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Abstract 
Representational models explain how activity patterns in populations of neurons (or, more 
generally, in multivariate brain activity measurements) relate to sensory stimuli, motor actions, or 
cognitive processes. In an experimental context, representational models can be defined as 
probabilistic hypotheses about what activation profiles across experimental conditions are likely to 
be observed. We describe three methods to test such models – encoding approaches, pattern 
component modeling (PCM), and representational similarity analysis (RSA). We show that these 
methods are closely related in that they evaluate the statistical second moment of the activity profile 
distribution. Using simulated data from three different fMRI experiments, we compare the power of 
the approaches to adjudicate between competing representational models. PCM implements a 
likelihood-ratio test and therefore constitutes the most powerful test if its assumptions hold. 
However, the other two approaches – when conducted appropriately – can perform similarly. In 
encoding approaches, the linear model needs to be appropriately regularized, which imposes a prior 
on the activity profiles. Without such a prior, encoding approaches do not test well-defined 
representational models. In RSA, the unequal variances and dependencies of the distance measures 
need to be taken into account to enable near-optimal inference. The three techniques render 
different aspects of the information explicit (e.g. single response tuning in encoding approaches and 
population representational dissimilarity in RSA) and have specific advantages in terms of 
computational demands, ease of use, and extensibility. We argue that they constitute 
complementary parts of the same computational toolkit aimed at understanding neural 
representations on the basis of multivariate brain-activity data.  
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Introduction 
The measurement of brain activity is rapidly advancing in terms of spatial and temporal resolution, 
and in terms of the number of responses that can be recorded simultaneously [1]. Electrode arrays 
and calcium imaging enable the recording of hundreds or many thousands of neurons in parallel. 
Electrophysiological signals that reflect summaries of the population activity can be recorded using 
both invasive (e.g. the local field potential, LFP) and non-invasive techniques (e.g. scalp 
electrophysiological measurements) at increasingly high spatial resolution. Modern functional 
magnetic resonance imaging (fMRI) enables us to measure hemodynamic activity in hundreds of 
thousands of voxels across the entire human at sub-millimeter resolution. 
 In order to translate advances in brain-activity measurement into advances in computational 
theory, researchers increasingly seek to test representational models that capture both what 
information is represented in a population of neurons and in what format it is represented. Knowing 
the content and format of representations provides strong constraints for computational models of 
brain information processing. We refer to hypotheses about the content and format of brain 
representations as representational models. We address here the important methodological question 
of how to best test representational models.  
 We use the term representation in a general sense, implying that the represented variable 
can be linearly decoded by a downstream area – i.e. read out by weighting and summing the 
elements of the ongoing neural activity. That is, we do not subscribe to the narrow meaning of 
representation as referring to a localized code, in which the neural activity can be fully explained by 
a physically or semantically meaningful variable.  
 The vector of responses of one measurement channel (neurons, electrodes, or fMRI voxels) 
across the experimental conditions (stimuli, movements, or tasks) is referred to as an activity 
profile. A representational model predicts a probability distribution over the space of activity 
profiles (Fig. 1). The measurement channels are considered to be samples from this distribution. 
 Activity profiles can (but do not have to be) explained by one or more features that 
characterize the experimental conditions. Examples of features are the color of a visual stimulus, 
the meaning of a sound, the direction of a movement, or the response of one element of a 
computational model (e.g. a unit in a neural network that processes the stimuli). In the special case 
that only one feature is varied, an activity profile is also called a tuning curve. 
 A representational model specifies which features are reflected in the measurements, and 
how strongly they are reflected. A representational model does not, however, predict the activity 
profile for each individual channels. Instead it predicts how likely it is to observe a specific activity 
profile in the population of measurement channels. Therefore, a representational model is a 
hypothesis about the probability distribution over the space of possible activity profiles (Fig. 1A,C). 
This definition of representational model is helpful because the computational function of a region 
does not depend on specific neurons having specific response properties, but on the fact that 
specific features can be read out linearly from the population, even if the information is spread out 
over multiple neurons. When analyzing measurements of local summaries of neuronal activity, such 
as fMRI voxels or LFP recordings, the representational model should also include a measurement 
model [2] that accounts for the effect of the local averaging on the distribution of activity profiles. 
 How should we evaluate how well the distribution of measured activity profiles matches the 
prediction? From the perspective of a neuron that reads out the activity of an area, i.e. a linear 
decoder, any difference between activity patterns across conditions is equally meaningful. Some 
features (for example, stimulus intensity) may be encoded in the mean response, with overall higher 
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activity for condition 1 than 2. Other properties (for example, stimulus identity) may be encoded in 
relative activity differences, with some measurement channels responding more to condition 1 and 
others more to 2. If we want to summarize what information can be linearly decoded from 
population activity, we require a measure that captures both of these scenarios. It turns out that the 
second moment matrix of the activity profiles provides a sufficient statistic for characterizing linear 
decodability of any arbitrary feature. 
 More formally, we define U to be the matrix of true activity profiles with K (number of 
experimental conditions) rows and P (number of measurement channels) columns. Each row of this 
matrix is an activity pattern, the response of the whole population to a single condition. Each 
column of this matrix is an activity profile. The second moment1 matrix of the activity profiles is 
defined as 

