
Protein Collapse is Encoded in the Folded State Architecture

Himadri S. Samanta,1 Pavel I. Zhuravlev,2 Michael Hinczewski,3

Naoto Hori,1 Shaon Chakrabarti,2 and D. Thirumalai1, 2

1Department of Chemistry, University of Texas at Austin, TX 78712

2Biophysics Program, Institute for Physical Science and Technology,

University of Maryland, College Park, MD 20742

3Department of Physics, Case Western Reserve University, OH 44106

1

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 22, 2016. ; https://doi.org/10.1101/070920doi: bioRxiv preprint 

https://doi.org/10.1101/070920


Abstract

The propensity of single domain globular proteins, the workhorses in cells, to be compact is the

key reason that their folded states achieve high packing density. It is known that the radius of

gyration, Rg, of both the folded and unfolded (created by adding denaturants) states increase as Nν

where N is the number of amino acids in the protein. The values of the celebrated Flory exponent ν

are, respectively, ≈ 1
3 and≈ 0.6 in the folded and unfolded states, which coincide with those found in

homopolymers in poor and good solvents. However, the extent of compaction of the unfolded state

of a protein under low denaturant concentration, conditions favoring the formation of the folded

state, is unknown. This problem which goes to the heart of how proteins fold and has implications

for the evolution of foldable sequences is unsolved. We develop a theory based on polymer physics

concepts that uses the contact map of proteins as input to quantitatively assess collapsibility of

proteins. The model, which includes only two-body excluded volume interaction and interactions

reflecting the strength of the contact map, has only expanded and compact states. Surprisingly,

we find that although protein collapsibility is universal, the propensity to be compact depends on

the protein architecture. Application of the theory to over two thousand proteins shows that the

extent of collapsibility depends not only on N but also on the contact map reflecting the native fold

structure. A major prediction of the theory is that β-sheet proteins are far more collapsible than

structures dominated by α-helices. The theory fully resolves the apparent controversy between

conclusions reached using different experimental probes assessing the extent of compaction of a

couple proteins. In addition, it reveals that there are considerable similarities between the physical

mechanisms of homopolymer and protein collapse. The theory provides quantitative insights into

the reasons why single domain proteins are small and the physical reasons for the origin of multi-

domain proteins. We also show that non-coding RNA molecules, whose collapsibility is similar

to proteins with β-sheet structures, must undergo collapse prior to folding, adding support to

“Compaction Selection Hypothesis” proposed in the context of RNA compaction.
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INTRODUCTION

Folded states of globular proteins, which are evolved (slightly) branched heteropolymers

made from twenty amino acids, are roughly spherical and are nearly maximally compact with

high packing densities [1–3]. Despite achieving high packing densities in the folded states,

globular proteins tolerate large volume substitutions while retaining the native fold [4]. This

is explained in a couple of interesting theoretical studies [5, 6], which demonstrated that there

is sufficient free volume in the folded state to accommodate mutations. Collectively these

and related studies show that folded proteins are compact. When they unfold, which can

be achieved upon addition of high concentrations of denaturants (or applying a mechanical

force), they swell adopting expanded conformations. The radius of gyration (Rg) of a folded

globular protein is well described by the Flory law with Rg ≈ 3.3N
1
3 Å[7] whereas in the

swollen state Rg ≈ aDN
ν where aD is an effective monomer size and the Flory exponent

ν ≈ 0.6 [8]. Thus, viewed from this perspective we could surmise that proteins must undergo

a coil-to-globule transition [9, 10], a process that is reminiscent of the well characterized

equilibrium collapse transition in homopolymers [11, 12]. The latter is driven by the interplay

of conformational entropy and intra-polymer interaction energy resulting in the collapsed

globular state. The swollen state is realized in good solvents (interaction between monomer

and solvents is favorable) whereas in the collapsed state monomer-monomer interactions are

preferred. The coil-to-globule transition in large homopolymers is akin to a phase transition.

The temperature at which the interactions between the monomers roughly balance monomer-

solvent energetics is the θ temperature. By analogy we may identify high (low) denaturant

concentrations with good (poor) solvent for proteins.

Despite the expected similarities between the equilibrium collapse transition in homopoly-

mers and the compaction of proteins, it is still debated whether the unfolded states of

proteins are more compact under folding conditions compared to their states at high denat-

urant concentrations. If polypeptide chain compaction is universal, is collapse in proteins

essentially the same phenomenon as in hompolymer collapse or is it driven by a different

mechanism [13–17]? Surprisingly, this fundamental question in the protein folding field has

not been answered satisfactorily[10, 18]. In order to explain the plausible difficulties in

quantifying the extent of compaction, let us consider a protein, which undergoes an ap-

parent two-state transition from an unfolded (swollen) to a folded (compact) state as the
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denaturant concentration (C) is decreased. At the concentration, Cm, the populations of

the folded and unfolded states are equal. A vexing question, which has been difficult to

unambiguously answer in experiments, is: what is the size, Rg, of the unfolded state under

folding conditions (C < Cm)? Small Angle X-ray Scattering (SAXS) experiments on some

proteins show practically no change in the unfolded Rg as C is changed[19]. On the other

hand, from experiments based on single molecule Fluorescence Resonance Energy Transfer

(smFRET) it has been concluded that the size of the unfolded state is more compact below

Cm compared to its value at high C[20, 21]. The so-called smFRET-SAXS controversy has

remained unresolved. Resolving this apparent controversy is not only important in our un-

derstanding of the physics of protein folding but also has implications for the physical basis

of the evolution of natural sequences.

