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Abstract  

Two main lines of research link information theory to evolutionary biology. The first focuses on 
organismal phenotypes, and on the information that organisms acquire about their environment. 
The second connects information-theoretic concepts to genotypic change. The genotypic and 
phenotypic level can be linked by experimental high-throughput genotyping and computational 
models of genotype-phenotype relationships.  I here use a simple information-theoretic 
framework to compute a phenotype’s information content (its phenotypic complexity), and the 
information gain or change that comes with a new phenotype. I apply this framework to 
experimental data on DNA-binding phenotypes of multiple transcription factors. Low phenotypic 
complexity is associated with a biological system’s ability to discover novel phenotypes in 
evolution. I show that DNA duplications lower phenotypic complexity, which illustrates how 
information theory can help explain why gene duplications accelerate evolutionary adaptation.  I 
also demonstrate that with the right experimental design, sequencing data can be used to infer the 
information gain associated with novel evolutionary adaptations, for example in laboratory 
evolution experiments. Information theory can help quantify the evolutionary progress embodied 
in the discovery of novel adaptive phenotypes.  
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Introduction 

The language of information permeates many different areas of biology [1-3]. In genetics, genes 
“encode” proteins, and RNA molecules carry “messages” from genes to protein-manufacturing 
ribosomes. In cell biology, “signals” are exchanged between cells. In developmental biology, 
organisms execute “programs” as they develop from zygote to adult [2, 4]. Information theory 
has also been attractive to evolutionary biologists [2, 3, 5-7]. That’s because the survivors of 
natural selection harbor genetically-encoded information about their environment. It is this 
information that renders them well-adapted to the environment.  

Among the first researchers to explore the link between information and evolution was Motoo 
Kimura. He built on earlier work by J.B.S. Haldane to argue that adaptive evolution accumulates 
genetic information in proportion to the rate at which alleles are replaced by better-adapted 
alleles [8, 9]. Consistent with established information theoretic concepts [10], he expressed 
genetic information as the binary logarithm (log2) of the total number of possible DNA strings 
with the same length (in base pairs) as the human genome.  

More recently, two independent lines of research have connected evolutionary biology and 
information theory. The first is centered on phenotypes, and asks how organisms enhance their 
fitness through phenotypes that harbor or collect information about the environment. An example 
of such a phenotype is the growth rate of bacteria. To regulate this growth rate, bacteria need to 
acquire information about available nutrients in their environment. Another is pigmentation in 
butterflies, and especially the dark coloration of melanic forms. Melanism helps butterflies stay 
warm in cold temperatures, and its development can depend on information about environmental 
temperature. Yet another example is the fraction of seeds that germinate in any one year in 
populations of desert annual plants.  For optimal reproductive success, this phenotype needs to 
incorporate information about past rainfall patterns [5, 11-21]. 

A second line of research focuses on genotypes [3, 22-27]. Equations from classical population 
and quantitative genetics describe how genotypes and fitness change in evolution by natural 
selection, mutation, and genetic drift. These equations can also be written using information-
theoretic concepts, such as Shannon’s entropy [3, 27]. This line of research shows that the 
distribution of a population’s allele frequencies encodes information, and that selection can 
increase this information [3, 25]. Unfortunately, marrying population genetics with information 
theory can require complex mathematics. What is more, current models to derive stationary 
allele frequency distributions of evolving populations require restrictive assumptions, such as 
that each locus harbors only two alleles, that different loci are in linkage equilibrium, and that 
selection and drift are weak [22].   

Recent technological advances in DNA sequencing and microarrays allow us to genotype many 
organisms or evolving molecules. In doing so, they can also provide phenotypic information, and 
thus help link genotypes and phenotypes. One example is the ability of specific proteins to bind 
transcriptional regulators and thus regulate gene expression, which can be quantified with 
protein-binding microarrays [28, 29]. With technologies like these in mind, I will here use a 
simple information theoretic framework to quantify the informational complexity of an 
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organismal phenotype, such as the ability to regulate a gene in a new way, or to survive on a 
novel nutrient.   

The framework also allows me to take an information-theoretic perspective on the distinction 
between evolutionary adaptations and innovations [30]. While many evolutionary adaptations 
involve the quantitative fine-tuning of existing phenotypes, such as the rate at which an enzyme 
catalyzes a metabolic reaction, some are qualitatively new adaptations – innovations. Examples 
include an organism’s ability to thrive on previously toxic molecules, such as antibiotics, or to 
use new sources of carbon and energy [31, 32]. Innovations could in principle emerge through 
single mutations or through multiple small (and perhaps individually adaptive) mutations. A 
rigorous conceptual distinction between adaption and innovation is difficult [30]. I thus ask 
whether one can better distinguish the two concepts in information-theoretic terms.   

The framework applies to all evolutionary processes, but especially to experimental evolution, 
where changes in genotypes and phenotypes are easily monitored. Three kinds of experimental 
evolution techniques are germane. The first is in vitro selection [33]. Here, large collections 
(“libraries”) of DNA or RNA genotypes are synthesized, and molecules with specific 
phenotypes, such as the ability to bind ATP, are selected via methods like affinity 
chromatography [34-37]. A variant of this approach is found in protein-binding microarrays, 
where a library of DNA molecules is immobilized on an array. By exposing the array to a 
transcriptional regulator, one can identify DNA molecules that are bound by this protein and that 
could mediate gene expression regulation by this protein [28, 29, 38]. 

A second approach is the directed experimental evolution of individual proteins or RNA 
molecules. Here, populations of molecules undergo repeated cycles of mutation and selection for 
a desired phenotype, such as the ability to cleave an antibiotic [39-48].  Directed evolution can 
proceed in vitro, in vivo, or in both. For example, one can encode the gene for an antibiotic 
resistance protein on a plasmid, which can then be subject to replication and selection in a host 
organism. Mutagenesis can be applied either in vitro, for example through an error-prone 
polymerase chain reaction (PCR) or in the host organism [44, 45, 49]. 

A final technique involves the experimental evolution of whole organisms, such as bacteria, 
algae and viruses [50-59]. As opposed to directed evolution, whose goal is often to identify 
molecules with specific catalytic or ligand binding activities, experimental evolution often aim to 
study the evolutionary process itself. It asks, for example, how organisms adapt to specific 
nutrients [54], stressors [52], or cyclically varying environments [54].  

In all three techniques high throughput-sequencing can be applied to post-selection or post-
evolution populations. The resulting sequence data can help identify the genotypes that are 
associated with a phenotype of interested, which is central for the approach I pursue here.  

In the next section, I will first introduce the information-theoretic framework, and illustrate its 
use to understand evolution by DNA or gene duplication. Second, I will apply the framework to 
a small and tractable genotype space of transcription factor binding sites that has been 
characterized exhaustively through protein binding microarrays [28, 29, 38]. Third and finally, I 
will show how sequence data obtainable from laboratory selection or evolution experiments with 
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today’s technology can help quantify differences in the amount of information gained by 
different evolutionary adaptations. In this context, I will also discuss future challenges. They 
regard experimental designs and statistical theory suitable to estimate information gains from 
sequence data.   

Results 

Concepts. A genotype space is a collection of genotypes, such as all DNA sequences of a given 
number of nucleotides or base pairs. Genotypes are ultimately DNA or RNA sequences, but 
other representations, such as amino acid sequences [60], are used for some purposes.   

Genotypes are dwarfed in their diversity by phenotypes, which range from an organism’s body 
plan, to a metabolism’s ability to synthesize a specific spectrum of biomass molecules, and an 
amino acid string’s ability to fold in three dimensions and catalyze a specific chemical reaction.    