 𝐆 ≡ 𝐮∙,&𝐮.,&()
&*+ /𝑃 = 𝐔𝐔(/𝑃 .      (Eq. 1) 

The variance-covariance matrix of the activity profile is a special case of Eq. 1 in which the mean 
activity profile is first subtracted from each activity profile. For this reason, the variance-covariance 
is often call the second moment around the mean. In contrast, the second moment around zero 
captures any activity differences between experimental conditions – i.e. it depends on both the 
mean and variance of the distribution of activity profiles. 
 Assuming Gaussian noise that is independent and identically distributed both across 
measurement channels (isotropic noise) and across conditions (homoscedastic noise), the second 
moment matrix determines how well any feature can be linearly decoded from the activity patterns 
(see Methods). This provides a motivation, from the perspective of brain computation, for using the 
second moment matrix as a summary statistic. While higher statistical moments of the distribution 
of activity profiles may reveal some computationally important features of the population activity 
(see Discussion), we believe that focusing on linear encoding (and hence the second moment) 
constitutes the natural starting point for testing representational models. We will see below that the 
techniques discussed in this paper (i.e. encoding approaches, PCM and RSA) all rely exclusively on 
information contained in the second moments. This core commonality enables us to consider these 
methods in the same formal framework. 
 Three different approaches are currently being used to compare representational models on 
multivariate data (for comparison, see Table 1). In encoding approaches [3, 4], the representational 
models is defined in terms of the underlying features. Features for models of low-level visual 
representations may include Gabor filters [5], whereas features for cognitive representations may 
include abstract semantic dimensions [6]. The value of each feature for each experimental condition 
is coded in the model feature matrix M (K conditions by Q features). The feature weight matrix W 
(Q features by P channels) then determines how the different model features contribute to the 
activity profiles of different measurement channels: 

U=MW.        (Eq. 2) 

                                                
1 The nth moment of a random variable x is 𝐸 𝑥5 . Here we use a multivariate extension of the 
concept, with the second moment of the random column vector x defined as the matrix 𝐸 𝐱𝐱𝑻 , the 
expected outer product of the activity profiles, where the expectation is across the measurement 
channels. Equivalently, each cell of this matrix contains the normalized inner product of two 
activity patterns.  
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Geometrically, we can think of the features as the basis vectors of the subspace, in which the 
activity profiles reside (Fig. 2). In this notation, the second moment of the activity profiles is given 
by 

 G	=	MW𝐖𝐓𝐌𝐓/P  

   = 𝐌𝛀𝐌𝐓 ,        (Eq. 3)  

where 𝛀 is the second moment of the distribution on the weights W. Thus, the model features 
together with a distributional assumption (i.e. a prior) on the hidden weights define a probability 
distribution over activity profiles, and thus specify a representational model. 
 For example, the second-moment matrix for motor cortical activity could be predicted by 
assuming that the features are individual units with cosine-tuning for different movement directions 
[7], and that (as a prior) the preferred directions of the units are uniformly distributed. While it is 
often helpful to formulate a representational model in terms of its features, it is not always 
necessary: In a recent study we predicted the second-moment matrix for an experiment studying 
hand movements directly (i.e. without specifying features), using the natural correlations between 
finger movements in everyday life [8]. Indeed, one caveat when specifying representational models 
in terms of features, is the fact that there are there are many different feature sets that define the 
same representational model. Because a representational model is defined by its second moment, 
two sets of features M1 and M2, combined with their corresponding priors 𝛀𝟏 and  𝛀𝟐, define the 
same representational model, if  