The difficulties in describing the collapse of unfolded states as C is lowered could be

attributed to the following reasons. (1) Following de Gennes[22], homopolymer collapse can

be pictured as formation of a large number of blobs driven by local interactions between

monomers on the scale of the blob size. Coarsening of blobs results in the equilibrium glob-

ule formation with the number of maximally compact conformations whose number scales

exponentially with the number of monomers. Other scenarios resulting in the formation of

fractal globules enroute to the formation of equilibrium maximally collapsed structures have

also been proposed [23]. The globule formation is driven by non-specific interactions between

the monomers or the blobs. Regardless of how the equilibrium globule is reached it is clear

that it is largely stabilized by local interactions, because contacts between monomers that

are distant along the sequence are entropically unfavorable. In contrast, even in high denat-

urant concentrations proteins could have residual structure, which likely becomes prominent

at C < Cm. At low C there are specific favorable interactions between residues separated

by a few or several residues along the sequence. As their strength grows, with respect to the

entropic forces, the specific interactions may favor compaction in a manner different from

the way non-specific local interactions induce homopolymer collapse. In other words, the

dominant native-like contacts also drive compaction of unfolded states of proteins. (2) A

consequence of the impact of the native-like contacts (local and non-local) on collapse of un-

folded states is that specific energetic considerations dictate protein compaction resulting in

the formation of minimum energy compact structures (MECS)[24]. The number of MECS,

which are not fully native, is small, scaling as lnN with N being the number of amino
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acid residues. Therefore, below Cm their contributions to Rg have to be carefully dissected,

which is more easily done in single molecule experiments than in ensemble measurements

such as SAXS. (3) Single domain proteins are finite-sized with N rarely exceeding ∼ 200.

Most of those studied experimentally have N < 100. Thus, the extent of change in Rg of the

unfolded states is predicted to be small, requiring high precision experiments to quantify

the changes in Rg as C is changed. For example, in a recent study[25], we showed that

in PDZ2 domain the change in Rg of the unfolded states as the denaturant concentration

changes from 6 M guanidine chloride to 0 M is only about 8%. Recent experiments have

also established that changes in Rg in helical proteins are not too large [20].

In homopolymers there are only two possible states, coil and globule, with a transition

between the two occurring at Tθ. On the other hand, even in proteins that fold in a two-

state manner one can conceive of at least three states (we ignore intermediates here): (i) the

unfolded state UD at high C; (ii) the compact but unfolded state UC, which could possibly

exist below Cm; (iii) the native state. Do the sizes of UD and UC differ? This question

requires a clear answer as it impacts our understanding of how proteins fold, because the very

nature of the unfolded states of proteins plays a key role in determining protein foldability

[26–28].

Given the flexibility of proteins (persistence length on the order of 0.5 − 0.6 nm), we

expect that the size of the extended polypeptide chain must gradually decrease as the solvent

quality is altered. Experiments on a number of proteins show that this is the case[29–31].

However, in some SAXS experiments the theoretical expectation that RUC
g < RUD

g for one

protein was not borne out [10, 19], precipitating a more general question: are chemically

denatured proteins compact at low C? The absence of collapse is not compatible with

inferences based on smFRET [21] and theory [26]. Here, we create a theory to not only

resolve the smFRET-SAXS controversy but also provide a quantitative description of how

the propensity to be compact is encoded in the native topology. The theory, based on

polymer physics concepts, includes specific attractive interactions (mimicking interactions

accounting for native contacts in the Protein Data Bank (PDB)) and a two-body excluded

volume repulsion. By construction the model does not have a native state. There are only

two states (analogues of UD and UC) in the model. The formation of UC is driven by the

contact map of the folded state. Thus, chain compaction is driven in much the same way

as in homopolymers, altered only by specific interactions that differentiate proteins from
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homopolymers.

Our theory predicts quantitatively how the extent of compaction (collapsibility) is deter-

mined by the strength and the number of the native contacts and their locations along the

chain. We use a large representative selection of proteins from the PDB to establish that

collapsibility is an inherent characteristic of evolved protein sequences. A major outcome

of this work is that β-sheet proteins are far more collapsible than structures dominated by

α-helices. Our theory suggests that there is an evolutionary pressure on proteins for being

compact as a pre-requisite for kinetic foldability, as we predicted over twenty years ago [26].

We come to the inevitable conclusion that the unfolded state of proteins must be compact

under native conditions, and the mechanism of polypeptide chain compaction has similari-

ties as well as differences to collapse in homopolymers. As a by-product of this work we also

establish that certain non-coding RNA molecules must undergo compaction prior to folding

as their folded structures are stabilized predominantly by long-range tertiary contacts.

THEORY

We start with an Edwards Hamiltonian for a polymer chain [32]:

H =
3kBT

2a20

N∫
0

(
∂r

∂s

)2

ds+ kBTV(r(s)), (1)

where r(s) is the position of the monomer s, a0 the monomer size, and N is the number of

monomers. The first term in Eq.(1) accounts for chain connectivity, and the second term

represents volume interactions and favorable interactions between select monomers given by

V(r(s)),

V(r(s)) =
v

(2πa20)
3/2

N∑
s=0

N∑
s′=0

e
− (r(s)−r(s′))2

2a20 − κ

(2πσ2)3/2

∑
{si,sj}

e−
(r(si)−r(sj))

2

2σ2 (2)

The first term in Eq.(2) accounts for the homopolymer (non-specific) two-body inter-

actions. It is well established in the theory of homopolymers that in good solvents with

v > 0 the polymer swells with Rg ∼ aN ν (ν ≈ 0.6). In poor solvents (v < 0) the polymer

undergoes a coil-globule transition with Rg ∼ aN ν (ν ≈ 1/3). These are the celebrated

Flory laws. Here, we consider only the excluded volume repulsion case (v > 0).
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The second term in Eq.(2) requires an explanation. The generic scenario for homopoly-

mer collapse is based on an observation by de Gennes, who pictured the collapse process as

being driven by the initial formation of blobs that arrange to form a sausage-like structure.