Biological evolution takes place in a genotype space, where evolving populations of organisms 
or molecules change their genotypes through processes like mutation and recombination, and 
where selection allows the survival of well-adapted phenotypes. The advantage of the genotype-
space perspective is that it is comprehensive. A genotype space of protein-coding DNA 
sequences encodes all possible phenotypes that amino acid strings can form, and thus also every 
conceivable protein function, be it in catalysis, transport, motility, or structural support. An 
evolving population that acquires any novel protein-based adaptation has discovered a genotype 
with a specific ability in this space. Genotype spaces are the places where all adaptations and 
innovations take place. They can be very large, comprising for example more than 
20100=1.3×10130 proteins of merely 100 amino acids, thus making their exhaustive mapping 
infeasible. 

The relationship between genotypes and phenotypes – the genotype-phenotype map – has been 
studied for multiple different kinds of genotype spaces, either exhaustively (for small spaces) or 
through random sampling, using both computational and experimental techniques  [33, 34, 61-
67]. Among the important insights from such analyses is that, first, (astronomically) many 
genotypes usually form the same phenotype. Second, these genotypes are organized into one or 
more networks in genotype space, where network members can be reached from each other 
through multiple small genotypic changes that leave the phenotype intact. Third, the genotype 
networks of different phenotypes are interwoven in complex ways  [64, 67, 68]. Fourth, some 
phenotypes have larger associated genotype networks than others, which also extend farther 
through genotype space. With possible exceptions [69, 70], populations evolving on a large 
genotype network have a greater potential to stumble upon new and beneficial phenotypes, 
because such populations can explore a larger proportion of genotype space [67, 71-73].  

My starting point is the observation that for any observed phenotype P, such as a protein’s ability 
to bind or react with a specific molecule, there are usually multiple genotypes ܩ௉ encoding this 
phenotype. To simplify the exposition, I focus on qualitative (binding or not) rather than 
quantitative phenotypes (e.g., binding with a specific affinity). That is, I assume that all 
genotypes with a particular phenotype are equivalent, and when sampling from a specific set of 
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such genotypes, the probability ݌ሺ݃ሻ of drawing any one genotype is the same for all 
genotypes	݃. This assumption can be relaxed. 

The amount of information in a single genotype g drawn at random from a genotype space ܩ is 
given by the Shannon entropy of a random variable whose possible values are all genotypes g in 

G, and that assumes these values with equal probability 
ଵ

|ீ|
. I denote this information content as 

ሻܩሺܪ ሻ, and it computes asܩሺܪ ൌ െ∑ ଵ

|ீ|
ቀ݈݃݋ଶ

ଵ

|ீ|
ቁ௚∈ீ ൌ െ݈݃݋ଶ

ଵ

|ீ|
ൌ  |ܩ| where ,|ܩ|ଶ݃݋݈

denotes the number of genotypes in the set ܩ. Analogously, the information content for a 
member ݃ of a subset ܩ௉ of genotypes with a specific phenotype P (Figure 1a), computes as  

௉ሻܩሺܪ ൌ െ ෍ ሺ݃ሻ൯݌ଶ݃݋ሺ݃ሻ൫݈݌
௚∈ீು

ൌ െ ෍
1
|௉ܩ|

൬݈݃݋ଶ
1
|௉ܩ|

൰
௚∈ீು

ൌ െ݈݃݋ଶ
1
|௉ܩ|

ൌ  |௉ܩ|ଶ݃݋݈

These observations give rise to the following definition. 

Definition 1: The amount of information that is associated with phenotype P is given by 

ሺܲሻ:ൌܫ |ܩ|ଶ݃݋݈ െ  ௉|          (1)ܩ|ଶ݃݋݈

Following analogous uses in DNA sequence analysis [74], I will also refer to this quantity as a 
phenotype’s (informational) complexity. The greater this complexity, the more information is 
required to encode the phenotype. When applied to aptamers and ribozymes, this quantity has 
also been called functional information [75]. Because function is an ambiguous word, and 
because not all phenotypes may have a function, I prefer to use the more general notion of 
phenotypic information.  

Some empirical data on phenotypic complexity is available for macromolecules. For example, in 
vitro selection experiments identifying ATP-binding proteins from a random protein library with 
80 amino acids have estimated that a fraction ௉݂=10-11 or |ܩ௉| =2080×10-11≈1.2×1093 proteins of 
this length can bind ATP [34]. Individual proteins in this set thus harbor  ݈݃݋ଶ|1.2 ൈ 10ଽଷ| ൌ
309.2 bits of information. The amount of information associated with the ATP-binding 
phenotype is ܫሺܲሻ ൌ ଶ|1.2݃݋݈-|ଶ|20଼଴݃݋݈ ൈ 10ଽଷ|=345.8-309.2=36.6 bits. To compare data 
from genotype spaces of different size (e.g., different lengths of proteins), it can be useful to 
consider the number of bits per monomer, which in this example is 36.6/80=0.46, or 10.6 percent 
of the maximally possible value of 345.8/80=4.32 bits per amino acid. (This fractional 
information can also be computed as 1- ݈ܩ|݃݋௉|/݈ܩ|݃݋|, regardless of the base of the logarithm.) 

Unlike with in vitro selection experiments, laboratory evolution experiments often do not start 
from random collections of genotypes, but from genotypes that already have a specific 
phenotype ைܲ௟ௗ and acquire a novel phenotype ேܲ௘௪ (Figure 1b). For example, in a directed 
evolution experiment, TEM-1 β-lactamase molecules that convey resistance to ampicillin may 
acquire the ability to also cleave the antibiotic cefotaxime. Denote as ܩை௟ௗ the subset of 
genotypes with the old phenotype, and as  ܩே௘௪ the subset of genotypes with the new phenotype. 
To obtain the information gain associated with the new ability, it is useful to consider the relative 
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entropy (or Kullback-Leibler distance, [76]) of two random variables O and N that are defined on 
the genotype space G. For all genotypes ݃ ∈  ை௟ௗ , the probability that the random variable Oܩ
assumes a value of	݃ is equal to ݌ைሺ݃ሻ ൌ ݃ ை௟ௗ|, and for all genotypesܩ|/1 ∉ ைሺ݃ሻ݌ ,ை௟ௗܩ ൌ 0. 
Likewise, for a genotype with the new phenotype ݃ ∈  ே௘௪ , the probability that the randomܩ
variable N assumes a value of	݃ is equal to ݌ேሺ݃ሻ ൌ ݃ ே௘௪|, and forܩ|/1 ∉ ேሺ݃ሻ݌ , ை௟ௗܩ ൌ 0. In 
other words, O and N are indicator variables that indicate the membership of a genotype in the 
sets ܩை௟ௗ and ܩே௘௪. The relative entropy of the two random variables is then given by  

ሺܰ||ܱሻܦ ൌ ∑ ଶ݃݋ேሺ݃ሻ݈݌ ቀ
௣ಿሺ௚ሻ

௣ೀሺ௚ሻ
ቁ௚∈ீ           (2) 

The relative entropy is always greater than zero, except when ݌ேሺ݃ሻ ൌ  ,ைሺ݃ሻ for all genotypes݌
which requires that ܩே௘௪ ൌ ሺܰ||ܱሻܦ ,ை௟ௗ. In that caseܩ ൌ 0. Despite the suggestive name 
Kullback-Leibler distance, D is not a true distance, because it is not symmetric [76]. Specifically, 
for the random variables considered here, and whenever ܩே௘௪is a proper subset of  ܩை௟ௗ, 
ሺܱ||ܰሻܦ ൌ ∞, because there will be some genotypes that are in ܩை௟ௗ but not in ܩே௘௪, and for 
these genotypes ݈݃݋ଶ൫݌ைሺ݃ሻ/݌ேሺ݃ሻ൯ ൌ ைሺ݃ሻ/0ሻ݌ଶሺ݃݋݈ ൌ ∞.  

