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Abstract

As sequencing technologies have advanced, the amount of information regarding the com-
position of bacterial communities from various environments (e.g. skin, soil) has grown
exponentially. To date, most work has focused on cataloging taxa present in samples and
determining whether the distribution of taxa shifts with exogenous covariates. However, im-
portant questions regarding how taxa interact with each other and their environment remain
open, thus preventing in-depth ecological understanding of microbiomes. Time-series data
from 16S rDNA amplicon sequencing are becoming more common within microbial ecology,
but given the ‘big data’ nature of these studies, there are currently no methods capable of
utilizing the breadth of the data to infer ecological interactions from these longitudinal data.
We address this gap by presenting a method of analysis using Poisson regression fit with
an elastic-net penalty that 1) takes advantage of the fact that the data are time series; 2)
constrains estimates to allow for the possibility of many more interactions than data; and 3)
is scalable enough to handle data consisting of thousands of taxa. We test the method on
gut microbiome data from white-throated woodrats (Neotoma albigula) that were fed vary-
ing amounts of the plant secondary compound oxalate over a period of 22 days to estimate

interactions between OTUs and their environment.

Introduction

Methodological advances in DNA sequencing have uncovered microbial diversity that extends
far beyond that which could be detected using traditional cell culture methods. Because of
the ease and inexpensive nature of new technologies, researchers are collecting increasing
amounts of data with regard to various microbiomes (e.g. skin, soil, gut), a trend which
will only increase with newly created funding sources such as the recently announced U.S.
National Microbiome Initiative (The White House Office of Science and Technology Policy,
2016). To date, most studies center around identifying members of the community using
16S rDNA sequencing and using diversity measures and ordination techniques to compare

samples (Ramette, 2007; Cassman et al., 2016). While such analyses yield a large amount of
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information regarding where and when a particular microbe might be found, they tell almost
nothing about why the microbe is there, how it interacts with its environment (e.g. other
microbes, host), and what functions it may be providing toward—or detracting from—the

overall ecosystem-level services.

To address some of these central questions of interactions and function, ecological and
evolutionary theory developed for macro systems has begun to be applied to microbial sys-
tems. For example, microbiome data derived from 16S rDNA sequencing has been used to
estimate population dynamics of microbial communities (Marino et al., 2014), to infer how
communities respond to perturbations (Stein et al., 2013), and to assess important commu-
nity properties such as stability and resilience (Coyte et al., 2015). Many of these ideas that
are central to microbial ecology and microbiome function are inherently dynamic, and as

such require longitudinal data.

Unfortunately, the staggering number of operational taxonomic units (OTUs) present in
microbiomes prevents straightforward application of traditional ecological modeling meth-
ods, so methods to analyze the data have lagged behind collection. Whereas a large macro
ecological system may track up to one hundred species (e.g. Montoya & Solé, 2002), mi-
crobial communities often have thousands of OTUs, which provides a significant hurdle for
estimating the key interactions between microbes and other microbes and their environment.
Various simplifications of data and models have been used to deal with this issue; the most
common of which are to vastly reduce the size of the data by either aggregating the data at
certain taxonomic levels (e.g. treating Alphaproteobacteria as a model factor; McGeachie
et al., 2016), sub-setting the data into a few taxa of interest because they are believed to be
important (Hunt et al., 2011), or both (Olesen et al., 2016). Aggregation is a particularly
specious practice because of heterogeneity within aggregated taxa. For example, estimating
how Alphaproteobacteria interact with Gammaproteobacteria is akin to estimating how all
dicotyledonous plants interact with monocotyledonous plants. Similarly, while focusing on
only a few taxa of interest can make statistical inference techniques tractable, the interac-
tions that may actually be driving the dynamics may be left out of the model. Ecologically
important forces, such as trait-mediated indirect interactions (Ridenhour & Nuismer, 2012;

Berry & Widder, 2014), will be missed in this type of analysis.
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Another recent method of analyzing microbiome data to infer drivers of ecological dy-
namics is to compare large-scale patterns. For example, Bashan et al. (2016) used patterns of
dissimilarity and overlap between microbiomes to infer whether interactions within a micro-
bial community were host driven or not. However, using an analysis like this ignores several
ecological principles, such as nutrient flow in ecosystems (Jordano et al., 2003), that are
likely relevant in microbial systems. For example, some bacteria must be present within the
community that can convert host resources (e.g. glycogen) into resources that the microbial
community can subsequently utilize; i.e. primary producers must be present that interact

with the host.