At later stages the globule forms to maximize favorable intra-molecular contacts while si-

multaneously minimizing surface tension. Compaction in proteins, although sharing many

features in common with homopolymer collapse, could be different. A key difference is that

the folded states of almost all proteins are stabilized by a mixture of local contacts (inter-

action between residues separated by less than say ∼ 8 but greater than 3 residues) as well

as non-local (> 8 residues) contacts. Note that the demarcation using 8 between local and

non-local contacts is arbitrary, and is not germane to the present argument. These specific

interactions also dominate the enthalpy of formation of the compact, non-native state UC,

playing an important role in its stability. Therefore, the topology of the folded state could

dictate collapsibility (the extent to which the UD state becomes compact as the denaturant

concentration is lowered) of a given protein. In combination with the finite size of single

domain proteins (N ∼ 200), the extent of protein collapse could be small. In order to assess

chain compaction under native conditions we should consider the second term in Eq.(2).

We note in passing (with discussion to follow) that a number of studies have considered

the effect of crosslinks on the shape of polymer chains [33–39]. Polymers with crosslinks

have served as models for polymer gels and rubber elasticity[40–42]. In these studies the

contacts were either random, leading to the random loop model [34], or explicit averages

over the probability of realizing such contacts were made [33, 43], as may be appropriate

in modeling gels. These studies inevitably predict a coil-to-globule phase transition as the

number of crosslinks increases.

In contrast to models with random crosslinks, in our theory attraction is only between

specific residues, described by the second term in Eq.(2), where the sum is over the set of

interactions (native contacts) involving pairs {si, sj}. We use the contact map of the protein

(extracted from the PDB structure) in order to assign the specific interactions (their total

number being Nnc). The contact is assigned to any two residues si and sj if the distance

between their Cα atoms in the PDB entry is less than Rc = 8Å and |si − sj| > 2. We use

Gaussian potentials in order to have short (but finite) range attractive interactions. For the

excluded volume repulsion, this range is on the order of the size of the monomer, a0 = 3.8Å.

For the specific attraction, the range is the average distance in the PDB entry between Cα
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atoms forming a contact (averaged across a selection of proteins from the PBD). We obtain

σ = 6.3Å.

By changing the value of κ, and hence the strength of attraction, there is a transition be-

tween the extended and compact states. Decreasing κ is analogous to chemically denaturing

proteins, although the connection is not precise. At high denaturant concentrations (κ ≈ 0,

good solvent) the excluded volume repulsion (first term in Eq.(2)) dominates the attraction,

while at low C (high κ, poor solvent) the attractive interactions are important. The point

where attraction balances repulsion is the θ-point, and the value of κ = κθ. Although re-

served for the coil-to-globule transition in the limit of N � 1 in homopolymers, we will use

the same notation (θ-point) here. In our model, at the θ-point, the chain behaves like an

ideal chain. To describe the globular state, a three-body repulsion needs to be added to the

Hamiltonian (Eq.(2)), but we focus on the region between the extended coil and the θ-point

because our interest is to access only the collapsibility of proteins. If κθ is very large then

significant chain compaction would only occur at very low (C � Cm) denaturant concentra-

tions, implying low propensity to collapse. Conversely, small κθ implies ease of collapsibility.

Note that the ground state (κ� 1) of the Hamiltonian in Eq.(2) is a collapsed chain whose

Rg is on the order of the monomer size. In other words, a stable native state does not exist

for the model described in Eq.(2). Thus, we define protein collapse as the propensity of the

polypeptide chain to reach the θ-point as measured by the κθ value, and use the changes in

the radius of gyration Rg as a measure of the extent of compaction.

Assessing collapsibility: For our model, which encodes protein topology without fa-

voring the folded state, we calculate 〈R2
g〉 using the Edwards-Singh (ES) method [44]. The

ES method is a variational type calculation that represents the exact Hamiltonian by a

Gaussian chain, whose effective monomer size is determined as follows. Consider a virtual

chain without excluded volume interactions, with the radius of gyration 〈R2
g〉 = Na2/6[44],

described by the Hamiltonian,

Hv =
3kBT

2a2

N∫
0

(
∂r

∂s

)2

ds, (3)

where the monomer size in the virtual Hamiltonian is a. We split the deviation W between

the virtual chain Hamiltonian and the real Hamiltonian as,

H−Hv = kBTW = kBT (W1 +W2), (4)
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where

W1 =
3

2

(
1

a20
− 1

a2

) N∫
0

(
∂r

∂s

)2

ds,

W2 = V(r(s)). (5)

The radius of gyration is R2
g = 1

N

N∫
0

〈r2(s)〉ds, with the average being,

〈r2(s)〉 =

∫
r2e−H/kBT δr∫
e−H/kBT δr

=

∫
r2e−Hv/kBT e−Wδr∫
e−Hv/kBT e−Wδr

=
〈r2(s)e−W〉v
〈e−W〉v

(6)

where 〈· · · 〉v denotes the average over Hv.