To simplify equation (2), I take advantage of the conventions 0݈݃݋ଶሺ0/݌ሻ ൌ0 and 0݈݃݋ଶሺ0/0ሻ ൌ
0 [76 p. 19] to obtain 

ሺܰ||ܱሻܦ ൌ ∑ ଶ݃݋ேሺ݃ሻ݈݌ ቀ
௣ಿሺ௚ሻ

௣ೀሺ௚ሻ
ቁ௚∈ீ ൌ

∑ ଶ݃݋ேሺ݃ሻ݈݌ ቀ
௣ಿሺ௚ሻ

௣ೀሺ௚ሻ
ቁ ൌ ∑ ଵ

|ீಿ೐ೢ|
ଶ݃݋݈ ቆ

భ
หಸಿ೐ೢห

భ
หಸೀ೗೏ห

ቇ௚∈ீೀ೗೏௚∈ீೀ೗೏ ൌ ଶ݃݋݈ ቆ
భ

หಸಿ೐ೢห
భ

หಸೀ೗೏ห

ቇ ൌ |ை௟ௗܩ|ଶ݃݋݈ െ

|ே௘௪ܩ|ଶ݃݋݈ ൒ 0.        

From these observations, one can define the information gain associated with the acquisition of a 
new phenotype ேܲ௘௪	starting from some phenotype ைܲ௟ௗ , where ܩே௘௪ ⊆  ை௟ௗ asܩ

ሺܫ ேܲ௘௪| ைܲ௟ௗሻ ≔ |ை௟ௗܩ|ଶ݃݋݈ െ |ே௘௪ܩ|ଶ݃݋݈ ൒ 0       (3) 

In other words, this information gain is equivalent to the difference in information content 
between members of the old and new sets of genotypes. The information content of a phenotype 
from definition 1 (equation 1) can also be viewed as a Kullback-Leibler distance.  If one 
expresses the number of genotypes in ܩே௘௪ as a fraction ே݂௘௪ ൑ 1 of those in 
,ை௟ௗܩ ݅. ݁. , |ே௘௪ܩ| ൌ ே݂௘௪|ܩை௟ௗ|, then the relative information gain becomes ܫሺ ேܲ௘௪| ைܲ௟ௗሻ ൌ
െ݈݃݋ଶ ே݂௘௪ ൒ 0. 

The situation is different when ܩே௘௪is not a proper subset of ܩை௟ௗ (Figure 1c). In the 
hypothetical β-lactamase example, this scenario might correspond to enzymes that have the new 
phenotypic ability to inactivate cephotaxime, but that may or may not have retained the old 
phenotype to inactivate ampicillin. In this case, the Kullback-Leibler distance is undefined, 
because there will be some genotypes	݃ ∈  ை௟ௗ, and for these genotypesܩ ே௘௪ that are not also inܩ
the summands in equation (2) take the form ݌ேሺ݃ሻ݈݃݋ଶሺ݌ேሺ݃ሻ/0ሻ ൌ ∞. However, one can still 
calculate the difference ܫሺ ேܲ௘௪| ைܲ௟ௗሻ from equation (3), except that this difference need not be 
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greater than zero. It can be smaller than zero if, for example, more genotypes are able to cleave 
cefotaxime than ampicillin. In other words, the acquisition of a new phenotype may incur a net 
information or complexity loss, if loss of an old phenotype is permitted. Overall, we arrive at 

Definition 2: The information or complexity change associated with the acquisition of a new 
phenotype ேܲ௘௪	starting from some phenotype ைܲ௟ௗ, is given by 

ሺܫ ேܲ௘௪| ைܲ௟ௗሻ ≔ |ை௟ௗܩ|ଶ݃݋݈ െ   ே௘௪|        (4)ܩ|ଶ݃݋݈

The above definitions can be extended to scenarios where genotypes in a genotype space G (or a 
set of genotypes ܩ௉) are not equivalent, by replacing the above uniform probabilities of sampling 
a genotype from a given set by non-uniform probabilities. This can occur for at least two reasons. 
First, the processes generating individual genotypes may not generate them with equal 
probability. For example, oligonucleotide synthesis or mutagenesis can cause non-uniform 
nucleotide compositions in random DNA libraries used for in vitro selection experiments [77]. 
Mutations in living organisms show such biases as well, for example in the well-known higher 
frequency of transition (A↔T, G↔C) to transversion mutations [78]. The second reason applies 
when one considers quantitative phenotypes, such that not all genotypes in a set ܩ௉	may express 
the phenotype P to an equal degree. For example, different proteins may bind a ligand like ATP 
with different affinity. As a result, some proteins are preferentially selected during experimental 
evolution or selection for this affinity. The consequence in both cases is that the probability ݌ሺ݃ሻ 
of observing a specific genotype is no longer uniform. What is more, this probability then 
depends not only on the phenotype itself, but on details of experimental design, such as mutation 
rates, population sizes, and selection strength. I will restrict myself to the uniform case 
corresponding to unbiased sets of genotypes and qualitative phenotypes.  

Application to DNA or gene duplication. Because of its simplicity, this framework can help 
shed light on various questions associated with the origin of evolutionary adaptations and 
innovations. To give but one example, consider the duplication of DNA and its role in 
evolutionary adaptation. It has long been thought that such duplications, and in particular 
duplications that include entire genes, can accelerate the origin of novel phenotypes [79-83]. An 
evolutionary advantage associated with duplication may exist, because an evolving duplicate 
stretch of DNA can explore a larger genotype space (or a larger proportion of such a space) than 
either could alone, while preserving its pre-duplication phenotype. An information theoretic 
framework may help quantify this advantage.  

Consider some phenotype, such as a regulatory region’s ability to bind a specific transcription 
factor, or a protein’s ability to catalyze a specific chemical reaction, and the set of genotypes ܩ௉ 
associated with this phenotype, which occupies a fraction ௉݂ of genotype space. When the DNA 
encoding this phenotype becomes duplicated, both copies can undergo DNA mutation 
independently. Thus, they evolve in a larger genotype space, which is the Cartesian product 
space of  ܩ) ܩ ൈ  ଶሻ genotypes. If each genotype is L|ܩ|ሻ and comprises many more ሺܩ
nucleotides long, the duplicated genotype contains twice as much information (݈݃݋ଶ|ܩ|ଶ ൌ

but the same amount of information per nucleotide ሺ ,(|ܩ|ଶ݃݋2݈
ଶ௟௢௚మ|ீ|

ଶ௅
ሻ as before the duplication 
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ሺ
௟௢௚మ|ீ|

௅
). How many genotypes with phenotype P are there in the new genotype space? If it was 

necessary that both copies have this phenotype, their number would simply be given by |ܩ௉|ଶ. 
However, only one of the copies may need to have the phenotype. In this case, the set of 
genotypes becomes much larger, because it is comprised of three subsets. The first of them 
comprises all genotypes where both copies have the phenotype. The second is the set of 
genotypes where the first of the two copies has the phenotype. It is given by ܩ௉ ൈ ሺܩ\ܩ௉ሻ, where 
“\” denotes the set-theoretic difference (ܩ without ܩ௉), and has size |ܩ௉|ሺ1 െ ௉݂ሻ|ܩ| . The third 
is the set of genotypes where the second of the two copies has the phenotype, ሺܩ\ܩ௉ሻ ൈ  ௉, andܩ
it has the same size. Adding the members of the three sets yields the following number of 
genotypes 