Ideally, we desire ecologically relevant methods that are capable of utilizing all infor-
mation gathered from sequencing to robustly infer relationships between OTUs and their
environment. Methods for model estimation using big data where the number of possible
explanatory variables is larger than the number of observations (p > n) typically involve
the use of regularization (Tibshirani, 1996; Zou & Hastie, 2005; Meinshausen & Biihlmann,
2010) to eliminate potential explanatory variables and infer robust, stable predictive models.
These regularization techniques have been successfully applied in many fields where big data
are common, such as gene expression data and proteomics (Xing et al., 2001). Furthermore,
related techniques have been applied to microbiome research. For example, Kurtz et al.
(2015) used a form of a graphical lasso procedure (sparse inverse covariance estimation)
(Friedman et al., 2008) applied to relative abundance data for entire microbiome samples.
Their study demonstrates that regularization techniques can successfully be applied to 16S
sequencing data at the scale of big data, allowing for downstream statistical inference. Using
regularization methods can avoid misleading interpretations caused by aggregating data or

arbitrarily studying certain species within a microbial community.

Here, we present a novel method of analyzing 16S sequencing data that utilizes untrans-
formed count data from the entire community and relies on regularization to infer interac-
tions. We focus on applying this method to time-series data, which is a rapidly expanding
microbiome research area and an area of special need for such techniques. We emphasize
however that the methods presented here are not limited to the analysis of time series and

are broadly applicable to related microbiome analyses. As an example of the power of this
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technique, we apply the method to gut microbiome data collected from Neotoma albigula
(white-throated woodrats) during an ~ 3 week feeding trial in which the subjects were fed

oxalate, a plant secondary defensive compound.

Methods and Subjects

Modeling Strategy

We used an ARIMA model with Poisson errors fit with elastic-net regularization to estimate
robust predictive models of microbiome dynamics. ARIMA models are commonly used in the
analysis of time-series data because they provide a flexible framework that can accommodate
many autocorrelation structures, stationarity conditions, and seasonality (Ives et al., 2003).
The choice of Poisson distributed errors is critical to avoid issues related to compositional
data: raw read counts and total read counts are the data analyzed rather than transformed
compositional data. The Poisson distribution is a natural choice for count data (Anders &
Huber, 2010), and, furthermore, by using the total read count as the offset in a log-linked
Poisson regression model, the zeroes observed in the data are treated appropriately and have

consistent meaning across variable total read counts. The resulting full model is

xy ~ Pois(p)
In( g'f) ARIMA (p, d, q) = In(s1) = ARIMA(p, d, q) + In(O,)

t
p+d

ARIMApadq ZXIS z¢z+20€t 7

where subscripts indicate the time of observation, x is the number reads observed for a
particular OTU, p is its mean, O is the total number of reads, X is the vector of predictor
variables (i.e. other OTUs, covariates, etc), € is the residual error, and ¢ and @ are the
estimated model parameters (though we are principally interested in ¢ because this vector
contains the estimated interactions between OTUs). Note that the number of parameters in
the full model is (p 4+ d)|X| + ¢, thus increasing either p or d can have large effects on the

number of parameters estimated when the number of predictor variables (|X]) is large.
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The full model represents a flexible way to model interactions between species that takes
full advantage of the data type and its time-series structure, but would be highly over-
parameterized for nearly all microbial community data because of the large number of pre-
dictor OTUs. It is commonly held that most species interact with few other species (Faust
& Raes, 2012) and some propose exponential or scale-free distributions to the number of
edges in interactions networks (Fernandez et al., 2015; Kurtz et al., 2015). Regardless, the
ecological expectation is that a fully saturated model, such as the one above, is not realis-
tic. We therefore employ a regularization algorithm to select robust interaction models that
have a minimal number of parameters. The elastic-net regularization is a highly flexible and
rapid algorithm that uses both the ¢; and ¢ norms (i.e. lasso and ridge regression respec-
tively) (Tibshirani, 1996; Draper & Pukelsheim, 2002; Zou & Hastie, 2005). To estimate the

parameters <q5, é> elastic-net algorithm solves the equation

T

3 Ll + 2 (all 6.0) 1+ C5 1 (0.6) ||3)]

t=1

<ng5, é> = argmin g g,

where £ is the log-likelihood of the observed data (z;) given the modeled mean (p;), A €
[0, 00) controls the strength of the elastic-net penalty (A = 0 is equivalent to standard least-
squares regression), and « € [0, 1] blends the penalty due to the ¢; and ¢, norms (o = 0 is
ridge regression and a = 1 is lasso regression) (Tibshirani, 1996). Cross-validation techniques
are used to choose optimal values for these parameters. The use of the elastic-net approach
in combination with a Poisson ARIMA model allows our method to filter through large

numbers of OTUs and robustly model changes in a microbiome over time.