 𝐆 = 𝐌𝟏𝛀𝟏𝐌𝟏
𝐓 = 𝐌𝟐𝛀𝟐𝐌𝟐

𝐓.       (Eq.  4) 

Because the matrix W contains a large number of free parameters, encoding models are usually 
evaluated using crossvalidation: The weights are estimated on a training set, and the fitted model is 
evaluated in terms of its performance at predicting left-out data [3]. The left-out data may consist in 
novel experimental conditions, so as to test the fitted model’s generalization performance [4, 5]. In 
encoding approaches, the prior on W typically enters as a regularization penalty in the estimation of 
model weights (e.g. a penalty on the L2 norms of the columns of W). However, encoding models 
are also often fitted without regularization [4, 9]. We will see that this approach does not test to a 
well-defined distribution of activity profiles, but rather evaluates the subspaces defined by the 
features. Note that although the encoding approach does not involve explicit computation of G, it 
centrally depends on G via Eq. 3, 4. 
 In pattern component modeling (PCM [10]), the activity patterns are assumed to have a 
multivariate normal distribution and the representational model is evaluated by calculating the 
marginal likelihood of the observed activity pattern under the model. The marginal likelihood 
explicitly integrates over all possible values of W, i.e. it computes the expected likelihood under the 
assumed prior distribution of the model weights. This approach prevents overfitting and therefore 
makes crossvalidation unnecessary. If the assumptions of this method are met, PCM provides the 
likelihood-ratio test between models [11], which by the Neyman-Pearson lemma [12] is the most 
powerful test of its size. That is, in theory this approach should yield more accurate inferences that 
any of its competitors.  
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Figure 1. Two complementary perspectives on the population activity across experimental 
conditions. (A, C) The condition-by-measurement-channel matrix can be visualised by 
plotting the measurement channels as single points in a space defined by the experimental 
conditions. The coordinate of each measurement channel reflects its activity profile across 
conditions. (B, D) The experimental conditions are plotted as points in the space defined by 
the measurement channels. The coordinates of each condition reflects the activity pattern 
across measurement channels. (A) The activity profiles have spherical distribution. (B) The 
corresponding activity patterns of all three conditions are equidistant to each other. (C) The 
activity for condition 1 is positive correlated with the activity for condition 2. (D) The activity 
patterns for condition 1 and 2 are closer to each other than to condition 3.  

 Finally, representational similarity analysis (RSA [13-15]) approaches the problem from a 
complementary perspective. Rather than considering the activity profiles of the measurement 
channels as points in the space spanned by the conditions (Fig. 1A,C), one can consider the activity 
patterns of the conditions as points in the space spanned by the measurement channels (Fig. 1B,D). 
The distances between these points are determined by the corresponding distribution of activity 
profiles. Indeed, in the case of Euclidean distances, the arrangement of the conditions is fully 
determined by the eigenvectors of the second-moment matrix G. Having obtained a matrix of 
dissimilarities between activity patterns (the representational dissimilarity matrix, RDM), RSA then 
tests models by comparing the observed distances to the distances predicted by the representational 
model. In this paper, we evaluate different methods to perform this comparison, including rank-
based correlations [16], Pearson correlations [8], and a novel likelihood-based approach that uses a 
multivariate normal approximation to the joint distribution of the cross-validated Mahalanobis 
distances [17]. As shown in the simulations, this latter technique provides a powerful means to 
adjudicate between representational models.  
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 In the methods, we will describe the different approaches in detail and clarify their 
relationship. It will become apparent that the encoding approach with a Gaussian prior 
(implemented as L2-norm or Tikhonov regularization), PCM, and RSA all test the same underlying 
probabilistic representational model. We will then use three simulated scenarios inspired by our 
fMRI work to assess how efficiently these approaches select between two or more competing 
models. Because fMRI does not resolve the dynamics of representations with high temporal 
resolution, we restrict ourselves to models that treat the activity patterns as static snapshots. 
However, our considerations here also provide a foundation for testing models that incorporate 
dynamics. 

