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Abstract 1 

Ribosomal RNA (rRNA) genes are the consensus marker for determination of microbial diversity on 2 

the planet, invaluable in studies of evolution and, for the past decade, high-throughput sequencing 3 

of variable regions of ribosomal RNA genes has become the backbone of most microbial ecology 4 

studies. However, the underlying reference databases of full-length rRNA gene sequences are 5 

underpopulated, ecosystem skewed1, and subject to primer bias2, which hamper our ability to study 6 

the true diversity of ecosystems. Here we present an approach that combines reverse transcription 7 

of full-length small subunit (SSU) rRNA genes and synthetic long read sequencing by molecular 8 

tagging, to generate primer-free, full-length SSU rRNA gene sequences from all domains of life, with 9 

a median raw error rate of 0.17%. We generated thousands of full-length SSU rRNA sequences from 10 

five well-studied ecosystems (soil, human gut, fresh water, anaerobic digestion, and activated 11 

sludge) and obtained sequences covering all domains of life and the majority of all described phyla. 12 

Interestingly, 30% of all bacterial operational taxonomic units were novel, compared to the SILVA 13 

database (less than 97% similarity). For the Eukaryotes, the novelty was even larger with 63% of all 14 

OTUs representing novel taxa. In addition, 15% of the 18S rRNA OTUs were highly novel sequences 15 

with less than 80% similarity to the databases. The generation of primer-free full-length SSU rRNA 16 

sequences enabled eco-system specific estimation of primer-bias and, especially for eukaryotes, 17 

showed a dramatic discrepancy between the in-silico evaluation and primer-free data generated in 18 

this study. The large amount of novel sequences obtained here reaffirms that there is still vast, 19 

untapped microbial diversity lacking representatives in the SSU rRNA databases and that there might 20 

be more than millions after all1,3. With our new approach, it is possible to readily expand the rRNA 21 

databases by orders of magnitude within a short timeframe. This will, for the first time, enable a 22 

broad census of the tree of life.  23 

To obtain primer-free and full-length SSU rRNA sequences, we combined and optimized methods for 24 

producing full-length SSU rRNA cDNA from total RNA4,5 with synthetic long read sequencing enabled by 25 

molecular tagging6,7,8,9. Full-length SSU rRNA molecules were enriched from extracted total RNA and 26 

converted to double-stranded cDNA, enabled by poly(A) tailing and single-stranded ligation, thereby 27 

avoiding the use of conventional SSU rRNA PCR primers and the resulting taxonomic bias10 (Fig. 1A). 28 

During first and second strand cDNA synthesis, the individual SSU rRNA molecules are uniquely tagged 29 
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in both termini. The tagging enables preparation of short read sequencing libraries, where the resulting 30 

individual sequencing reads can be linked to the original template molecule. By sorting the short reads 31 

into separate bins based on their unique tag, full-length SSU rRNA molecules can afterwards be 32 

recreated using de novo assembly of the individual bins. 33 

Mock community evaluation 34 

To estimate error and chimera rate of the method, we applied it to a mock community containing E. 35 

coli MG 1655, B. subtilis str 168, and P. aeruginosa PAO1, each with multiple 16S rRNA gene copies (4-36 

10) that differ internally in 0 to 19 positions (up to 1.3% internal divergence). In a single Illumina MiSeq 37 

run, we generated 9,608 16S rRNA gene sequences over 1,200 bp (median 1,537 bp, Fig. 1B) with an 38 

average raw error rate of 0.17% (Fig. 1C) and a chimera rate of 0.19%. The raw error-rate corresponds 39 

well with the theoretical error-rate of the Taq DNA polymerase used in the PCR steps. Using standard 40 

error-correction, the average error-rate was reduced to 0.04%, with 62% of the sequences being 41 

perfect. The chimera-rate of 0.19% is up to 100 times lower than what can be observed in conventional 42 

PCR based studies11. 43 

Even without error correction, the low error-rate enabled assignment of all full-length 16S rRNA 44 

sequences to their respective operons, exemplifying the resolving power of the method (Fig. 1D and 45 

Fig. S2). Interestingly, for B. subtilis three of the rRNA operons (rrn-I, rrn-H, and rrn-G) were not 46 

expressed. However, these are located closely together in the genome and also regulated by the same 47 

promoter12.   48 

Earlier studies have indicated risk of taxa dependent biases in poly(A) tailing, due to modifications of 49 

the 3’-terminal ribonucleotide unit4,5, as well as biases from disruption of first strand synthesis due to 50 

internal modifications13,14. To investigate potential taxonomic bias, we compared full-length SSU rRNA 51 

sequences obtained from an activated sludge sample with total RNA shotgun sequencing of the same 52 

extracted RNA. All abundant taxa that were observed using shotgun RNA sequencing were also 53 

observed in the full-length sequences (Fig. S3). 54 

Error-correction of Oxford Nanopore data using molecular tagging 55 

Tagging of individual molecules has been used as an effective consensus error-correction strategy in 56 

Illumina data15,16 and the principle is similar to the circular amplification strategies used to error-correct 57 