Application of Model to Oxalate Degradation in Neotoma albigula

We used our modeling strategy to estimate microbial community dynamics from 16S rDNA
time-series data collected from the white-throated woodrat, Neotoma albigula (Miller et
al., 2016). These animals were experimentally fed varying amounts of oxalate, a naturally
occurring plant secondary compound that has been demonstrated to have toxic effects on
a broad range of herbivores (e.g. insects, mammals) (Allison et al., 1985; Dearing et al.,

2005). Plants create crystalline structures known as raphides when a surplus of calcium
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oxalate is present; these crystals are needle-shaped and physically damage the intestinal
tract of herbivores. This physical damage may also facilitate delivery of other toxins (e.g.
proteases) through the wall of the digestive tract (Miller et al., 2000; Franceschi & Nakata,
2005). Direct mortality, decay of the mouth and gastrointestinal tract, gastric hemorrhaging,
and diarrhea have all been observed in mammals that consume large quantities of oxalate
(Miller et al., 2014). Of human relevance, many kidney stones form from calcium oxalate,
which may arise due to oxalate rich diets; the pain associated with passing kidney stones
at least partly stems from similar needlelike structures (Miller et al., 2000; Franceschi &
Nakata, 2005).

N. albigula rely on cactus, particularly Opuntia, for their diet (Justice, 1985; Miller
et al., 2014), which are known to have high concentrations of calcium oxalate (Shirley &
Schmidt-Nielsen, 1967). Mammals however are not known to have any mechanisms for me-
tabolizing this toxic compound but are known to harbor bacteria capable of the task within
the gut (Hodgkinson, 1977; Allison et al., 1985; Turroni et al., 2007). Prior studies of
white-throated woodrats have shown that the microbiota of their gut has numerous oxalate-
degrading taxa including—but not limited to—Ozalobacter formigenes, Lactobacillus, Bifi-
dobacterium, Streptococcus, and Enterococcus (Allison et al., 1985; Jones & Megarrity, 1986;
Kageyama et al., 1999; Hokama et al., 2000; Sundset et al., 2010). O. formigenes has been of
particular interest within the gut community because it is known to require oxalate as a car-
bon and energy source (Allison et al., 1985). It has been hypothesized that the specialization
of and coevolution with the gut microbiome is the reason N. albigula may consume levels
of oxalate that would be lethal for many other mammals and digest >90% of this defensive
compound (Shirley & Schmidt-Nielsen, 1967; James & Butcher, 1972; Justice, 1985; Palgi
et al., 2008).

Feeding Trials

We collected gut microbiome data from 6 wild-caught N. albigula trapped at Castle Valley,
Utah in October 2012. Animals were transported back to the University of Utah Department
of Biology Animal Facility and held in captivity for six months prior to experimentation.

During this time, animals were fed a high-fiber rabbit chow (Teklad formula 2031; Harlan,
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Denver, CO, USA), which contained a baseline amount of oxalate.

Once the trial began, oxalate concentrations within the animals’ food was incrementally
increased for 17 days and then dropped to initial level for an additional five days. The
amount of oxalate consumed and excreted was measured for each woodrat. Fecal pellets were
collected and then underwent high-throughput 16S rDNA amplicon sequencing to determine
the OTUs present in guts of the animals. OTU read counts from the cleaned and processed
data were then analyzed using the model described above. A general overview of the workflow

for the analyses is provided in Figure 1.