Methods 

Basic definitions  
The methods in this paper were first developed in the context of multi-voxel analysis of fMRI data. 
This is reflected in the simulated scenarios chosen. However, the ideas in this paper equally apply 
to other modalities of brain-activity measurement. We assume that the main data consist of M 
independent partitions, each containing at least one activity measurement for each condition and 
measurement channel. Typically, each partition corresponds to a separate phase of data acquisition, 
e.g. a scanner run in fMRI. Estimates from different partitions are assumed to be independent. In 
general, the activity estimates 𝐔(B) (K×P) of partition m are a function of the true patterns U plus 
estimation noise 𝐄(B)  

 𝐔(B) = 𝐔 + 𝐄(B).       (Eq.  5) 

In fMRI, the patterns estimates are the regression coefficients, or “beta”-weights, from a first-level 
time series analysis [18, 19], which accounts for the hemodynamic lag and the temporal 
autocorrelation of the noise. The activity estimates express the difference in activity during a 
condition relative to rest. Patterns measured in the same fMRI imaging run are usually correlated. 
One cause for this correlation is that all activity estimates within a partition are measured relative to 
the same resting baseline. To correct for this, the mean activity pattern (across conditions) can be 
subtracted from each activity pattern. This makes the mean of each measurement channel (across 
condition) zero and thus centers the ensemble of points in activity-pattern space on the origin. 
 Encoding approaches and PCM can be applied either to the concatenated activity estimates 
from different partitions or directly to time series data. As a universal notation that encompasses 
both situations, we can write:  

 𝐘 = 𝐙𝐔 + 𝐗𝐁 + 𝚬,       (Eq.  6) 

where Y is an N×P matrix of all activity measurements, Z the N×K design matrix, which relates the 
activity measurements to the K experimental conditions, X is a second design matrix for nuisance 
variables, B are the true coefficients for these nuisance variables, and E is the matrix of 
measurement errors. If the data Y are the concatenated activity estimates, the nuisance variables 
typically only model the mean pattern for each run. If Y is time-series data, the nuisance variables 
typically capture additional effects such as time-series drifts and residual head-motion-related 
artifacts. 
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Spatial dependence 
Noise in fMRI is spatially correlated. To test representational models, we therefore use multivariate 
noise normalization (i.e. spatial prewhitening), which has been shown to increase the reliability of 
inference [20]. Within each ROI or searchlight [20], we estimate the P×P variance-covariance 
matrix 𝚺) between the residual time series from the first-level model, regularize it by shrinking it 
slightly towards a diagonal matrix [21]. We then post-multiply our activity estimates by 𝚺)

L+/M, 
rendering the model errors in the voxels approximately independent. For the simulations, we 
assume spatially independent errors from the beginning. If multivariate noise normalization is not 
performed or is incomplete, inference will be suboptimal in all three methods – for details see [17].  

Linear decoding and second moment matrices 
Based on our definition, a feature is represented in an area if it can be linearly read out from the 
activity. For example, a feature of interest may be the contrast between two stimuli. To obtain a 
read-out, we would weight each channel’s observed activity using the P×1 read-out vector v. This 
results in the read out variable 
 𝑦𝒊 = 𝐮P,.v.        (Eq.  7) 

We would now like the variable y to have very different values for two stimuli, while showing low 
variability for different trials of the same stimulus. More generally, we want a specific contrast on 
the experimental conditions, defined by a K×1 vector f, to have maximal variability when the true 
patterns are used as input, and minimal variability if only noise is used as input. Thus, we are 
searching for a v that maximizes the signal-to-noise ratio S of the decoded variable: 

 𝑆 = 𝐯𝐓𝐔𝐓𝐟𝐟𝐓𝐔𝐯
𝐯𝐓𝐄𝐓𝐟𝐟𝐓𝐄𝐯

  .       (Eq.  8) 

Under isotropic noise, 𝐄𝐓𝐟𝐟𝐓𝐄 = 𝐈𝑏, with b being a constant. Therefore, the denominator is the 
scaled norm of the read-out vector. We can therefore can get rid of the denominator by constraining 
the length of v to 1. The best vector is then given by the first eigenvector of the matrix 𝐔𝐓𝐟𝐟𝐓𝐔, and 
the quality of the best readout is determined by the largest eigenvalue. 
 The vector of non-zero eigenvalues (eig) is invariant to any allowed rotation of the elements 
of the matrix product:  

 𝑒𝑖𝑔 𝐔𝐓𝐟𝐟𝐓𝐔 = 𝑒𝑖𝑔 𝐟𝐓𝐔𝐔𝐓𝐟 = 𝑒𝑖𝑔 𝐟𝐓𝐆𝐟 P .     (Eq.  9) 

Therefore, the quality of the best achievable linear decoder for any feature (as defined by f) is fully 
characterized by the second moment matrix of the pre-whitened activity patterns.  