௉|ଶܩ| ൅ ௉|ሺ1ܩ|2 െ ௉݂ሻ|ܩ| ൌ ௉݂
ଶ|ܩ|ଶ ൅ 2 ௉݂|ܩ|ሺ1 െ ௉݂ሻ|ܩ| ൌ ௉݂|ܩ|ଶሺ2 െ ௉݂ሻ, 

and calculating the ratio of this number to the number of genotypes in which both copies have 
phenotype P yields 

௙ು|ீ|మሾଶି௙ುሿ

௙ು
మ|ீ|మ

ൌ
ଶି௙ು
௙ು

ൎ
ଶ

௙ು
.                          (5) 

The right-most approximation holds for the typical case where ܩ௉ occupies a tiny fraction of 
genotype space, such that ௉݂ is orders of magnitude smaller than unity. In terms of the ATP-
binding protein above, where |2080= |ܩ and ௉݂=10-11, the admissible genotype set after a gene 
duplication is a factor 2/10-11≈2×1011 larger than if both genotypes need to encode an ATP-
binding phenotype. This indicates how great the advantage of gene duplication can be in terms of 
the number of new genotypes that can be explored. Because this number scales as 1/ ௉݂, this 
advantage will increase as ௉݂ decreases. In other words, it will be greatest for phenotypes that are 
formed by only a small set of genotypes.  

The difference in informational complexity before and after duplication computes as  

ଶ൫݃݋݈ ௉݂
ଶ|ܩ|ଶ൯ െ ଶሺ݃݋݈ ௉݂|ܩ|ଶሾ2 െ ௉݂ሿሻ ൌ ଶ݃݋݈

௙ು
ଶି௙ು

ൎ ଶ݃݋݈ ௉݂ െ 1    (6) 

as long as ௉݂ is small. An equivalent expression is obtained if one compares the respective sets in 
the pre-and post-duplication genotype spaces. Because the dimension of genotype space is 
changed as a result of the duplication, an appropriate comparison requires the per-residue 
information content. Specifically, 

௟௢௚మሺ௙ು|ீ|ሻ

௅
െ

௟௢௚మ൫௙ು|ீ|మሾଶି௙ುሿ൯

ଶ௅
 =
௟௢௚మ൫௙ು

మ|ீ|మ൯

ଶ௅
െ

௟௢௚మ൫௙ು|ீ|మሾଶି௙ುሿ൯

ଶ௅
ൎ

ଵ

ଶ௅
ሺ݈݃݋ଶ ௉݂ െ 1	ሻ  (7) 

Note that in both comparisons, the difference in information content is negative, because the set 
of post-duplication genotypes where at least one genotype has the required phenotype occupies a 
larger fraction of genotype space, and thus contains less information – its informational 
complexity is lower. This is important, because exploring a larger sets of genotypes (containing 
less information) facilitates the exploration of novel phenotypes that can be found near this set 
[67, 71-73]. In terms of the ATP-binding protein above, where L=80, the information content of 
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each sequence changes by െ݈݃݋ଶ ௉݂ െ 1 ൌ െ݈݃݋ଶ10ିଵଵ െ 1 ൌ െ37.54 bits or by -
37.54/(2×80)≈0.23 bits per residue. 

Transcription factor binding phenotypes. I next illustrate how these concepts can be applied to 
the genotype space of all 48 = 65,536 DNA sequences of length eight nucleotides. Protein 
binding microarrays that harbor all such sequences have been used extensively to measure the 
binding of individual transcription factors to such sequences. Numerous evolutionary adaptations 
and innovations have been associated with the origin of transcription factor binding sites on 
DNA [84-87]. They range from changes that affect the virulence of microbial pathogens [85], to 
adaptive pigmentation changes in multicellular organisms [86], to more profound changes in 
body plan, such as the evolution of two-winged from four-winged insects, and the transformation 
of  one wing  pair into a balancing organ [84, 86].  

To estimate the amount of information gained through a novel adaptation whose genetic basis is 
a new transcription factor binding site (and thus usually a novel pattern of gene regulation), I use 
previously published protein binding microarray data from 187 mouse transcription factors on 
the binding of each factor to all 48 sequences in sequence space.  My analysis is qualitative and 
focuses on all sequences that are bound with high affinity (see Methods). The emergence of a 
new binding site can either take place de novo or from a pre-existing binding site. For de novo 
emergence, the relevant phenotypic complexity is the information content of the binding site 
(definition 1), where the phenotype in question is the ability to bind a specific transcription 
factor. Figure 2a shows a histogram depicting this phenotypic complexity for all 187 
transcription factors, and in the inset, the fractional volume of genotype space that each factor 
can bind, which ranges from 0.0016 to 0.045. The phenotypic complexity of transcription factor 
binding ranges widely, from 4.48 to 9.31 bits (median: 5.72) bits, and is proportional to the 
specificity of a transcription factor. Highly specific transcription factors bind fewer sites, and the 
ability to bind them requires more information. Most transcription factors in the data set have 
binding sites that are eight nucleotides long or shorter [28, 29, 88]. The shorter a binding site is, 
the more eight-mers a factor will bind, and the smaller the complexity of the binding phenotype.  

These numbers can also help illustrate the advantage that duplication of a regulatory region 
containing a binding site can provide, if two sites can evolve separately after duplication, and if 
only one site needs to preserve its DNA binding ability. According to equation 6 and the data in 
Figure 2a, duplication changes the information content by -5.48 to -10.31 bits (-0.34 to -0.64 per 
post-duplication bit, equation 7), depending on the transcription factor. This is a substantial 
reduction in complexity, considering that the (post-duplication) genotype space encodes only a 
maximum of 32 bits of information. These numbers translate into between 44.4 and 1250 times 
more genotypes that an evolving population of duplicated binding sites can explore without 
losing its DNA binding ability (equation 5). In reality, the advantage of duplication will usually 
be much greater, because individual binding sites are parts of larger regulatory regions, and 
much more DNA than an individual binding site may be affected by a duplication.  

The information content of a binding site is usually estimated from a position weight matrix, 
which summarizes binding information from multiple bound DNA motifs to compute a binding 
affinity score for any one DNA sequence, under the assumption that individual nucleotides 
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contribute additively to binding [89]. The additivity assumption will underestimate information 
content, i.e., it will overestimate the number of sequences bound, and thus underestimate the 
information gain. The reason is that some nucleotides at two or more positions of a binding site 
may bind strongly individually, but not in combination, and the additivity assumption cannot 
capture such non-additive (epistatic) effects. Figure 2b displays a distribution of the number of 
bits by which the additivity assumption overestimates the information gain. It ranges from 1.56 
bits for transcription factor Tbp (the TATA-binding protein) to 8.22 bits for Usf1 (upstream 
transcription factor 1). In terms of the number of sequences bound, the additivity assumption 
overestimates this number by a factor that lies between 2.9 and 300, depending on the 
transcription factor (Figure 2b, inset). Thus, even though transcription factor binding generally 
involves only modest amounts of epistasis [88], this modest amount can lead to a substantial 
underestimation of information content. Whenever comprehensive binding information is 
available, it is preferably to estimate information gain from them, without computing position 
weight matrices.  