Assuming that the deviation W is small, we calculate the average to first order in W .

The result is,

〈r2(s)〉 ≈ 〈r
2(s)(1−W)〉v
〈(1−W)〉v

≈ 〈r2(s)(1−W)〉v〈(1 +W)〉v (7)

and the radius of gyration is

〈R2
g〉 =

1

N

N∫
0

〈r2(s)〉ds =
1

N

N∫
0

[〈r2(s)〉v + 〈r2(s)〉v〈W〉v − 〈r2(s)W〉v]ds, (8)

If we choose the effective monomer size a inHv such that the first order correction (second

and third terms on the right hand side of Eq.(8)) vanishes, then the size of the chain is,

〈R2
g〉 = Na2/6. This is an estimate to the exact 〈R2

g〉, and is an approximation as we have

neglected W2 and higher powers of W . Thus, in the ES theory, the optimal value of a from

Eq. (8) satisfies,

1

N

N∫
0

[〈r2(s)〉v〈W〉v − 〈r2(s)W〉v]ds = 0. (9)

Since W =W1 +W2, the above equation can be written as

1

N

N∫
0

[〈r2(s)〉v〈W1〉v − 〈r2(s)W1〉v]ds = − 1

N

N∫
0

[〈r2(s)〉v〈W2〉v − 〈r2(s)W2〉v]ds. (10)
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Evaluation of the 〈r2(s)W1〉v term yields,

〈r2(s)W1〉v =

3
2

(
1
a20
− 1

a2

) ∫
r2

N∫
0

ṙ2ds e
− 3

2a2

N∫
0

ṙ2ds
δr

∫
e
− 3

2a2

N∫
0

ṙ2ds
δr

(11)

=
3

2

(
1

a20
− 1

a2

) ∂

∂α

(∫
δrr2eα

∫
ṙds∫

δreα
∫
ṙds

)∣∣∣∣∣
α=− 3

2a2

+

∫
r2 e

− 3
2a2

N∫
0

ṙ2ds
δr

(
∫
e
− 3

2a2

N∫
0

ṙ2ds
δr)2

∫ N∫
0

ṙ2ds e
− 3

2a2

N∫
0

ṙ2ds
δr


=

(
1

a20
− 1

a2

)
a2
(
a2N

6

)
+ 〈r2(s)〉v〈W1〉v

With the help of Eq.(11) and Eq.(9) we obtain the following self-consistent expression for

a,
1

a20
− 1

a2
=
〈r2(s)〉v〈V〉v − 〈r2(s)V〉v

a2

N

∫ N
0
ds 〈r2(s)〉v

. (12)

Calculating the averages in Fourier space, where r̃n = 1
N

N∫
1

cos
(
πns
N

)
r(s)ds, r(s) = 2

N∑
n=1

cos
(
πns
N

)
r̃n,

and R2
g = 2

∑
n

〈|r̃2n|〉), we obtain

1

a20
− 1

a2
= v

(3
2
)5/2(π

2
)3/2

(a2)5/2N3/2

(
N∑
n=1

1
n2

) N∑
s=0

N∑
s′=0

N∑
n=1

1−cos[nπ(s−s′)/N ]
n4(

N∑
n=1

1−cos[nπ(s−s′)/N ]
n2 +

3π2a20
2a2N

)5/2
(13)

− κ
(3
2
)5/2(π

2
)3/2

(a2)5/2N3/2

(
N∑
n=1

1
n2

) ∑
{si,sj}

N∑
n=1

1−cos[nπ(si−sj)/N ]

n4(
N∑
n=1

1−cos[nπ(si−sj)/N ]

n2 + 3π2σ2

2a2N

)5/2
.

The best estimate of the effective monomer size a can be obtained by numerically solving

Eq.(13) provided the contact map is known. A bound for the actual size of the chain is

〈R2
g〉 = Na2/6. Because we are interested only in the collapsibility of proteins we use the

definition of the θ-point to assess the condition for protein compaction instead of solving

the complicated Eq.(13) numerically. The volume interactions are on the right hand side

of Eq.(13). At the θ-point, the v-term should exactly balance the κ-term. Since at the

θ-point the chain is ideal with a = a0, we can substitute this value for a in the sums in the

denominators of the v- and κ-terms. By equating the two, we obtain an expression for κθ.
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Thus, from Eq.(13), the specific interaction strength at which two-body repulsion (v-term)

equals two-body attraction (κ-term) is:

κθ =
4

3
πa30

N∑
s=0

N∑
s′=0

N∑
n=1

1−cos[nπ(s−s′)/N ]

n4(
N∑
n=1

1−cos[nπ(s−s′)/N ]

n2
+ 3π2

2N

)5/2

∑
{si,sj}

N∑
n=1

1−cos[nπ(si−sj)/N ]

n4(
N∑
n=1

1−cos[nπ(si−sj)/N ]

n2
+ 3π2σ2

2a20N

)5/2

. (14)

The numerator in Eq.(14) is a consequence of chain connectivity and the denominator en-

codes protein topology through the contact map, determining the extent to which the sizes

in UD and UC states change as C becomes less than Cm. The numerical value of κθ is a

measure of collapsibility.

RESULTS

Native topology determines collapsibility: The central result in Eq.(14) can be used

to quantitatively predict the extent to which a given protein has a propensity to collapse.