Encoding approaches  

Encoding approach without a prior  
In encoding approaches, a training data set is used to estimate the channel weights, and the resulting 
prediction is then evaluated on a left-out test data set. This cross-validation is usually performed by 
leaving a single partition (e.g. fMRI imaging run) out as a test set, and using the remaining M-1 
partitions as the training set. Each partition is held out as the test set once and prediction 
performance is averaged across the M folds of cross-validation. While encoding models can make 
predictions about conditions that are not in the training set (see Discussion), we focus our 
simulations on cases, in which training and test sets include the same experimental conditions. 
 A simple way to estimate weights W is through linear regression:  
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 𝐖 = 𝐌Y𝐌 L+𝐌Y𝐔(~[)	,      (Eq.  10) 

where we define 𝐔(~B) to be the average (and mean pattern subtracted) activity estimates from all 
partition except m. The prediction for the left-out test data of run m is 

 𝐔(~[) = 𝐌𝐖.        (Eq.  11) 

The quality of the prediction can be assessed using the proportion of activity variance that could be 
predicted across all conditions and channels 

 𝑅𝟐 = 1 − +
_

𝒕𝒓𝒂𝒄𝒆 𝐔(e)L𝐔(~e) 𝐔(e)L𝐔(~e) 𝐓

𝒕𝒓𝒂𝒄𝒆 𝐔(e)𝐔(e)f  .   (Eq.  12) 
Alternatively, we can evaluate the prediction by correlating the predicted and observed activity 
patterns across all conditions and channels. Assuming that the mean of each channel across all 
conditions is zero (given mean pattern subtraction), the correlation is given by  
 

𝑟 = +
_

𝒕𝒓𝒂𝒄𝒆 𝐔(h)𝐔(~h)i

𝒕𝒓𝒂𝒄𝒆 𝐔(h)𝐔(h)i 𝒕𝒓𝒂𝒄𝒆 𝐔(~h)𝐔(~h)i
     (Eq.  13) 

The correlation introduces an arbitrary scaling factor between prediction and observations and, in 
contrast to Eq. 12, allows the model to over- or under-predict the data by a scalar factor without 
penalty. Encoding models can also be applied to time-series data (Eq. 6), in which case the 
regression matrix for the estimation of the weight (Eq. 10) and for the prediction of the left-out data 
(Eq. 11) becomes the product of the design matrix Z and the model feature matrix M.  
 To understand how encoding approaches adjudicate between models, consider the graphical 
representation of the estimation process in Figure 2. The training data point (black cross) is the 
activity profile of a single measurement channel, which can be visualized as a point in activity-
profile space. Regression analysis can be understood as the orthogonal projection of the data point 
onto the linear subspace spanned by the features of the model matrix. The two models depicted in 
Fig. 2A and Fig. 2B have different features (blue arrows) that define different subspaces (planes 
with blue outlines). Therefore, the training data is projected onto two different planes and the 
prediction for the test data differs between the two models. The model whose features span a 
subspace that better describes the cloud of activation profiles will make better predictions and show 
lower cross-validation error.  
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Figure 2. Model comparison using encoding approaches. The axes of the three-dimensional 
space are formed by the response to three experimental conditions. The activity profile of 
each unit defines a point in this space. Models are defined by their features (blue arrows) and 
a prior distribution of the weights for these features – which together define a distribution of 
activity profiles (ellipsoids indicate Gaussian iso-probability-density contours). To predict the 
activity profile of a single measurement channel, the training data (cross) is fitted by the 
model. Simple regression finds the shortest projection (black dot) onto the subspace defined 
by the features, whereas regression with a prior (red dot) biases the prediction towards the 
predicted distribution. Two models (A, B) with features that span different model subspaces 
are distinguishable using regression without regularization. (C) This model spans the same 
subspace as model A. Unregularized regression results in the same projection as for model A, 
whereas regression with a prior leads to a different projection. (D) A saturated model with as 
many features as conditions. Unregularized regression can perfectly fit any data point. 
Regression with a prior predicts activity profiles more consistent with the prior – here shown 
as an iso-probability-density contour.  