When binding of a new transcription factor originates at a site bound by an old factor, such that 
binding of the old factor must be preserved (for example, because the old factor directs gene 
regulation in a different tissue), then phenotypic complexity increases (equation 3 and 4, 
definition 2). Figure 2c shows the distribution of relative entropies for all pairs of mouse 
transcription factors whose genotype sets of binding sites overlap. The smallest information gain 
(0.04 bits) occurs when a binding site for factor Myb originates from one for factor Mybl1. The 
reason is that these factors, which are encoded by members of the same gene family, bind to a 
similar number of sites (1969 and 1775, respectively), and that most of these sites are identical:  
97.2% of sites bound by Mybl1 are also bound by Myb.  The largest information gain (11.5 bits) 
occurs when binding sites for transcription factor Mnt (cisbp id: T015083) emerge from those for 
Sp110 (cisbp id: T139995). Sp110 binds to 2933 sites, whereas Mnt binds to a very small set of 
176 sites. Moreover, there is only a single site that allows binding of both factors and that 
preserves the old phenotype while permitting the new one. The inset of Figure 2c shows that the 
information gain is generally lower if the old site had high information content (Spearman’s r=-
0.22; P<10-17; n=29290), illustrating that the information that can be gained with a new 
adaptation may depend on evolutionary history, i.e., on old adaptations and their information 
content. 

If binding to an old transcriptional regulator need not be preserved, then a new adaptation may 
incur not just a gain but a loss of information. This can occur if the new regulator can bind to 
more sequences than the old regulator. Figure 2d shows a histogram of the amount of 
information change in this scenario. Its distribution is symmetric, because for every value of 
information change X that occurs when binding by some new regulator Y is gained and binding 
by an old regulator Z is lost, there is an opposite value –X when binding by Z is gained and 
binding by Y is lost. The values in this distribution range from a maximal information loss or 
gain of 4.83 bits in the transition between a binding site for transcription factor Usf1 (cisbp id: 
T015121 [29]; with 103 binding sites) to one for Sp110 (id: T139995; 2933 binding sites), to a 
minimal information change of zero bits for several factor pairs, including Hbp1 and Rfx4, both 
of which bind the same number of 1320 sites. The distribution of information change is 
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leptokurtic, that is, it shows an excess of small information changes relative to a normal 
distribution (Figure 2d). In computing the distribution of information change, I disregarded 
whether a set of binding sites ܩே௘௪ is accessible from ܩை௟ௗ via single point mutations that do not 
lead outside either set (Figure 1d). In the small genotype space I consider here, the vast majority 
of genotype set pairs are accessible from each other. Specifically, for 99.998 percent of unique 
transcription factor pairs (all but 80 of 34782 pairs), the sets of binding sites either overlap, or 
their minimal distance in genotype space is one, that is, there exists at least one single point 
mutation that leads directly from ܩை௟ௗ to ܩே௘௪. For the remaining 0.002 percent of site pairs, this 
minimal distance is two. No larger minimal distances exist in this data set. 

Inferring information content from sequence data. The DNA binding phenotypes I discussed 
exist in small genotype spaces, but that is not the case for data from most evolution or in vitro 
selection experiments, which explore genotype spaces of astronomical size. What is more, 
myriad genotypes usually encode the same phenotype, but one can only identify as many as 
DNA sequencing technology permits (currently thousands for microbial genomes to millions for 
individual genes). Thus, it will often be impossible to infer the information content of any one 
phenotype (definition 1).  What is more, sequencing technology does not simply enumerate 
genotypes but samples them from an evolving population, which introduces further 
complications. However, even with such complications, it may be possible to estimate the 
information gain or change associated with a novel phenotype (definition 2), because this change 
is usually much smaller than the absolute information content. I will next highlight how this 
could in principle be done. In doing so, I make simplifying assumptions whose relaxation will 
require future work. For now, my main point is to show that quantifying phenotypic information 
change is within reach of current technologies.   

Consider two populations of which one is well-adapted to some ancestral environment (with 
phenotype ைܲ௟ௗሻ, and another one is adapted to a new environment, such as one that harbors a 
novel nutrient, an antibiotic, or another stressor, and thus requires an altered phenotype ேܲ௘௪. I 
assume that both populations comprise asexually reproducing haploid individuals, that they are 
in mutation-selection-drift balance subject to Wright-Fisher dynamics [78], and that they have 
equal effective sizes ௘ܰ and mutation rates μ. I also assume that both phenotypes ைܲ௟ௗ and  

ேܲ௘௪are subject to strong truncation selection, that is, mutations that disrupt each phenotype are 
lethal. The two phenotypes may differ in their numbers of associated genotypes ܩை௟ௗ and ܩே௘௪, 
and thus also in their information content. The task is to estimate this difference (݈݃݋ଶ|ܩை௟ௗ| െ
 ே௘௪|) from two samples of n genotypes (DNA sequences), one from each of theܩ|ଶ݃݋݈
populations. Because genotypes with the same phenotype usually form networks that extent far 
through sequence space, where any one genotype can suffer mutations that disrupt the phenotype 
[90], I model this difference as a difference in the average rate of strongly deleterious mutations 
across all genotypes, or equivalently, in the average rate of neutral mutations. That is, if  ݈ை௟ௗ and 
݈ே௘௪ denote the average proportion of all strongly deleterious (lethal) mutations in the two 
populations, then the average neutral mutation rate becomes ߤை௟ௗ ൌ ሺ1 െ ݈ை௟ௗሻߤ and  ߤଶ ൌ ሺ1 െ
݈ଶሻߤ. Assuming further that mutations in all viable sequences are equally likely to be strongly 
deleterious, one obtains the relationships |ܩை௟ௗ| ൌ |ே௘௪ܩ| and  |ܩ|ை௟ௗߤ ൌ  is |ܩ| where ,|ܩ|ே௘௪ߤ
the total size of genotype space. It is then easy to see that  
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|ை௟ௗܩ|ଶ݃݋݈ െ |ே௘௪ܩ|ଶ݃݋݈ ൌ ଶሺ݃݋݈
ఓೀ೗೏
ఓಿ೐ೢ

ሻ=	݈݃݋ଶ|2 ௘ܰߤை௟ௗ| െ ଶ|2݃݋݈ ௘ܰߤே௘௪|  (8) 

If phenotype ேܲ௘௪ harbors more information than ைܲ௟ௗ (i.e., if |ܩை௟ௗ| ൐ ே௘௪|), then 2ܩ| ௘ܰߤை௟ௗ > 
2 ௘ܰߤே௘௪. Thus, estimating the difference in phenotypic information content requires estimating 
the quantities ߠ௜ ൌ 2 ௘ܰߤ௜. These quantities are of broad importance in population genetics 
because they predict a population’s amount of neutral polymorphisms [78, 91]. If phenotype 

ேܲ௘௪ harbors more information than ைܲ௟ௗ (|ܩை௟ௗ| ൐ ே௘௪|), then 2ܩ| ௘ܰߤை௟ௗ > 2 ௘ܰߤே௘௪, and one 
would expect population 2 to harbor more alleles encoding this phenotype than population 1. A 
maximum likelihood estimator of ߠ௜ is the number of different genotypes ki in a random sample 
of n genotypes sequenced from the populations [92]. What is more, this number has a complex 
but known sampling distribution, which can be used to ask how large the difference in 
information content between two phenotypes must be, so that one can detect it from a sample of 
n sequences (see Methods). For example, for the null-hypothesis that phenotype ேܲ௘௪ harbors 
more information than ைܲ௟ௗ, one can compute the probability p of falsely rejecting this null-
hypothesis. 

Figure 3 shows the minimally distinguishable information difference (see legend), for multiple 
values of the number n of sampled sequences, and for multiple values of ߠே௘௪ ൌ 2 ௘ܰߤே௘௪. To 
create this plot, I chose multiple values of n and ߠே௘௪, and for each of them I determined the 
smallest value of ߠை௟ௗ such that p<0.05.  White regions in the plot indicates that for a given 
sequence coverage n and ߠே௘௪, the information content of the two phenotypes is 
indistinguishable. In a region of the plot where the test can discriminate at least x bits, p<0.05 for 
all values of ߠை௟ௗ, such that ߠை௟ௗ ൐ 2௫ߠே௘௪. 