We used a list of proteins with low mutual sequence identity selected from the Protein Data

Bank PDBselect[45], and calculated κθ using Eq.(14) for these proteins. In all we considered

2306 proteins. For each contact (i, j), the energetic contribution due to interaction between

i and j is k = (2πσ2)−3/2κ according to Eq.(2). Thus, kθ = (2πσ2)−3/2κθ is the average

strength (in units of kBT ) of a contact at the θ-point. If κθ, calculated using Eq.(14), is

too large then the extent of polypeptide chain collapse is expected to be small. It is worth

noting that the theory cannot be used to determine the stability of the folded state, because

in the Hamiltonian there are only two states, UD (κ=0 in Eq.(2)) and UC (κ > κθ).

The strength of contacts in real proteins (excluding possibly salt bridges) is typically on

the order of few kBT in the absence of denaturants. This is the upper bound for the contact

strength any theory should predict, as adding denaturant only decreases the strength. If kθ

is unrealistically high (tens of kBT ) then the attractive interactions of the protein would be

too weak to counteract the excluded volume repulsion even at zero denaturant concentration,

resulting in negligible difference in Rg between the UD and UC states.

Fig.(1) shows a two-dimensional histogram of the PDBselect proteins in the (N, kθ) plane.

For the majority of small proteins (less than 150 residues) the value of κθ is less than 3
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kBT , indicating that the unfolded states of all of these proteins should become compact at

C < Cm. That collapse must occur, as predicted by our theory and established previously

in lattice[26], and off-lattice models of proteins[46], does not necessarily imply that it can

be easily detected in standard scattering experiments, because the changes could be small

requiring high precision experiments (see below).

Weight function of a contact: For a given N , the criterion for collapsibility in Eq.(14)

depends on the architecture of the proteins explicitly represented in the denominator through

the contact map. Analysis of the weight function of a contact, defined below, provides a

quantitative measure of how a specific contact influences protein compaction. Some contacts

may facilitate collapse to a greater extent than others, depending on the location of the pair

of residues in the polypeptide chain. In this case, the same number of native contacts Nnc

in the protein of the same length N might yield a lower (easier collapse) or higher (harder

collapse) value of kθ. In order to determine the relative importance of the contacts with

respect to collapse, we consider the contribution of the contact between residues i and j in

the denominator of Eq.(14),

W (i− j) =

N∑
n=1

1−cos[nπ(i−j)/N ]
n4(

N∑
n=1

1−cos[nπ(i−j)/N ]
n2 + 3π2σ2

2a20N

)5/2
. (15)

A plot of W (i− j) in Fig.(2) for different values of the chain length N shows that the weight

depends on the distance between the residues along the chain. Contacts between neighboring

residues have negligible weight, and there is a maximum in W (i − j) at i − j ≈ 30 (for

a0/σ = 0.6), almost independent of the protein length. The maximum is at a higher value

for proteins with N > 100 residues. The figure further shows that longer range contacts make

greater contribution to chain compaction than short range contacts. The results in Fig.(2)

imply that proteins with a large fraction of non-local contacts are more easily collapsible

than those dominated by short range contacts, which we elaborate further below.

Maximum and minimum collapsibility boundaries: Using W (i − j) in Eq.(15),

we can design protein sequences to optimize for “collapsibility”. To design a “maximally

collapsible” protein, for fixed N and number of native contacts Nnc, we assign each of the

Nnc contacts one by one to the pair i, j with a maximal W (i, j) among the available pairs

with the criterion that |i−j| > 2. Such an assignment necessarily implies that the artificially
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designed contact map will not correspond to any known protein. Similarly, we can design

an artificial contact map by selecting i, j pairs with minimal W (i, j) till all the Nnc are fully

assigned. Such a map, which will be dominated by local contacts, are minimally collapsible

structures.

The white lines in Fig.(1) show kθ of chains of length N with Nnc(N) contacts distributed

in ways to maximize or minimize collapsibility. We estimated Nnc(N) ≈ 0.6N1.3 from the

fit of the whole PDBSelect set. Since the lines are calculated for Nnc from the fit over the

entire set, and not from Nnc for every protein, there are proteins below the minimal and

above the maximal curve in Fig.(1). For a given protein, with N and Nnc defined by its

PDB structure, kθ for all possible arrangements of native contacts is largely in between the

maximally and minimally collapsible lines in Fig.(1). The majority of proteins in our set are

closer to the maximal collapsible curves, suggesting that the unfolded proteins have evolved

to be compact under native folding conditions. This theoretical prediction is in accord

with our earlier studies which suggested that foldability is determined by both collapse and

folding transitions [26], and more recently supported by experiments[20].

β-sheet rather than α-helical proteins undergo larger compaction: The weight

function W (Eq.(15) and Fig.(2)) suggests that contacts in α-helices (|i− j| = 4) only make

a small contribution to collapse. Contacts corresponding to the maximum of W at i−j ≈ 30

are typically found in loops and long antiparallel β-sheets. Fig.(3) shows a set of proteins

with high α-helix (> 90%) and a set with high content of β-sheets (> 70%). The values of kθ

for the two sets are very distinct, so they barely overlap. We find that many of the α-helical

proteins lie on or above the curve of minimal collapsibility while the rest are closer to the

maximal collapsibility. The smaller β-rich proteins lie on the curve of maximal collapsibility

slightly diverging from it as the chain length grows. These results show that the extent of

collapse of proteins that are mostly α-helical is much less than those with predominantly

β-sheet structures.