To quantify the effect of oxalate on the gut microbiota, a custom 0.2% oxalate diet was
formulated (Harlan, Denver, CO, USA) and mixed with high-fiber rabbit chow in a 3:1 ratio
to give a 0.05% baseline oxalate feeding level. Additional concentrations of 0.5%, 1%, 1.5%,
and 3% by dry weight were achieved by adding sodium oxalate (Fisher Scientific, Pittsburgh,
PA, USA) directly to the diet. The oxalate diets were given to animals in sequence for three
days each, with the exception of the 0.05% oxalate diet, which was given for five days both
at the beginning and the end of the diet trial. This schedule produced observations on day
5 (to), 8 (t1), 11 (t2), 14 (t3), 17 (t4), and 22 (t5). Food and water were given ad libitum in
metabolic cages, which were used to separate and collect urine and feces from each individual
animal. Oxalate consumed was quantified from food intake and oxalate concentration, while
oxalate excreted was quantified from urine and feces. These metrics were used to quantify
total oxalate degradation, which we defined as the difference between oxalate consumed and

oxalate excreted.

To track changes to the gut microbiota, feces were collected from each animal on the last
day of each dietary period, thus maximizing the effect of the specified oxalate concentra-
tion on the gut microbiota. Feces were collected from the top of the 50ml conical tube to
ensure minimal exposure to aerobic conditions, and immediately frozen at -80C until DNA
extraction. DNA extractions were performed with the QIAmp DNA stool minikit (Qiagen,
Germantown, MD, USA). Microbial inventories were generated by amplifying the V4 region
of the 16S rDNA gene with primers 515F and 806R (Caporaso et al., 2012) on an Illumina
MiSeq at Argonne National Laboratory (Chicago, IL, USA).
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Data Processing

Sequence data were processed and demultiplexed in QIIME (Caporaso et al., 2010) using the
default quality control parameters. Sequences were binned into OTUs with a de novo picking
strategy using UCLUST (Edgar, 2010) at a minimum sequence identity of 97%. Chimeras
were removed with ChimeraSlayer (Haas et al., 2011) along with sequences identified as

chloroplasts or mitochondria.

Computational Details

All statistical analyses were performed using R v3.2.2 (R Core Team, 2014) with glmnet v2.0-
2 (Friedman et al., 2010), and all R scripts are available upon request. Prior to beginning
the analyses, we eliminated any OTUs in the data for which there were a small number
(< 6) of average reads per sample because they lacked sufficient data for statistical analysis.
Eliminating these unanalyzable OTUs resulted in 90% reduction in the number of OTUs
giving a microbial community that had 624 OTUs for modeling. The rationale for this
cleaning is that there must be enough data for an OTU to successfully run a statistical model;
if there is too little variation among samples for an OTU, then the statistical modeling will
fail as there is no information.

The glmnet function in the glmnet package has a number of options for performing model
regularization. The most important parameters are A and o which control the penalization.
To find an optimal combination of these parameters, we used the built in cross-validation
function provided in the glmnet package (“cv.glmnet”) to loop across various levels of A
(100 values by default). We simultaneously looped across levels of o ranging from 0.5 to 1.0
in steps of 0.1. Because the cross-validation step performs K-fold cross-validation, the data
folds are random; we therefore ran 500 replicates per « level to get the average cross-validated
deviance for a particular o, A\ combination. The best model was chosen for each « level, and
the final model was chosen by utilizing AIC values and comparing between those best models.
Other methods exist for choosing this parameter combination (see the c060 R package by
Sill et al., 2014, for an example of another method), but testing various algorithms is beyond

the scope of this article. Other than the choice of A and «, default parameter settings were
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passed to glmnet, with the exception of the “grouped=FALSE” argument to ensure enough
observations per fold in the default 10-fold cross-validation scheme.

We performed two different variants of the model. The first of these was a model in which
oxalate consumption was forced to be a variable within the model (i.e. oxalate consumption
was a parameter that was not subject to the regularization penalties). The justification
behind forcing this variable is that the experiment was designed to detect the influence of
oxalate on the gut microbiome of the subjects. For comparison purposes, a second model
was run where oxalate consumption was part of the regularization scheme and thus could
either remain in, or be left out of, the final model chosen by the glmnet algorithm. These
two models represent common research scenarios: determining effects of a particular factor
that was experimentally manipulated and “natural” experiments where potential covariates
change in an uncontrolled manner.

Post-analysis cleaning of models for interpretation purposes was minimal. Models having
a pseudo-R? < 0.02 were discarded from the results; doing so eliminated models for 38
OTUs in our data and left 580 models for interpretation. FEffect sizes were determined
by multiplying the mean OTU read counts by the corresponding estimated parameter (B)
Estimated observation rates were calculated using the predict function in R. The Greengenes
bacterial taxonomy database “gg_13_5_taxonomy” was searched to identify the phylogenetic
relatedness of taxa identified in this study. The R package ape v3.5 (Paradis et al., 2004)

was used to parse and plot the reduced Greengenes phylogeny.