In this analysis, I did not explore populations with  ߠை௟ௗ, ே௘௪ߠ ൏ 1. The reason is that such 
populations are monomorphic most of the time [91], which implies that even when sequencing 
multiple  genotypes, one would find mostly the same alleles. At the other extreme are values of 
ே௘௪ߠ ≫ ݊ (and thus also ߠை௟ௗ ≫ ݊ሻ. Figure 3 shows that in such populations, one cannot 
discriminate the information content of two phenotypes. The reason is that both populations are 
so highly polymorphic that within either population all n sampled sequences are likely to be 
different from each other. This consideration shows that sequence coverage n must be high 
relative to ߠே௘௪	(lower right corner of Figure 3) for best discrimination between the information 
content of two phenotypes. In sum, in order to discriminate between the information content of 
two phenotypes, sequence coverage must be sufficiently high that 1 ≪ ,ை௟ௗߠ ே௘௪ߠ ≪ ݊. Again, 
these considerations are based on simplifying assumptions, such as strong selection, which need 
to be relaxed to develop a rigorous sampling theory. However, they indicate that sequence data 
can in principle be used to estimate differences in phenotypic information content.   

Discussion 

I used a simple information-theoretic framework to quantify, first, the amount of information 
encoded in a phenotype and, second, the amount of information change entailed by the origin of 
a new phenotype. The two measures differ formally only in that information content is expressed 
relative to all genotypes in a genotype space, and information change is expressed relative to all 
genotypes with a reference phenotype. I emphasize information change and not just content for 
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two reasons. First, in most evolution experiments, a given protein, ribozyme, or organism starts 
with some phenotype, and evolves a new phenotype. Second, only in exceptional small genotype 
spaces like those of transcription factor binding sites would it be possible to quantify phenotypic 
information content. In contrast, the amount of information change associated with a new 
adaptation may be smaller and can thus be more easily quantified experimentally. I refer to 
information-rich phenotypes as complex phenotypes.    

It is tempting to ask about the meaning of the information embodied in a phenotype. One could 
argue, for example that regulatory DNA regions embody “knowledge” about the shape of the 
proteins that bind there. However, information theory does not require or even consider semantic 
aspects of information. I will thus not consider them here.  

I applied the above framework to experimentally measured DNA binding affinities of 187 mouse 
transcription factors. Here, the phenotype is a property of a DNA molecule, i.e., its ability to bind 
a specific transcription factor. An advantage of this data sets is that it allows an exhaustive 
analysis of a tractable genotype space (6.5×104 DNA sequences). In larger genotype spaces 
where such exhaustive exploration is not feasible, one can estimate information content under the 
assumption that individual nucleotides interact additively to produce a given phenotype [93]. 
However, this assumption generally underestimates phenotypic information content. The size of 
this error can be substantial, for example, up to eight out of 16 maximally possible bits for 
transcription factor binding sites (Figure 2b). One could correct for non-additive interactions 
among pairs of nucleotides [93-95], but such corrections become infeasible for the many possible 
higher-order interactions. 

I restricted myself to qualitative or threshold phenotypes (binding/non-binding, viability/non-
viability), which have proven useful in past experimental estimates of the fraction of genotypes 
with a particular phenotype. For example, in vitro selection experiments have been used to 
estimate that in a genotype space of RNA molecules that are 100 nucleotides long, one in 1010 
molecules can bind to aromatic dye molecules [33], which implies a phenotypic information 
content of 33.2 bits. Likewise, approximately one in 1013 RNA molecules of length 220 encode 
RNA ligases, which leads to a phenotypic information content of 43.2 bits [33]. 

The framework can be extended to quantitative phenotypes. This requires that one replaces 
expressions like ݈݃݋ଶ|ܩ௉|, which reflects equiprobable occurrence of each genotype with 
phenotype P, by െ∑ ீ∋௚ሻ௚݌ଶሺ݃݋௚݈݌ , where ݌௚reflects the probability that a specific genotype g 

occurs in a sample or population. The probability ݌௚ reflects the extent to which a phenotype is 
expressed by a specific genotype, e.g., the strength of binding to a transcription factor embodied 
in a DNA sequence. Limited empirical data is also available about the informational complexity 
of quantitative phenotypes. For example, it has been estimated that a 10-fold increase in an RNA 
aptamer’s binding affinity to guanosine triphosphate (GTP) requires 10 additional bits of 
information, and a 10-fold increase in an RNA ligase ribozyme’s catalytic rate requires 11 
additional bits of information [75, 95]. 

A focus on qualitative phenotypes is a simplification, but it also facilitates an important 
distinction. It is the distinction between the information content of a phenotype itself, which 
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depends only on the number of genotypes harboring this phenotype, and that of a population 
whose members have this phenotype [93, 94] . The latter depends not just on phenotypic 
information content, but also on many parameters affecting a population’s dynamics, such as 
(effective) population size ௘ܰ and mutation rate ߤ. For example, if ௘ܰߤ ≪ 1, then all members of 
a population have identical genotypes most of the time [91]. If one were to take the one genotype 
sampled from such a population to calculate a phenotype’s information content, one would arrive 
at the maximally possible value ݈݃݋ଶ|ܩ|. However, this would be highly misleading, because 
there myriad genotypes might encode this phenotype, even though the population harbors only 
one of them. Likewise, during adaptive evolution, when a mutation has created a genotype with a 
superior phenotype, this genotype may sweep through the population, driving all other genotypes 
extinct, until it accumulates mutations and diversifies. Thus, transiently, a population’s 
information content can rise dramatically before reaching a mutation-selection equilibrium [93, 
94]. Population sampling during the transient period would lead to misleading estimates of 
phenotypic information content.   

The genotypes associated with a new phenotype may be difficult to access by an evolving 
population. Such low accessibility can have two, not mutually exclusive reasons. First, the 
phenotype may have high information content and thus a small number of encoding genotypes, 
which are difficult to find through random exploration of this space. Second, there may be many 
such genotypes, but a population may be far removed from them in genotype space. Multiple 
mutations may be required to reach them, or they may be unreachable, if some mutational 
intermediates are inviable. In other words, historical contingencies, for example past 
environments that a population encountered and adapted to, can affect the accessibility of 
specific phenotypes. An advantage of the information-theoretic framework is that it eliminates 
such historical factors from consideration, and focuses on intrinsic properties of phenotypes. A 
limitation is that historical factors can influence the estimation of phenotypic information content 
from sequence data. I note that in the data sets I analyzed here, phenotypic accessibility is not a 
major problem. For all pairs of transcription factors I analyzed, evolutionary transitions between 
binding sites for one factor to those of the other require can be achieved with single nucleotide 
changes. However, in larger genotype spaces, phenotypic accessibility may be more constrained 
[96]. 

I argued that one may be able to distinguish even modest phenotypic information changes in 
evolving populations with existing sequencing technology and the right experimental design. 
This argument rests on simplifying assumptions. One of them is that such populations should be 
in mutation-selection balance. While such balance is in practice only achieved asymptotically, it 
is approached exponentially with decay parameter ߣ ൌ ሺ1 ൅ 4 ௘ܰߤሻ/2 ௘ܰ [91, p 204]. For an 
evolving E.coli population of 104-107  individuals with 10-3≈ߤ mutations per genome and 
generation [97], the half-life of this decay is given by ln 2 ߣ/ ൌ ln 2 ሺ2 ௘ܰሻ/ሺ1 ൅ 4 ௘ܰߤሻ ൎ 340-
370 generations, well within the time scale of a laboratory evolution experiment. Other 
simplifications include the assumption that the higher incidence of strongly deleterious mutations 
in more complex phenotypes holds uniformly across all genotypes with such a phenotype.  More 
sophisticated models are necessary, and they would replace this assumption, for example by 
allowing for a non-uniform incidence of such mutations. More generally, a statistical sampling 
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theory to estimate quantities such as confidence intervals for estimated information changes also 
remains an important task for future work. 