PacBio17,18,19 and Oxford Nanopore data20. Here we used the mock-community cDNA, designed for use 58 

on the Illumina MiSeq, and used it directly for Oxford Nanopore library preparation and MinION 59 

sequencing. Using uniquely tagged Nanopore reads and applying a naïve clustering and error-60 

correction strategy, we increased the similarity from a median of 90% (range 69-97%) for the raw reads 61 

to a median of 99% for consensus reads generated from 7 or more tagged reads (range 98.7-99.6%, 62 

(Fig. S4; Table S1). With few additional adaptations, the molecular tagging approach can be optimized 63 

for use on the Oxford Nanopore platform, which should result in even lower error-rates, even for long 64 

DNA reads, currently not feasible for the circular amplification strategies. 65 

The method applied to real environmental samples 66 
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We used the full-length SSU rRNA approach to analyze samples from five widely studied ecosystems – 67 

soil, fresh water, human gut, anaerobic digestion (biogas production), and activated sludge 68 

(wastewater treatment). An average of 8685 rRNA sequences longer than 1,200 bp (median 1,434 bp) 69 

was obtained from each sample (Table S2). Each sequenced on a single Illumina MiSeq run. SSU rRNA 70 

made up 25-47% of all sequences, while large subunit (LSU) rRNA fragments made up the majority of 71 

the remaining sequences. The relative large fraction of LSU rRNA was unexpected, as the SSU rRNA 72 

peak was enriched using gel electrophoresis size selection (Fig. S5). However, LSU rRNA of many 73 

bacteria and lower eukaryotes also exist as nicked molecules, where one of the fragments has 74 

approximately the same size as the SSU rRNA21,22. In addition, degradation of stable RNA is more 75 

pronounced under conditions of starvation or environmental stress14. This is also in accordance with 76 

the experimental results obtained in this study, where more LSU rRNA was observed for the complex 77 

samples (53-75%) than for the mock community (8%).  78 

We obtained SSU rRNA sequences from all domains of life, with representatives from 45 out of 66 79 

bacterial phyla in the SILVA database23 including the majority of the known candidate phyla (Fig. 2A). 80 

To demonstrate that the method scales with sequencing capacity, we generated additional 62,140 81 

rRNA sequences longer than 1,200 bp from the soil sample using a single Illumina HiSeq rapid run. From 82 

the single soil sample, we obtained 19,754 bacterial 16S rRNA sequences, which is equivalent to 18% of 83 

all soil-related sequences ever added to the databases1. Additionally, the 892 novel OTUs (97% 84 

clustering and > 3% difference to the SILVA database) obtained from the single soil sample, represent 85 

8% of the new OTUs that are added to the SILVA database in a year1. For most environments, a single 86 

MiSeq sequencing run would add more eco-system specific sequences than ever added to the database 87 

for the particular environment. 88 

Evaluation of bacterial diversity 89 

Compared to the SILVA database, 30% of the full-length bacterial 16S rRNA OTUs represented new 90 

diversity (97% clustering and > 3% difference to the SILVA database).  The degree of novelty was highly 91 

ecosystem specific. In the soil sample, 36% of the bacterial OTUs were novel compared to the database, 92 

while it was 5% in the human gut sample. These results underline that even in the densely sampled 93 

environments, as investigated in this study, a vast amount of bacterial diversity remains to be explored. 94 

We have refrained from attempting to define novel high-level phylogenetic groups based on our data, 95 

as it seems premature, when the databases will increase with orders of magnitude within a short 96 

timeframe. This will form a better foundation for robustly defining new phylogenetic groups. 97 

A recent evaluation of primer bias using metagenomics estimated that up to 10% of bacterial diversity 98 

could be missed by conventional applied primers2. The generation of primer-free full-length 16S rRNA 99 

sequences in this study made it possible to access the conservation of the 27f and 1492r primers 100 

commonly used for generation of full-length sequences in the databases24,25. We found that 0 to 6% of 101 

full-length 16S rRNA OTUs had two or more mismatches to either the 27f or 1492r primer, depending 102 

on the environment (Table S3).  103 

Evaluation of eukaryotic diversity 104 
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In general, the eukaryotic 18S rRNA phylogeny is not well developed, especially not for the unicellular 105 

micro-eukaryotes. Universal eukaryotic primers have a poor coverage26,27 and they provide short 106 

amplicons with poor phylogenetic resolution28,29. To support this, we found a very high degree of novel 107 

eukaryotic diversity, when applying the primer-free approach. In total, 63% of the 18S rRNA OTUs were 108 

less than 97% similar to anything in the SILVA database (Fig. 2B), with 15% of all sequences being less 109 

than 80% similar to any known sequences. Recently, Hadziavdic et. al. (2014) developed a new set of 110 

universal primers for Eukaryotes, which target 76% of the SILVA database with perfect match and 93% 111 

with a single mismatch. Strikingly, when applied to the primer-free generated 18S rRNA sequences 112 

from this study, only 8% had perfect match to the primers and 80% had one mismatch (Table S4).  113 