Encoding approach with prior  
 Encoding approaches using unregularized linear regression test for subspaces, but not for a 
well-defined probability distribution of activity profiles. For example, the predicted distribution 
(pink ellipse) of the model depicted in Fig. 2C is distinct from the one in Fig. 2A. The features of 
these two models, however, span the same subspace. Therefore, the prediction of these two models 
using unregularized regression (black dots) are identical and the models indistinguishable. 
However, if we assume a standard normal prior over the weights W, then the feature basis in M 
matters, and the two models predict very different distributions of the activation profiles.  
 The hypothesis about the distribution of the activation profiles can be included in the 
regression approach as a prior on the W. Specifically, we can impose a Gaussian prior with zero 
mean and variance-covariance matrix 𝛀s, where s is a scalar scaling factor that accounts for the 
different signal levels in different brain regions or individuals. Under this assumption, the  
best linear unbiased predictor for the unit weights is  

 𝐖 = 𝐌Y𝐌+𝛀L𝟏𝑠L+𝜎𝛜𝟐 L+𝐌𝐓𝐔([) ,    (Eq.  14) 
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where 𝜎mM	is the noise variance on the observational units [22]. Linear regression with a prior can 
also be viewed as a projection of the activity profile into the space spanned by M, this time, 
however, biasing the projection towards the assumed distribution of W on the plane (red dot), i.e. 
towards activity profiles that the model considers to be more probable. Thus, the two models in Fig. 
2A and Fig. 2C now make different predictions. The model in which the assumed distribution 
corresponds more tightly to the data distribution will tend to yield a smaller cross-validation error.  
 When using a prior, models can also have as many features as conditions, or even more 
features than conditions (Fig. 2D). Such saturated models would be indistinguishable using 
unregularized regression. Adding weight-distributional priors can render such models distinct. 
Thus, using a Bayesian prior is not just a technical trick for estimation, but is an integral part of the 
hypothesis being tested, as it specifies the assumed probability distribution over activity profiles.  
 Technically, regression with a Gaussian prior can be implemented using Tikhonov 
regularization or ridge-regression [22]. The equivalence is established by scaling and rotating the 
model matrix M in such a way that 𝛀 becomes the identity matrix. In this context, the strength of 
the regularization is determined by a scalar ridge coefficient defined by sL+𝜎oM. Any 
representational model can be brought into this diagonal form by setting the columns of M to the 
eigenvectors of G, each one multiplied by the square root of the corresponding eigenvalue  

 𝐌 = 𝐯𝟏 λ𝟏 			…	𝐯𝟐 λ𝟐	        (Eq.  15) 

 𝐆 = 𝐌𝐌𝐓.   
For an encoding model with regularization, the ridge coefficient still needs to be determined for 
each cross-validation fold. This can be done again by nested cross-validation [5], or using the 
maximum-likelihood estimate from the training data (Eq. 17). To save time, it is also possible to use 
a constant regularization coefficient. In our simulations below, we used PCM to estimate  sL+𝜎oM	on 
each training set (across all voxels) and then apply it to make a prediction for the left-out test set. 

Pattern component modeling  
An alternative to cross-validation is to evaluate the likelihood of the observed activity estimates 
under the representational model. This approach is taken in pattern-component modeling [10]. We 
start with a generative model of the observed activity values (Eq. 6). We consider the patterns U to 
be Gaussian random variables, where the columns are distributed to give the second-moment matrix 
G. The nuisance regressors B are fixed effects, typically encoding the mean activity of each voxel 
across conditions within each partition. As in the other analysis approaches, we are not interested in 
the patterns per se, but want to evaluate their likelihood under different models. The activity 
measurements for each measurement channel (columns of matrix Y) are therefore assumed to be 
independently distributed as a multivariate normal:  

 𝐲∙,s~N 𝐗𝐛.,s, 𝐕 𝛉     

 𝐕 𝛉 = 𝐙𝐆𝑠𝐙𝐓 + 𝐈σyM       (Eq.  16) 

 𝛉 = 𝑠, 𝜎yM .  
The predicted covariance matrix of the activity measurements for each person is the function of the 
model (as encoded in the second-moment matrix) and two nuisance parameters: one that determines 
the strength of the signal (s) and one that determines the variance of the noise (𝜎mM). In determining 
the likelihood, we remove the fixed effects using the residual forming matrix  
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 𝐑 = 𝐈 − 𝐗 𝐗Y𝐕L𝟏𝐗 L+𝐗Y𝐕L𝟏       (Eq.  17) 

and then account for the removal of these fixed effects by evaluating the restricted likelihood [23], 
i.e. the probability of the data given the model, where the data are activity pattern estimates and the 
model is defined by second-moments matrix G and scalar signal and noise amplitudes	𝛉  

 l 𝐘|𝐆, 𝛉 = - ~)
M
𝑙𝑜𝑔 2π - )