Despite these caveats, the qualitative considerations I made here suffice to suggest the kind of 
experimental design needed to estimate phenotypic information changes. Such an experiment 
would start at the end-point of a previous laboratory evolution experiment, in which a population 
of organisms or molecules has adapted evolutionarily to a novel environment, such as one 
containing a specific antibiotic. The experiment would establish two evolving populations. The 
first derives from a single pre-evolution (ancestral) genotype. It is evolved in the ancestral 
environment (e.g., without antibiotic). The second population is derived from a single post-
evolution (adapted) genotype. It is evolved in the novel environment (e.g., with antibiotic). After 
allowing both populations to evolve for a sufficient number of generations to approach 
approximate mutation-selection balance, one would sequence n randomly chosen individuals 
from each population. I showed that for maximal discrimination of information content, it is best 
if n exceeds ௘ܰߤ by far in both populations, and that ௘ܰߤ itself is greater than one (1 ≪ ௘ܰߤ	 ≪
݊). Given limits of sequencing technology, this amounts to conducting the experiment with 
modest population sizes and mutation rates, but it is entirely feasible. For example, in E.coli 
ߤa population of ௘ܰ=104 individuals yields ௘ܰ ,(10-3≈ߤ) ൎ 10. Current technology allows the 
sampling conditions to be met, because one can readily sequence n>100>> ௘ܰߤ complete 
genomes from microbial populations. The number of different alleles (genomes) sampled from 
the two populations can then be used to estimate the information difference. An experiment of 
this kind might be even easier whenever one evolves individual genes rather than whole 
organisms, because one can then sequence many more alleles, and mutation rates can be 
manipulated more easily.   

Colloquially, evolutionary innovations are viewed as one-of-a-kind, historically singular (and 
thus rare) qualitative changes, such as E.coli’s newfound ability to metabolize citrate after more 
than 30,000 generations of laboratory evolution [98]. They are distinguished from mere 
adaptations, such as the gradual increase of a bacterium’s cell division rate in experimental 
evolution. However, there is no distinction between the two from an information-theoretic 
perspective. A genotype space that is sufficiently rich, for example that of all proteins of modest 
length (e.g., 100 amino acids), will harbor a wide variety of different phenotypes, such as 
proteins that catalyze most chemical reactions important to life. The information content of each 
is a well-defined number, even though this number may be hard to estimate. Whether a 
population’s adaptation involves a gradual increase in an enzyme’s activity, or the discovery of 
an enzyme with a new enzymatic activity, the population merely accesses a new set of 
genotypes. Innovations may entail larger innovation gains then mere adaptations, but not even 
that is necessary. For example, in enzymes, where higher catalytic rates require greater 
phenotypic complexity [75, 95], extremely high rates may be achieved gradually but may require 
very large information gains.  

Because the framework I use is so simple and general, it can speak to diverse issues in 
evolutionary biology. One of them is the question whether some phenotypes are more evolvable, 
that is, whether they harbor greater potential to give rise to novel and beneficial phenotypes 
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through Darwinian evolution. A general pattern that emerged from past work is that this potential 
increases with the number of genotypes that encode a phenotype. Genotypes are usually 
organized into large genotype networks. The larger such a network is, the greater is the 
proportion of genotype space that an evolving population can explore, and the greater the 
population’s chances to originate novel phenotypes phenotypes [67, 71-73]. In information-
theoretic terms, low-complexity phenotypes – those encoded by more genotypes – thus harbor 
greater evolutionary potential. A possible exception can occur when a set of genotypes with the 
same phenotype is fragmented into multiple subsets (Figure 1d) which cannot be reached from 
one another by single phenotype-preserving genetic changes [99, 100]. However, in most 
systems that have been studied, such fragmentation is either absent, creates one dominant 
genotype network and many smaller networks, or it can be overcome by a combination of large 
populations, high mutation rates, or strong genetic drift [101-103].  

Another, related issue regards the role of DNA or gene duplication in phenotypic innovation. I 
show that such duplication decreases a phenotype’s informational complexity, because it 
increases the number of genotypes encoding the phenotype. This holds both in terms of the 
absolute amount of information and the information content per bit, nucleotide, or any other 
relevant system part. The latter measure takes into account that duplication changes the size and 
dimension of a genotype space. And because low phenotypic complexity can come with greater 
evolutionary potential, the information-theoretic framework can help explain why duplication 
increases this potential. What is more, it can make quantitative predictions about this potential. 
For example, the evolutionary benefits of duplication may be greatest for phenotypes with high 
complexity before duplication, because in such phenotypes, complexity is reduced most strongly 
after duplication (equation 5). 

A third issue is the controversial question whether “progress” occurs during life’s evolution 
[104]. Progress is not necessarily the same as adaptive evolution. For example adaptive evolution 
can be regressive [30], as illustrated by many symbiotic and parasitic species that experienced 
adaptive trait losses. The Buchnera aphidicola endosymbionts of pea aphids have dramatically 
reduced numbers of metabolic enzymes [105]. Threespine stickleback fish have adaptively lost 
defensive pelvic structures, by losing a regulatory DNA region for the Pituitary homeobox 
transcription factor 1 (Pitx1) [106]. And E.coli  can lose ribose catabolism during laboratory 
evolution [107].  The information-theoretic framework allows a simple definition of progress: an 
increase in phenotype complexity. What is more, the framework can also be used to quantify a 
loss of such complexity during regressive evolution and trait loss. And the transcription factor 
binding data illustrates that lowering complexity may not even require degenerative evolution. 
Consider a gene that acquires regulation by a new transcription factor and loses regulation by an 
old factor. If the new regulatory phenotype can be realized by more genotypes (transcription 
factor binding sites), it has lower complexity. We are a long way from quantifying how much 
more complex an elephant is than E.coli, but with information theory, we can at least start to ask 
quantitative questions about some enduring topics in evolutionary biology, such as evolvability, 
duplication, and evolutionary progress.   
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Methods 

Transcription factor binding data. The experimental data set of 187 mouse transcription 
factors I analyze here is based on experimental protein binding data from [28] and [29]. It was 
obtained from the UniPROBE  [108](104 transcription factors) and the CIS-BP databases [29] 
(83 transcription factors) by [88] who identified mouse transcription factors to be included in the 
data set by several quality criteria, including the requirement that each transcription factor’s 
DNA binding was assessed on two different kinds of protein binding microarrays, that the factor 
bound a sufficient number of sequences to permit an analysis of epistasis, and that it bound at 
least one sequence with an E-score>0.45 [88]. The E-score is related to the Wilcoxon-Mann-
Whitney test statistic, and ranges between -0.5 and 0.5 (strongest binding). It is a proxy for a 
transcription factor’s relative DNA affinity to a binding site [28, 109].For my qualitative 
analysis, I consider sites bound if E>0.35, because this is a conservative threshold with a small 
false discovery rate (FDR<0.001) of bound sites [28].  