Results

The experimental setup allowed us to examine how the gut microbiome of six woodrats
changed over a three week period with varying levels of oxalate consumption. We wished to
infer both how OTUs within the microbial community interacted with each other, as well
as to estimate how OTUs were affected by oxalate concentration. To do so, we used an
ARIMA(1,0,0) (i.e. AR(1)) model structure to limit the complexity of the model given the
limited number of samples. We also included exogenous covariates for the amount of oxalate

consumed and subject effects in the design matrix, bringing the total number of potential
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explanatory variables to 631.

We will focus on the results of the model where oxalate consumption was forced into
the AR(1) model and highlight differences between it and the “unforced” model. The use
of elastic-net regularization easily accommodated our analysis which included 624 OTUs
and 7 other potential covariates (in other trials—mnot shown here—the method has worked
for data sets containing thousands of covariates). We applied the AR(1) model to 626
dependent variables (624 OTUs, oxalate digested, and oxalate excreted); of these, analyses
of 8 OTUs failed due to their patterns of presence/absence (all 8 were only observed in one
woodrat and in only 2 of that subject’s six samples). Of 618 x 631 = 389958 potential
parameters, the elastic-net algorithm selected models that had a total of 4174 parameters
(~ 1%); the unforced model produced 3 556 parameters in comparison. Of the 618 dependent
variables, 489 had a model that included additional variables from the minimal model that
consists of only an intercept and oxalate consumed (469 for the unforced model). Thus,
the regularization procedure produced models where there were relatively few predicted

interactions between OTUs within the gut microbiome (i.e. a sparse interaction matrix).

The estimated network of interactions between species fits the “small-world” network
paradigm that has been observed in many other non-microbial communities (Watts & Stro-
gatz, 1998; Montoya & Solé, 2002). Figure 2 shows the in- and out-degree distributions for
the predicted interaction network (i.e. the number of covariates affecting and affected by
an OTU, respectively). These distributions fall in between what would be expected in a
scale-free network and a random network. The average path length in the estimated net-
work is L = 0.130, whereas a similar random network would have an average path length of
Lrandom == 0.077. The average clustering coefficient (transitivity) of the estimated interaction
network is C' = 0.357 which compares to C}4nd0m = 0.020 in the random network. Therefore,
our network fits the definition of a small world where Low > Lyandom and Csw > Chrandom
(Jordano et al., 2003). Path lengths and clustering coefficients were calculated using weighted
edges based on the estimated strength of an interaction (i.e. B), using unweighted edges does

not qualitatively change the interpretation of the network.

We assessed the fit of models using a pseudo-R? metric based on the percentage of

the deviance explained by the model (Cameron & Windmeijer, 1997). Figure 3 shows the
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distribution of pseudo-R? values for the fitted models. Models with a high pseudo-R? predict
the dynamics of a particular OTU better than models with relatively lower pseudo-R? (Figure
4). A broad range of values were returned that spanned all possible values (i.e. 0 to 1).
Importantly, we found that the pseudo-R? values did not depend on the o parameter of the
elastic-net regularization, which influences the number of parameters (e.g. interactions with
other OTUs) in the model (Figure 3). The dynamic patterns predicted by the model match
expectations based on previous work on the effects of oxalate on the gut microbiome (Miller
et al., 2014, 2016). For example, Oxalobacter were predicted to increase with increasing
oxalate consumption over the first 5 weeks and then decrease after test subjects were no
longer fed oxalate (middle panel of Figure 4; pseudo-R? ~ (.75 for the Oxalobacter model).