M
𝑙𝑜𝑔 𝐕   

 - +
M
𝑡𝑟𝑎𝑐𝑒 𝐘Y𝐑Y𝐕L+𝐑𝐘 - )

M
𝑙𝑜𝑔 𝐗Y𝐕L+𝐗 .    (Eq.  18) 

To evaluate the fit of a model, the scaling and noise parameters need to be determined.  For fMRI 
data, these two parameters can vary widely between different brain regions and individuals, and are 
not meaningful in themselves. We therefore set 𝛉 to maximize the likelihood before evaluating the 
model for each simulation. Because we can obtain closed-form first- and second-order derivatives 
of Eq. 18 with respect to 𝛉, this can be done efficiently using gradient descent or the Newton-
Raphson algorithm. To prevent variance estimates from becoming negative, the optimization is 
performed on 𝐡 = 𝑙𝑜𝑔 𝛉 . Efficient implementations of this algorithm can be found in the open-
source Matlab package for PCM [24]. Because every model uses the same two nuisance parameters, 
models can be compared using the maximal log-likelihood. 

Representational similarity analysis 

Distances and second-moment matrices  
In RSA, representational hypotheses are conceptualized in terms of the dissimilarities between the 
activity patterns (Fig. 2). One important dissimilarity measure is the Euclidean distance, which has 
a very close relationship to the second-moment matrix G. The squared Euclidean distance between 
the true activity patterns for condition i and k (normalized by the number of measurement channels) 
is  

 𝑑P,� = 𝐮�,∙-𝐮�,∙ 𝐮�,∙-𝐮�,∙
Y
/𝑃 = 𝐆�,�-2𝐆�,� + 𝐆�,�	.   (Eq.  19) 

The Euclidean distance matrix is therefore a function the second moment of the activity profiles. 
The generalization of the Euclidean distances to non-isotropic noise (see below) is the Mahalanobis 
distance. Correlation distances, another class of popular dissimilarity measures, can also be 
computed from the second-moment matrix. The cosine angle distance is defined as 

 1 − 𝑟�,� = 1 − 𝐮�𝐮�
i

𝐮�𝐮�
i𝐮�𝐮�

i
= 𝐆�,�

𝐆�,�𝐆�,�
	.     (Eq.  20) 

Here we focus on Euclidian and Mahalanobis distances, as they are independent of the resting 
baseline and generally easier to interpret [20].  

 In the following we either represent these distances as a K×K representational dissimilarity 
matrix D, or a K(K-1)/2 vector d that contains all pair-wise distances. The vector of all pairwise 
distances can be obtained from G by defining a contrast matrix C, with each row encoding one of 
the pairwise contrasts, with a 1 and a -1 for the contrasted conditions and zeros elsewhere:  

 𝐝 = diag 𝐂𝐆𝐂𝐓 	 .       (Eq.  21) 
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The distances contain the same information as the second moment matrix, except for the 
relationship of the activity patterns to the baseline, which is not represented in the distance matrix. 
Thus, in order to go from a distance matrix to a second-moment matrix, we need to re-set the origin 
of the coordinate system. An obvious choice is to define the mean activity pattern across all 
conditions to be the baseline. This is equivalent making the sum of all rows and columns of G zero, 
which can be achieved by defining the centering matrix 𝐇 = 𝐈� − 𝟏�/𝐾, with 1K being a square 
matrix of ones. Under these conditions, G can be computed from D as  

 𝐆 = - +
M
𝐇𝐃𝐇	         (Eq.  22) 