To calculate the information content of a set of DNA sequences of length L that bind the same 
transcription factor under the assumption of additivity across the L sites, I first computed the 
frequencies of all four nucleotides ݌஺ሺ݅ሻ, ݌஼ሺ݅ሻ, ீ݌ሺ݅ሻ, and ்݌ሺ݅ሻ for each of the L positions(1 ൑
݅ ൑ ሺ݅ሻܪ I then computed the entropy for each site as .(ܮ ൌ െ∑ ்,ீ,௑ሺ݅ሻ௑ୀ஺,஼݌  ௑ሺ݅ሻ, which݌ଶ݃݋݈
has a maximum of two if all nucleotides are equally likely to occur at position i, and its minimal 
value of zero if only one nucleotide occurs. The total entropy of a binding site is then simply the 
sum ܪ ൌ ∑ ሺ݅ሻଵஸ௜ஸ௅ܪ , and the total information content is given by 2ܮ െ  because each of the ,ܪ
L positions contains maximally two bits. This analysis tacitly assumes that all nucleotides occur 
at equal frequency, i.e., that no DNA composition bias exists in the underlying genotype space.  

Estimating information gains or changes from sequence data. To estimate ߠ௜ (where i=’New’ 
or i=’Old’, corresponding to populations with the old and new phenotype), the number of 
different alleles ݇௜observed in a population sample of n sequences is an important quantity. It can 
be viewed as one realization of a random variable Ki  with probability distribution [92, 110]  

௜ܭሺܾ݋ݎܲ ൌ ݇௜|݊, ௜ሻߠ ൌ |ܵ௡௞|ߠ௜
௞/ܵ௡ሺߠ௜ሻ, 

where ܵ௡ሺߠ௜ሻ:=	ߠ௜ሺߠ௜ ൅ 1ሻሺߠ௜ ൅ 2ሻሺߠ௜ ൅ 3ሻ… ሺߠ௜ ൅ ݊ െ 1ሻ, and |ܵ௡௞| is the absolute value of a 
Sterling number of the first kind [111], which can be computed numerically. From this 
distribution, one can compute the expected number of different alleles ܧሺܭ௜ሻ as 

௜ሻܭሺܧ ൌ 1 ൅ ఏ೔
ఏ೔ାଵ

൅ ఏ೔
ఏ೔ାଶ

൅ ⋯ ఏ೔
ఏ೔ା௡ିଵ

. 

It turns out that for any value of n and ݇௜ observed in a sequencing experiment, solving the above 
equation for ߠ௜ (which can be done numerically) yields not only a maximum likelihood estimator 
ప෡ߠ 	for ߠ௜, but ߠప෡  is also a sufficient estimator, that is, one cannot improve it by considering 
additional information, such as the frequency of each allele in the sample [92  9.5]. In addition, 
because the distribution of ܭ௜ itself is known, one can also compute the distribution of the 
difference ∆ܭ ൌ  ே௘௪ as the following convolutionܭ-ை௟ௗܭ
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ܭ∆ሺܾ݋ݎܲ ൌ ∆݇|݊, ,ை௟ௗߠ ே௘௪ሻߠ ൌ ∑ หௌ೙
೔శ∆ೖหఏೀ೗೏

೔శ∆ೖหௌ೙
೔ หఏಿ೐ೢ

೔

ௌ೙ሺఏೀ೗೏ሻௌ೙ሺఏಿ೐ೢሻ
				െ ሺ݊ െ 1ሻ ൑ ∆݇ ൑ ݊ െ 1௡ି∆௞

௜ୀି∆௞     

This distribution is valuable, because it helps identify the minimal difference in information 
content between two phenotypes that can be resolved from a given sequencing experiment. For 
example, it allows us to test the null-hypothesis that phenotype ேܲ௘௪ harbors more information 
than ைܲ௟ௗ, such that one would expect to observe more allelic variants ݇ଵ than ݇ଶ, and thus that 
∆݇ ൐ 0. If the null hypothesis is correct, it is possible that one observes by chance alone a value 
of ∆݇ ൑ 0, i.e., fewer alleles in population 2, which happens with probability 
݌ ൌ ∑ ܭ∆ሺܾ݋ݎܲ ൌ ∆݇|݊, ,ை௟ௗߠ ିሺ௡ିଵሻஸ∆௞ஸ଴	ே௘௪ሻߠ . This is the type I error of the hypothesis test, 

or the probability to falsely reject the null hypothesis. The data in Figure 3 is based on this 
probability.      
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Figure Captions 

Figure 1. Genotype sets in genotype space can have various topological relationships. Large 
rectangles symbolize genotype space, circles correspond to genotypes, and straight lines connect 
genotypes that are (1-mutant) neighbors, i.e., they differ by a small genetic change such as a 
single nucleotide change. Each set is shown as a network, because genotype sets usually form 
networks in genotype space. a) A hypothetical set of genotypes with the same phenotype. The set 
is shown as a single genotype network, but I note that it could consist of multiple disconnected 
networks. b) Two sets of genotypes, each corresponding to one phenotype, an old phenotype 
(black and grey circles), and a new phenotype (grey circles only). The genotypes with the new 
phenotype form a subset of genotypes with the old phenotype. c) Sets of genotypes with two 
phenotypes, an old phenotype (black circles), a new phenotype (white circles), and genotypes 
with both the old and new phenotype (grey circles). Unlike in b), the genotype set of the new 
phenotype is not a subset of the genotype set with the old phenotype. d) The sets of genotypes 
for different phenotypes can be non-overlapping. 

Figure 2. Information content and change associated with the acquisition of transcription 
factor binding. Data in all panels are based on experimentally measured binding of 187 mouse 
transcription factors to all possible DNA binding sites of length eight [28, 29, 88]. a) Histogram 
of the information content of the DNA binding phenotype of each transcription factor (definition 
1 and equation 1). The inset shows the distribution of the fraction of genotype space occupied by 
all binding sites bound by each factor. b) Histogram of the difference between the actual 
information content of a phenotype and that estimated under the assumption that individual 
binding site positions contribute additively to the information content. Note that this difference is 
always positive, i.e., the additivity assumption underestimates the information content by 
estimating more sites to be bound than are actually bound. The inset shows the distribution of the 
ratio between the actual fraction of genotype space occupied by transcription factor’s binding 
sites and the estimated fraction based on the additivity assumption. This ratio is always greater 
than one. c) The gain in information content associated with acquisition of a new DNA binding 
phenotype, when an old phenotype is simultaneously preserved (equation 3). The inset shows 
this gain in information content (vertical axis) as a function of the information content of the old 
phenotype (horizontal axis). Circles correspond to means, boxes to standard errors, and whiskers 
indicate 95 percent confidence intervals. Data in c) are based on all 29290 pairs of transcription 
factors whose sets of binding sites overlap. d) The change in information content associated with 
acquisition of a new DNA binding phenotype when the old phenotype need not be 
simultaneously preserved (equation 4). The red line indicates the fit to a Gaussian distribution. 
Data in d) are based on all 1872 pairs of transcription factors in the data set. 

Figure 3. High-throughput sequencing can help distinguish even modest differences in 
phenotypic information content. Minimally distinguishable information content of two 
phenotypes (in bits), color-coded as indicated in the legend, for a given sequence coverage n 
(horizontal axis), and a given value of ߠே௘௪ ൌ 2 ௘ܰߤே௘௪. To create this plot, I chose multiple 
values of n and ߠே௘௪, and determined the minimal value of ߠை௟ௗ, ߠை௟ௗ

௠௜௡such that 	݌ ൌ
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∑ ܭ∆൫ܾ݋ݎܲ ൌ ∆݇ห݊, ை௟ௗߠ
௠௜௡, ିሺ௡ିଵሻஸ∆௞ஸ଴	ே௘௪൯ߠ ൏ 0.05 (see Methods) for each of these values. 

The minimally detectable information difference is then given by  ݈݃݋ଶหߠை௟ௗ
௠௜௡ห െ    .|ே௘௪ߠ|ଶ݃݋݈
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