A note of caution is in order. The minimal collapsibility of most α-helical proteins in the

set may be a consequence of some of them being transmembrane proteins, which do not fold

in the same manner as globular proteins. Instead, the transmembrane α-helices are inserted

into the membrane by the translocon, one by one, as they are synthesized. Such proteins

would not have the evolutionary pressure to be compact.

Extent of compaction varies depending on the native structure: Our conclusions,
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summarized in Figs.(1-3), are based on an approximate theory. To validate the approxima-

tions and illustrate the impact of the location of contacts on chain compaction we performed

Monte Carlo simulations of chains of lengths N = 36, 72 and 153 using the energy function

given by Eq.(2) with harmonic spring chain connectivity. The proteins are Villin headpiece

(N = 36), protein-L (N = 72), and myoglobin (N = 153). The contact maps and cartoon

representation of these proteins are in Fig.(4). Fig.(5) shows that the ratio between end-to-

end distance (Ree) and radius of gyration (Rg) decreases continuously with the interaction

strength, indicative of chain compaction. Fig.(5) also shows that Ree/Rg � 1, which is well

known for Gaussian chains (Ree/Rg =
√

6) and self-avoiding walks (κ = 0 limit) for which

the ratio >
√

6. Based on κθ estimates we conclude that protein-L (α, β) is more collapsi-

ble than villin headpiece and myoglobin (helical proteins). Fig.(6a) shows the variations

in the probability distribution of Rg, P (Rg) for protein-L as a function of κ. The broader

distribution with zero interaction strength corresponds to the extended chain. We find that

P (Rg) becomes narrower as the attractive strength increases. The continuous shift in to

the compact state with gradual increase in the attractive strength shows the compaction of

unfolded proteins as the denaturant concentration decreases. Thus, generally Rg of the UC

state is less than that of the UD state. The end-to-end distribution, P (Ree), for different

values of interaction strength has been shown in Fig.(6b). The broad distribution at κ = 0

corresponds to the unfolded protein. Average Ree decreases as attractive strength increases

and the distribution becomes narrower. The results in Fig.(6) show that both Ree, which

can be inferred using FRET, and Rg (measurable using SAXS), are smaller in the UC state

than the UD state. However, the extent of decrease is greater in Ree than Rg.

RNAs are compact: There are major differences between how RNA and proteins fold

[47]. In contrast to the apparent controversy in proteins, it is well established that RNA

molecules are compact[48–50] at high ion concentrations or at low temperatures. Because

our theory relies only on the knowledge of contact map we used it assess collapsibility in

Azoarcus ribozyme and MMTV pseudoknot to merely illustrate collapsibility of RNA . The

kθ values (green stars in Fig.3) are close to the lower β-sheet line, indicating that these

molecules must undergo compaction. This prediction from the theory is fully supported by

both equilibrium and time-resolved SAXS experiments[51] on Azoarcus ribozyme. In this

case (N = 196) the changes are so large that even using low resolution experiments collapse

is readily observed[52]. We should emphasize that the size of different RNAs (for example
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viral, coding, non-coding) vary greatly. For a fixed length, single-stranded viral RNAs have

evolved to be maximally compact, which is rationalized in terms of the density of branching.

Although the sizes of the viral RNAs considered in [53] are much longer than the Azoarcus

ribozyme the notion that compaction is determined by the density of branching might be

valid even when N ∼ 200.

DISCUSSION

We have shown that polymer chains with specific interactions, like proteins (but ones

without a unique native state), become compact, as the strength of the specific interaction

changes. A clear implication is that the size of the UD state should decrease continuously

as C decreases. In other words, the unfolded state under folding conditions is more compact

than it is at high denaturant concentrations. Compaction is driven roughly by the same

mechanism as the collapse transition in homopolymers in the sense that when the solvent

quality is poor (below Cm) the size of the unfolded state decreases continuously. When the

set of specific interactions is taken from protein native contacts in the PDB, our theory

shows that the values of kθ are in the range expected for interaction between amino acids in

proteins. This implies that collapsibility should be a universal feature of foldable proteins

but the extent of compaction varies greatly depending on the architecture in the folded state.

This is manifested in our finding that proteins dominated by β-sheets are more collapsible

compared to those with α-helical structures.

Magnitude of kθ and plausible route to multi-domain formation: The scaling

of kθ with N allows us to provide arguments for the emergence of multi-domain proteins.

In Eqs.(13) or (14) attractive (κ-) and repulsive (v-) terms have the same structure. The

only difference in their scaling with N is due to the difference in the sums (over all the

monomers in the repulsive term and over native contacts in the attractive term). Double

summation over all the monomers gives a factor of N2 to the repulsive term. The summation

over native contacts in the attractive term scales as Nnc. Therefore, to compensate for the

repulsion, Nnc should scale as N2. However, for a given protein with a certain length N

and certain numbers of contacts, it is not clear how the denominator in Eq.(14) scales with

N . Empirically we find Nnc(N) dependence across a representative set of sequences scales

as Nγ with γ less than 2 (likely on the order of 1.5). Thus, it follows from Eq.(14) that kθ
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increases without bound as N continues to increase. Because this is unphysical, it would

imply that proteins whose lengths exceeds a threshold length NC cannot become maximally

compact even at C = 0. An instability must ensue when N exceeds NC . This argument in

part explains why single domain proteins are relatively small[54].