Oxalate consumption clearly has a broad range of effects on bacteria in the N. albigula
gut (Tables 1 and 2). Figure 5 shows the distribution of these effects across all 616 OTUs, as
well as the effects on oxalate excreted and digested. For the unforced model, only 8 OTUs
were predicted to be affected by oxalate consumption. The results of the analysis of the
woodrat data support previous findings with respect to the consumption of oxalate (Miller
et al., 2014, 2016). For example, we found that increased consumption of oxalate leads to
increased numbers of Oxalobacter and Oxalobacteraceae within the gut (Table 2). However,
we also found that other OTUs—such as some members of the Lachnospiraceae, Clostridiales,
and Roseburia—are more positively affected by oxalate consumption than these well-known
oxalate degraders (Table 1). The effect of oxalate consumption on these taxa may have been
overlooked due to grouping OTUs together within particular taxonomic IDs. For example,
while multiple OTUs within the Lachnospiraceae are strongly positively affected by oxalate
consumption, several are also strongly negatively affected (Table 1); thus the mean effect
of oxalate consumption on Lachnospiraceae is lower than that of other OTUs (Table 2) and

would be overlooked in studies that aggregate OTUs.

Discussion

We have presented a method for the analysis of microbial community data that leverages the

power of regularization techniques to infer ecological interactions based on OTU-level 16S
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rDNA read counts and applied these methods to time-series microbiome data from an oxalate
feeding trial in woodrats. Our modeling strategy for 16S rDNA amplicon data provides a
flexible and relatively computationally inexpensive method for researchers to estimate the
strength of ecological interactions in microbial communities. By modeling read count data
directly and using elastic-net regularization to select and stabilize the model, the method

overcomes many common challenges in analyzing microbiome data.

The vast diversity of taxa that occurs in most microbiomes (Shade et al., 2014; Coyte
et al., 2015) poses an enormous challenge in studying ecological dynamics of these systems.
Computational hurdles make it intractable for many currently used methods for time-series
microbiome data, such as MARSS models (Holmes et al., 2012) and generalized Lotka-
Volterra models (Stein et al., 2013; Marino et al., 2014; Buffie et al., 2015), to be fit when
the dynamics of many OTUs are in question. In order to make analysis tractable, researchers
typically reduce the number of OTUs being studied to just a handful that are of interest
(Buffie et al., 2015) or to those that are most dominant in terms of their relative abundance
(Vahjen et al., 2011; Marino et al., 2014). Both of these options provide answers that are
biased a priori. By limiting the study to OTUs of interest, it is impossible to discover new
roles for microbes within communities because “uninteresting” OTUs would never be studied.
Similarly, by only analyzing the numerically dominant species, important roles of microbes
whose abundance falls below the cutoff will not be investigated; it is well known from com-
munity ecology that keystone species for communities need not be numerically dominant
species (Shade et al., 2014). Regularization combined with appropriate mathematical mod-
els provides a technique to analyze the entirety of the data, rather than arbitrarily selecting

OTUs of interest.

Typically, amplicon data are transformed to represent relative abundances within a com-
munity by dividing the number of reads by the total number of reads in the sample (Human
Microbiome Project Consortium, 2012); this normalization leads to numerous statistical
complications, the two most prominent being altering the correlation structure of the data
and censoring of the data at some arbitrary level (Hinkle & Rayens, 1995; Egozcue et al.,
2003; van den Boogaart & Tolosana-Delgado, 2008; Li, 2015). Compositional data, data

whose sum is forced to be one, have a different correlation structure which can mask the
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true nature of the interactions between species (Lin et al., 2014). For example, if one OTU’s
relative abundance increases, it is impossible to distinguish a hypothesis of a true increase in
absolute abundance from a hypothesis of a net decrease in absolute abundance of the other
members of the community. Various transformations (e.g. isometric log-ratio, centered log-
ratio) have been applied to correct for this, but, while they provide improvements, complete
resolution of this forced correlation structure by transformation is unlikely (Egozcue et al.,
2003). Censoring in the compositional data occurs because OTUs that had zero reads in a
sample get divided by variable numbers of total read counts. For example, if one sample
had 100 total reads while another had 1000 total reads, then a zero from the first sample
represents <0.01 compared to <0.001 for the second. Issues regarding the analysis of cen-
sored data are well documented (Hinkle & Rayens, 1995; Egozcue et al., 2003; Li, 2015),
and methods are available to correct these issues (Freeman & Modarres, 2002; Lin et al.,
2014); the methods however are often computationally expensive (e.g. bootstrapping mod-
els over imputed values) which is problematic given the already large size and complexity
of the analyses, and may never fully resolve the censoring issues. Modeling the read count
data directly—as suggested herein—rather than data that has been normalized to relative

abundance overcomes these statistical issues.