The new Eukaryotic Reference Database initiative (http://eukref.org/) has the goal to improve the 114 

eukaryotic reference databases. It is a collaborative annotation initiative to curate eukaryotic lineages 115 

by 18S rRNA gene data spanning the eukaryotic tree of life. Our full-length primer free approach will 116 

strongly support this endeavor and increase the power of high-throughput sequencing-based studies to 117 

discover fundamental patterns in microbial ecology. 118 

The beginning of a new era with a fully populated tree of life 119 

The approach has fascinating perspectives in rapidly populating the tree of life. In this study alone, we 120 

have generated more than 30,000 full-length 16S rRNA gene sequences, which is approximately 15% of 121 

all sequences that were added to SILVA in 20151. Our overall discovery rate of new diversity is higher 122 

than previously estimated based on the current databases1 and underlines that it is currently difficult to 123 

estimate the total bacterial diversity in the biosphere.  124 

As the method is scalable and optimized to the most prevalent sequencing platform of today, we 125 

foresee a drastic increase in full-length SSU rRNA sequences that will be generated from all 126 

environments. It will be a monumental task to update the databases and difficult to maintain a 127 

phylogenetic tree encompassing all diversity. Our prediction is that ecosystem-specific databases, such 128 

as the human oral microbiome database30, will become more prevalent. Albeit decentralized, these 129 

databases might be easier to maintain and more information can be assigned to individual organisms 130 

based on the ecosystem context, which will make the databases more useful in practice. 131 

It will be increasingly difficult to design both universal and specific primers. Instead, the high quality 132 

ecosystems-specific databases will be key to design new amplicon sequencing primers and fluorescence 133 

in situ hybridization (FISH) probes. For amplicon sequencing, this would mean better community 134 

coverage, compared to current universal primers. For FISH probes, it would be possible to design more 135 

specific probes, that increase the resolution of in situ single cell physiology studies, thereby aiding the 136 

task of linking identity and function in complex microbial communities.   137 

In this study, we also recovered over 62,420 partial LSU rRNA fragments (1,200-1,600 bp). For 138 

comparison, there are 96,642 LSU rRNA sequences in the current release of the SILVA database (over 139 

1,900 bp). Although the current implementation is limited to approximately 1,600 bp in order to 140 

maximize the yield of 16S rRNA sequences, a variation of the applied sequencing method has been 141 

demonstrated to yield multi-kb reads9. In addition, the promising error-correction of raw Nanopore 142 
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reads demonstrated here is not limited by read length. Hence, also the LSU rRNA databases will 143 

experience a dramatic increase in the very near future. 144 

The approach itself will allow researchers in microbiology and biology to get a complete community 145 

profile encompassing bacteria, archaea and eukaryotes, which has been difficult before. This would 146 

make it possible to look at interactions between the different domains of life in ecosystems, which 147 

have been scarcely studied until now. 148 
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Figure Text 154 

Figure 1. Overview and validation of full-length SSU rRNA sequencing.  a, Schematic overview of the 155 

preparation of full-length SSU rRNA gene sequences from total community RNA (See Fig. S1 for a 156 

detailed overview). First, SSU rRNA is enriched from extracted total community RNA using size 157 

selection. Then the SSU rRNA is polyadenylated, followed by reverse transcription and second strand 158 

synthesis. Adaptors used for first and second strand synthesis contain unique tags (green and blue), 159 

which in combination, become the unique “linked-tags” of the molecules. The cDNA is amplified with 160 

PCR and the product size selected to remove incomplete or truncated products. The full-length SSU 161 

rRNA amplicons are diluted to 10,000 – 300,000 molecules and amplified with PCR. The PCR product is 162 

split in two and used for preparing a read-tag library and a linked-tag library. The read-tag library is 163 

prepared by fragmenting the full-length SSU rRNA amplicons using Nextera tagmentation and library 164 

preparation. The resulting sequencing outcome is an internal SSU rRNA fragment read connected to a 165 

single unique tag read. The linked-tag library is prepared by circularizing full-length SSU rRNA amplicons 166 

to physically link the tags in close proximity. PCR is used to amplify the linked-tags, which are then 167 

identified with sequencing. The linked-tags are used to bin all SSU rRNA fragment tag-reads originating 168 

from the same parent molecule. Finally, de novo assembly is used to recreate the parent SSU rRNA 169 

sequence. b, Size distribution of assembled SSU rRNA sequences from the mock community. c, Error 170 

count distribution for raw SSU rRNA sequences from the mock community (Numbers indicate percent 171 

of all 16S rRNA sequences).  d, The relative abundance of the different 16S rRNA genes for B. subtilis. 172 

Figure 2. Coverage of the tree of life. a, Insertion of the newly generated SSU rRNA sequences to the 173 

current tree of life31. Brown branches represent sequences already in the public databases, and the 174 

other colors illustrate sequences added in this study. Note that the HiSeq soil data is not included. b, 175 

The percent identity of SSU rRNA gene sequences in the samples compared to their closest relatives in 176 

the SILVA database. 177 
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