb02 87.46 84.40 90.05 12.13

chb03 96.50 93.74 98.84 1.53

chb04 94.41 91.14 97.20 15.35

chb05 96.25 95.61 96.79 4.33

chb06 89.79 86.57 92.52 17.51

chb07 88.56 85.95 90.78 21.68

chb08 90.89 86.17 94.85 3.55

chb09 98.41 98.38 98.44 3.71

chb10 94.80 91.89 97.28 4.75

chb11 96.39 94.21 98.24 2.12

chb12 86.13 82.34 89.33 8.64

chb13 92.62 90.15 94.71 6.03

chb14 86.73 84.26 88.83 10.03

chb15 89.13 83.62 93.78 8.57

chb16 87.40 83.37 90.82 6.02

chb17 93.84 89.55 97.47 1.75

chb18 89.30 88.00 90.40 11.82

chb19 96.08 97.10 95.22 4.95

chb20 95.76 92.70 98.36 1.56

chb21 95.62 92.29 98.46 1.75

chb22 89.28 84.69 93.17 7.32

chb23 94.28 91.19 96.90 2.88

chb24 92.76 91.79 93.58 4.71

Average 92.46 89.73 94.77 6.87

Minimum 86.13 82.34 88.83 1.53

Maximum 98.41 98.38 98.84 21.68

Table 2: Performance evaluation parameters for each patient with a
block size of 30 seconds

Patient

ID

ACC (%) SEN (%) SPE (%) FPR/h

chb01 99.62 99.24 99.95 0.16

chb02 97.26 96.38 98.00 2.42

chb03 98.76 97.38 99.94 0.08

chb04 99.54 99.06 99.96 0.23

chb05 99.82 99.73 99.91 0.13

chb06 99.54 99.07 99.93 0.16

chb07 99.27 98.69 99.77 0.53

chb08 96.41 93.50 98.85 0.78

chb09 99.90 99.85 99.94 0.14

chb10 98.38 97.25 99.34 1.14

chb11 98.81 97.83 99.63 0.44

chb12 95.14 93.39 96.62 2.72

chb13 97.30 95.83 98.54 1.65

chb14 98.08 97.16 98.86 1.02

chb15 95.00 91.67 97.80 3.00

chb16 97.66 95.74 99.29 0.46

chb17 97.77 95.34 99.83 0.12

chb18 97.42 96.39 98.29 2.08

chb19 99.85 99.80 99.89 0.12

chb20 99.21 98.40 99.90 0.09

chb21 99.11 98.16 99.93 0.08

chb22 98.40 96.69 99.85 0.16

chb23 98.25 96.43 99.78 0.20

chb24 98.61 97.88 99.23 0.56

Average 98.30 97.12 99.29 0.77

Minimum 95.00 91.67 96.62 0.08

Maximum 99.90 99.85 99.96 3.00

Table 3: Performance evaluation parameters for each patient with a
block size of 70 seconds
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values of the same measures were raised to: 97.12% of
sensitivity, 99.29% of speci�city, 98.30% of accuracy, and
0.77h−1 of FPR.

5. Discussion

It should be noted that the database used in this pa-
per is publicly available (Goldberger et al., 2000). As a
result, there are other seizure detection methods that pro-
cess the same information to evaluate their algorithms.
It was selected 9 methods from 7 studies which analyzed
the same database to compare with out approach. Their
performances are compiled in Table 4, although some in-
dexes were not found in their evaluation analysis. Among
the alternative studies, several researches emphasized the
importance of the sensibility in the evaluation over other
values and only presented that value(Iqbal et al., 2015;
Tsiouris et al., 2015).

The current research proposes a di�erent method to
process electroencephalographic signals with a high de-
tection accuracy. Comparing with alternative methods,
our technique showed the best performance. Sensitivity
was just behind the technique based in an entropy-related
parameter classi�cation explained in (Iqbal et al., 2015)
which obtained a 100% for SEN but did not present other
comparable evaluation parameter.

Our approach obtained a slightly lower values concern-
ing speci�city and false positive rate (a di�erence of 0.70%
and 0.44h−1) compared with one of the methods presented
in (Orosco et al., 2016). However, in general the proposed
technique demonstrated to be the best approach when all
parameter values are taken into account in combination.

A good system response depends on the combination
of the internal selected algorithms. Concerning feature
selection, the majority of alternatives relies, at least par-
tially, on spectral features: STFT, wavelet transform, or
discrete Fourier transform (Ahmad et al., 2015; Gill et al.,
2015; Tsiouris et al., 2015; Das et al., 2016; Orosco et al.,
2016). Also, the dimension reduction using PCA or an
improved algorithm based on it proved to reach accuracies
close to 100% (Zhao et al., 2016). The present research
combined both processing types using STFT over biosig-
nals and then PCA on the time-spectrum data. The no-
table di�erence with respect to other studies is the use of
a singular element typical of amplitude demodulators: An
envelope detector to improve match between waveforms
and seizure marks. Regarding the classi�cation method,
several authors used SVM (Ahmad et al., 2015; Das et al.,
2016; Zhao et al., 2016), Bayessian classi�ers (Gill et al.,
2015), linear discriminators or neural networks (Orosco
et al., 2016).

Working eith other types of datasets, (Czarnecki and
Gustafsson, 2015) denoted that a random forest classi�er
can obtain a better performance than other algorithms,
including SVM, with reasonable less training time. There-
fore, this machine learning algorithm was selected for our
study.

6. Conclusions

This study describes a patient-dependent system for
detecting seizures with a great prediction con�dence. The
structure of the proposed approach comprises a sequence of
several signal processing and machine learning algorithms.
The processing step includes a PCA process after a STFT
transformation with a subsequent envelope shape detec-
tion stage. After those procedures, the new process of the
data sequence involves a data regrouping in �xed length
blocks that are then given as input to a random forest
classi�er.

The parameters of the proposed system were optimized
to maximize the overall performance. Thus, after training
and testing with the CHB-MIT database containing 23
subject cases, it was obtained average values of 98.30% for
accuracy, 97.12% for sensitivity, 99.29% for speci�city, and
0.77h−1 as false positive rate. Comparing these indexes
with state of art alternative systems, we can conclude that
a hardware implementation of our method could lead to a
considerable positive impact on epilepsy diagnosis through
the automation of seizure detection.
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