Scaling of Nnc as a power law in Nγ with γ < 2 means that as protein size grows, the

value of kθ will deviate more and more from those found in globular proteins, implying such

proteins cannot be globally compact under physiologically relevant conditions. However,

such an instability is not a problem because larger proteins typically consist of multiple

domains. Thus, if the protein does not show collapse as a whole, the individual domains

could fold independently, having lower values of kθ for each domain of the multi-domain

protein. It would be interesting to know if the predicted onset of instability at NC provides a

quantitative way to assess the mechanism of formation of multi-domain proteins. Extension

of the theory might yield interesting patterns in the assembly of multi-domain proteins.

For instance, one can quantitatively ascertain if the N-terminal domains of large proteins,

which emerge from the ribosome first, have higher collapsibility (lower κθ) than C-terminal

domains.

SAXS-smFRET controversy resolved: Our theory resolves, at least theoretically, the

contradictory results using SAXS and FRET experiments on compaction of small globular

proteins. It has been argued, based predominantly on protein-L (N = 72) SAXS experiments

that Rg of UD and UC states are virtually the same at denaturant concentrations that are

less than Cm [19]. This conclusion is not only at variance with SAXS experiments on other

proteins but also with interpretation of smFRET data on a number of proteins. The present

work, surveying over 2300 proteins, shows that the compact state has to exist, engendered

by mechanisms that have much in common with homopolymer collapse. For protein-L,

the kθ = 1.7kBT , a very typical value, right on the peak of the heat map in Fig.(1). We

have previously argued that because the change in Rg between the UD and UC states for

small proteins is not large, high precision experiments are needed to measure the predicted

changes in Rg between UC and UD. For protein-L the change is less than 10%[55], making its

detection in ensemble experiments very difficult. Similar conclusions were reached in recent

experiments [20]. A clear message from our theory is that, tempting as it may be, one cannot

draw universal conclusions about polypeptide compaction by performing experiments on just

a few proteins. One has to survey a large number of proteins with varying N and native
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topology to quantitatively assess the extent of compaction. Our theory provides a framework

for interpreting the results of such experiments.

Random contact maps, local and non-local contacts: In order to differentiate

collapsibility between evolved and random proteins, we created twelve random contact maps

keeping the total number of contacts the same as in protein-L (see Fig.(8) for examples).

For each of these pseudo-proteins we calculated kθ using Eq.(14). We find that for all the

random contact maps the kθ values are less than for protein-L, implying that the propensity

of the pseudo-proteins to become compact is greater than for the wild type. This finding

is in accord with studies based on homopolymer and heteropolymer collapse with random

crosslinks. These studies showed that the polymer undergoes a collapse transition as the

density of crosslinks is increased[34, 36, 37]. Of particular note is the demonstration by

Camacho and Schanke[39], who showed using exact enumeration of random heteropolymers

and scaling arrangements that the collapse can be either a first or second order transition

depending on the function of hydrophobic residues [39].

Some time ago Abkevich et al.[56] showed, using Monte Carlo simulations of protein-

like lattice polymers, that the folding transition in proteins with predominantly non-local

contacts was first order like, which is not the case for proteins in which local contacts

dominate. In light of this finding, it is interesting to examine how compaction is affected

by local and non-local contacts. We created for N=72 (protein-L) a contact map with 185

(same number as with WT protein-L), predominantly local contacts (Fig.(8b)). The values

of kθ for these pseudo-proteins is considerably larger than for the WT, implying that proteins

dominated by local contacts are minimally collapsible. We repeated the exercise by creating

contact maps with predominantly non-local contacts (Fig.(8c)). Interestingly, kθ values in

this case are significantly less than for the WT. This finding explains why in proteins with

varied α/β topology there is a balance between the number of local and non-local contacts.

Such a balance is needed to achieve native state stability and speed of folding[56] with

polypeptide compaction playing an integral part [26].

Based on these findings we conclude that Rg of the unfolded states of proteins dominated

by non-local contacts must undergo greater compaction compared to those with that have

mostly local contacts. The results in Fig. 3 also show that proteins rich in β-sheet are more

collapsible than predominantly α-helical proteins. It follows that β-sheet proteins must have

a larger fraction of non-local contacts than proteins rich in α-helices. In Fig. (8d) we plot
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the distribution of the fraction of non-local contacts for the 2306 proteins. Interestingly,

there is a clear separation in the distribution of non-local contacts between α-helical rich

and β-sheet rich proteins. The latter have substantial fraction of non-local contacts which

readily explains the findings in Fig. (8c) and the predictions in Fig. (3).

CONCLUSIONS

We have created a theory to assess collapsibility of proteins. The major implications

of the theory are the following. (i) Because single domain proteins are small, the changes

in the radius of gyration of the unfolded states as the denaturant concentration is lowered

are often small. Thus, it has been difficult to detect the changes in SAXS experiments

in a couple of proteins raising the question if unfolded polypeptide chains become compact

below Cm. Here, we have solved this long-standing problem showing that the unfolded states

of single-domain proteins do become compact as the denaturant concentration decreases,

sharing much in common with the physical mechanisms governing homopolymer collapse.