While we have chosen to model only the linear (first-order) terms as an AR(1) model for
the woodrat gut microbiome, the ARIMA model can be modified to accommodate complex
dynamics (e.g. seasonality) in a system by adjusting p, d, or ¢. Higher order terms that test
for complex interactions (such a trait-mediated indirect interactions) could also be included
with the caveat that altering the structure of the ARIMA or the order of the predictor
terms can greatly increase the number of parameters, thus exacerbating the problem that
the number of possible parameters is far greater than the number of observations. As a
whole, the study of microbiome dynamics needs continued advances in modeling strategies
to successfully understand the eco-evolutionary complexity of microbial communities, where

higher order interactions are likely to be the rule rather than the exception.

It is important to realize that, while the methods presented here can be adapted to ad-
dress many questions, the quality and amount of data collected strongly influences the quality

of the results. For example, Kurtz et al. (2015) examined the ability to recover certain syn-
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thetic network types (e.g. scale-free versus clustered networks) from different regularization
algorithms and show how the ability to recover edges (interactions) in the network is depen-
dent on the number of samples. Additionally, tuning the model and algorithm parameters
(for example, see the method of cross-validation in Computational Details) has important
consequences for the resulting inference. Thus, as with any statistical analysis, it is impor-
tant to examine diagnostic outputs of the models to ascertain proper performance of the
method.

The combination of using a (elastic-net) regularized ARIMA model with Poisson errors
tackles many issues facing the analysis of microbiome time-series data and is flexible enough
to be adapted to other types of analyses. For example, while we have chosen to use Poisson-
distributed errors it would be easy to switch this distribution to others that are commonly
used for count data, such as either the quasipoisson or negative binomial distribution, which
could handle overdispersion in amplicon counts. As demonstrated in the oxalate analysis, if
the experimental design is such that it is logical to force the inclusion of certain variable(s),
this can be done within the regularization algorithm; the same can be said for inclusion or
exclusion of an intercept term in the model. The general method of using regularization
along with Poisson errors can be applied to more basic microbiome analyses as well. For
example, to ask the question of which OTUs might contribute to a particular observation
of interest (e.g. which OTUs in the gut microbiome are predictive of obesity), the ARIMA
equations present above could be replaced by the familiar regression equation y = Xf.

As the amount of information related to the ecology and evolution of microbial com-
munities increases, scalable methods of statistical analysis such as the method presented
here will be required to make sense of data. By utilizing regularization and a model with
error structure designed for count data, this method overcomes many obstacles to inter-
preting microbiome dynamics, providing a much needed framework to address important

eco-evolutionary questions regarding microbial communities.
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Figure 1: The general workflow for analyzing 16S rDNA data using a regularized ARIMA
model with Poisson errors. The first several steps are the typical sequencing and bioinfor-
matic practices where sequences are obtained and cleaned using programs such as QIIME.
An additional step of dropping particularly low read count OTUs may be necessary to avoid
problems with the statistical analyses reporting errors. Afterward, the cleaned data are
passed to the regularization algorithm to fit an appropriate ARIMA model. The final step is
to analyze the estimated interaction network (e.g. heatmaps, networks, summary statistics)
to interpret the models returned from the analysis.
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Figure 2: In- and out-degree distributions inferred for the woodrat gut microbiome network.
In-degree is the number of OTUs that affect a focal OTU; out-degree is the number of OTUs
affected by the focal OTU. A total of 4 174 interactions (edges in the network) were estimated
from the AR(1) model. The network structure shows a small-world pattern that is common
among many non-microbial ecological communities.
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Figure 3: Distribution of pseudo-R? values and their relationship to the elastic-net mixing
parameter « from the models fit for woodrat gut microbiome data. The left panel shows
that the method returned a fairly uniform distribution of values, i.e. we observed the full
spectrum of poorly fitting models to very good models. The mixing parameter « alters
the regularization penalty to favor either more small parameters (low «) or fewer large
parameters (large o) in the model. The dotted red line shows the smoothed mean of the
pseudo-R? values across a-levels; there was no relationship between « (roughly, the number
of parameters) and the pseudo-R? for the AR(1) models.
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Figure 4: Predicted (lines) and measured (points) OTU observation rates per 10! sequencing
reads in the woodrat gut microbiome over the 22-day feeding the trial for three representative
OTUs. Colors indicate different test subjects; some lines are incomplete because only points
where data were available for the subject for ¢t — 1 and ¢ are plotted (i.e. those data to which
an AR(1) model could be applied; this is why ¢, is omitted). Note that the plots are for a
single OTU, not the aggregate of all OTUs with the same taxonomic ID (e.g. the top panel is
for one of 19 OTUs that was identified as Ruminococcus flavifaciens). The panels from upper
to lower are ordered by decreasing pseudo-R? with values of 0.99, 0.75, and 0.49, respectively.
The three OTUs show different responses over time to oxalate consumption: R. flavefaciens
remains relatively constant over the entire trial; Oxalobacter increases through ¢4 and then
decreases at t5 after oxalate consumption ceased; and S24-7 showed the opposite pattern
where it decreased through ¢, but rebounded in ¢5. See Methods for detailed observation
times.
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Figure 5: Distributions of oxalate effect sizes (30202—). The top panel shows the distribution
of effect sizes for all 616 OTUs in the woodrat gut microbiome study. The middle panel
shows the distribution of estimated effect sizes for the 19 OTUs that were assigned to the
species Ruminococcus flavefaciens; the vertical red line is the mean of those estimated effects.
The bottom panel shows the distribution of mean effect sizes (F [BCzOZ’} ) for the 43 unique