By adopting concepts from polymer physics, and using the contact maps that reflect the

topology of the native states, we established that proteins are collapsible. (ii) Based on

a survey of over two thousand proteins we surmise that there is evolutionary pressure for

collapsibility is universal although the extent of collapse can vary greatly, because this

ensures that the propensity to aggregate is minimized even if environmental fluctuations

under cellular conditions transiently populate unfolded states. Two factors contribute to

aggregation. First, the rate of dimer formation by diffusion controlled reaction would be

enhanced if a pair of UD rather than UC molecules collided due cellular stress because the

contact radius in the former would be greater than in the latter. Second, the fraction of

exposed hydrophobic resides in UD is much greater than in UC, thus greatly increasing the

probability of aggregation. The second factor is likely to be more important than the first.

Consequently, transient population of UC due to cellular stress minimizes the probability of

aggregation. (iii) We have also shown that the position of the residues forming the native

contact greatly influences the collapsibility of β sheet proteins (containing a number of

non-local contacts) showing greater compaction than α helical proteins, which are typically

stabilized by local contacts.

Our theory also shows that most RNAs may have evolved to be compact in their natural

18

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 22, 2016. ; https://doi.org/10.1101/070920doi: bioRxiv preprint 

https://doi.org/10.1101/070920


environments. Although the evolutionary pressure to be compact is likely to be substantial

for viral RNAs [49, 50, 53, 57], it is apparent that even non-coding RNAs are also likely to

be almost maximally compact in their natural environments. Our theory suggests that to a

large extent collapsibility of RNA is similar to proteins with β-sheet structures. Both classes

of biological macromolecules are stabilized by non-local contacts. Interestingly, it has been

argued that the need to be compact (“Compaction selection hypothesis” [57]) could be a

major determinant for evolved biopolymers to have minimum energy compact structures as

their ground states.
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FIG. 1. Collapsibility quantified using kθ (in units of kBT ) for a set of 2,306 PDB structures

as a function of the length N of the proteins. White lines show the kθ at the boundaries for

maximally and minimally collapsible proteins (lower and upper lines respectively). Colors give a

rough estimate of the number of proteins, which decreases from red to violet.
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FIG. 2. Weight function W (Eq.(15)) of a contact, showing how much a contact between residues

i and j contributes to the compaction of a protein. The colors are for different N values (shown

in the inset). Interestingly, the location of the maximum is roughly independent of N .
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FIG. 3. Dependence of kθ on the secondary structure content of proteins. We display kθ for α-

rich (> 90%) and β-rich (> 70%) proteins. Proteins that are predominantly α-helical tend to be

close to minimally collapsible (upper line), while β-rich proteins are close to maximally collapsible

curve (lower curve). The green stars are for RNA with the left one at small N corresponding

to theMouse Mammary Tumor Virus (MMTV) pseudoknot (N=34) and the other is Azoarcus

ribozyme (N=196).
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FIG. 4. Native topologies of three proteins studied by Monte Carlo simulations; villin headpiece

(a), protein-L (b), and myoglobin (c). Secondary structures were determined by DSSP [58] and

shown in blue for helices and red for β-strands. We used VMD to draw the three-dimensional

structures [59].
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FIG. 5. Ratio between the end-end distance (Ree) and radius of gyration (Rg) for three different

chain lengths (N=36, 72 and 153). It decreases continuously with increasing interaction strength.

The presence of contacts between residues decreases Ree/Rg from the maximum value attainable

for a self-avoiding walk.
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FIG. 6. (a) The probability distribution of the radius of gyration, P (Rg) for different values of

interaction strength k for Protein-L. As k increases, the distribution becomes narrower. (b) Same

as (a) except this panel shows end-to-end distribution P (Ree) for different values of attractive

strength k for Protein-L. The similarity between P (Ree) and P (Rg) shows that Ree also is a

reasonable measure of compaction.
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FIG. 7. Native topologies of two RNA molecules, MMTV pseudoknot (a-c) and Azoarcus ribozyme

(d-f). Three-dimensional structures (a and d), secondary structures (b and e), and contact maps

(c and f) are shown for each RNA. Colors are used to distinguish secondary structures. Contact

pairs in RNA are defined as any nucleotide pair i and j (|i − j| > 2) satisfying Rij < 14Å, where

Rij is the distance between centers of mass of the nucleotides [60]. MMTV has two stem basepairs

(cyan and green in a-c), which contribute to non-local contacts (cyan and green in c). Azoarcus

ribozyme has several hairpin basepairs (P2, P5, P6, P8 and P9) which can be seen in the vicinity

of the diagonal in the contact map (f). There are also basepairs between nucleotides far along the

sequence such as P3, P4 and P7, as well as tertiary interactions such as TL2-TR8 and TL9-TR5.

These non-local contacts contribute to the collapsibility of the ribozyme.
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FIG. 8. Collapsibility for synthetic contact maps. Two representative contact maps for each

category are shown in the upper left and lower right of each square. Given the number of residues

N = 72 and total number of contacts Nnc = 185 (same as protein-L), residue pairs (i, j) are

randomly chosen to satisfy the following conditions: (a) uniformly distributed, |i − j| ≥ 3; (b)

local contacts only, |i − j| ≥ 3 and |i − j| < 8;, and (c) non-local contacts only, |i − j| ≥ 8. The

calculated values of kθ are explicitly shown. The kθ value for protein-L is 1.7kBT .(d) Distribution of

the fraction of non-local contacts in the 2306 proteins. For each protein, the fraction is calculated

as the number of non-local contacts (NNL
nc ) divided by the total number of contacts (Nnc). A

contact between residues i and j is “non-local (NL)” if |i − j| ≥ 8. There is a clear separation in

this distribution for proteins rich in α helices compared to those that are rich in β-sheets implying

that the latter are more collapsible than the former.
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