taxonomic IDs to which the 616 OTUs were assigned.
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Figure 6: Mean pairwise effect sizes of interacting factors. The direction of the interactions
is such that the factors on the horizontal axis affect the variables vertical axis (which are ar-
ranged by taxonomic classification per the Greengenes database). The scaled colors indicate
the magnitude and direction of the interaction between the two variables.
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Negative Effects Positive Effects
Taxonomic 1D Bcz 02 Taxonomic 1D BOZ 02
Ruminococcaceae -1.59 Unassigned 1.61
Lachnospiraceae -1.06 Lachnospiraceae 1.54
Clostridiales -1.01 Lachnospiraceae 1.40
Clostridiales -1.00 Clostridiales 1.39
S24-7 -0.99 Roseburia 1.27
Lachnospiraceae -0.99 Clostridiales 1.25
S24-7 -0.96 Clostridiales 1.22
Clostridiales -0.90 Ruminococcus 1.20
S24-7 -0.88 S24-7 1.17
S24-7 -0.87 Clostridiales 1.11
S524-7 -0.84 Clostridiales 1.04
S24-7 -0.83 Lachnospiraceae 1.03
S24-7 -0.83 S24-7 1.02
S24-7 -0.81 Clostridiales 1.01
S24-7 -0.81 Lachnospiraceae 0.96

Table 1: OTUs strongly influenced by oxalate consumption. For the forced model, the effect
of oxalate consumed on the rate of observation for an OTU (602027) in the gut microbiome
was estimated for every OTU. This table shows the top and bottom 2.5% of those estimates
and the effected OTU. Note that taxonomic ID is the lowest taxonomic designation returned
for a particular OTU; thus, repeats of particular IDs (e.g. Lachnospiraceae) reflect different
OTUs within the particular ID.
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Negative Aggregate Effects Positive Aggregate Effects
Taxonomic ID E[BC o2-] Division Nory  Taxonomic ID E[Bc o2-] Division  Nory
244 24
Bacteroides ovatus -0.56  species 1 Roseburia 1.27  genus 1
Elusimicrobiaceae -0.48  family 1 Oxalobacter 0.73  genus 1
RF32 -0.45  order 4  Oxalobacteraceae 0.72  family 1
Enterobacteraceae -0.43  family 1  Helicobacter 0.55 genus 1
Coriobacteriaceae -0.38  family 1  Treponema 0.50 genus 2
Clostridium -0.34  genus 2 Oscillospira 0.27  genus 19
Bacteroides -0.32  genus 2 CF231 0.25 genus 2
RF39 -0.22  order 2 Paraprevotella 0.24  genus 1
Akkermansia muciniphila -0.21  species 1 Unassigned 0.20 15
Lactobacillus vaginalis -0.21  species 1  Ruminococcus 0.19 genus 13

Table 2: Predicted effects of oxalate aggregated at different taxonomic divisions. The usual
practice in microbiome research is to aggregate data at various, convenient taxonomic levels.
We therefore averaged our model results across all OTUs belonging to the same taxonomic
ID to get the expected effect for that group, E[B@Oi‘]‘ (Note that these are not nested,;
e.g. Oxalobacter is not part of the mean for Oxalobacteraceae.) Comparing these values to
those in Table 1 shows how strain level information can be lost when aggregating OTUs.
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