Multivariate noise normalization and cross-validation: the crossnobis distance 
Here we focus on one particular distance measure: the cross-validated squared Mahalanobis 
distance (or crossnobis distance for short), which has superior characteristics in terms of reliability 
and interpretability as compared to other distance measures [20].  
 The crossnobis distance uses multivariate noise normalization (see Spatial dependence) to 
make the errors of different measurement channels approximately independent of each other. 
Euclidean distances (Eq. 19) computed on these pre-whitened activity estimates are equivalent to 
the Mahalanobis distance defined by the error-covariance matrix between voxels (for details see 
[17, 20]).  
 Furthermore, the crossnobis distance is cross-validated: When one replaces the true activity 
patterns in Eq. 19 with their noisy estimates, the expected value of the resultant Euclidean distance 
will be always higher than the true distances, as the noise terms are squared and summed. The 
Euclidean distance between two pattern estimates, thus, is a positively biased estimator of the true 
distance. We can obtain an unbiased estimate of the true distance by computing the the difference 
vectors between the two activity patterns from two independent data partitions and taking the inner 
product of the difference vectors. Thus, if we have M independent partitions, the crossnobis 
distance can be computed using a leave-one-out cross-validation scheme: 

 𝑑& = 1/𝑀 𝐮�,∙
(B)-𝐮�,∙

(B) 𝐮�,∙
(~B)-𝐮�,∙

(~B) Y
/𝑃_

B*+  ,   (Eq.  23) 

where 𝐮�,∙
([) is the prewhitened pattern for condition i measured on partition m, and  𝐮�,∙

(~[) is same 
activity pattern determined from the data of all other partitions. The expected value of this estimator 
matches the true Mahalanobis distance. In particular, if the patterns of two conditions only differ by 
noise, then the expected value of this measure will be zero. We will see below that the interpretable 
zero point can be advantageous for testing representational models. 

Model comparison  
 In RSA, different representational models are evaluated by comparing the predicted to the 
observed distances. The magnitude of the Mahalanobis distances can vary considerably between 
subjects. The inter-subject variation is caused by differences in physiological responsiveness, 
physiological noise, and head movements – in short, by all the factors contributing to the noise 
distribution, by which the Mahalanobis distance is scaled. Therefore it is advisable to introduce a 
subject-specific scaling factor between observed and predicted distances. 
 Such arbitrary scaling can be accounted for by calculating the correlation between the 
predicted and observed distance vectors (not to be confused with the use of correlation distance as a 
activity-pattern dissimilarity measure, Eq. 20). The most cautious approach is to assume that we can 
only predict the rank ordering of distances [14]. It is then only appropriate to use Spearman 
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correlation, or (in the case of split ranks) Kendall’s tau 2 [16]. For more quantitative models, it may 
be appropriate to assume that distance predictions can be made on interval scale rather than an 
ordinal scale, suggesting the use of the Pearson-correlation coefficient for model comparison [8]. 
The assumption of a linear relationship between the predicted and measured distances may be 
justifiable and can increase our sensitivity to differences between representational models. 
 Both rank-based and linear correlation coefficients are invariant not only with repect to the 
scaling factor, but also with respect to the intercept of regression. However, the cross-validated 
Mahalanobis distance has an interpretable zero point, indicating that two activity patterns are not 
different. If a model predicts a zero distance for two conditions, then a brain region explained by the 
model should not be sensitive to the difference between the two conditions. This is a very 
meaningful prediction, which we can exploit to discriminate among models. Pearson and rank-
based correlation coefficients discard this information. This suggest the use of a correlation 
coefficient, in which the predictions and the data are not centered about their mean:   

 r� = 𝐝𝐓𝐝/ 𝐝𝐓𝐝𝐝𝐓𝐝       (Eq.  24) 

This amounts to a linear regression model between the predicted and observed distances, where the 
regression line is constrained to pass through the origin [25]: 

 𝐝 = 𝐝s.          (Eq.  25) 

Here s is a scaling factor that is estimated from the data by minimizing the sum-of-squared errors 
between predicted and observed values.  

Eq. 24 would provide optimal inference, if all distances were independent and of equal 
variance. However, for the crossnobis distance (and for most other distance measures), the 
assumptions of independence and equal variance are both violated. Distances with larger true values 
are estimated with higher variability. Furthermore, the estimated distance between conditions A and 
B is not independent from the estimated distances between A and C [17]. To account for these 
factors, we need to know the predicted probability distribution of the distance estimates given a 
model. While the exact distribution of the vector of K(K-1)/2 crossnobis estimates is difficult to 
obtain, we have shown that their distribution is well approximated by a multivariate normal 
distribution [17]  

 𝐝~𝑁 𝐝𝑠, 𝐒 𝐝𝑠 .         (Eq.  26) 

 The mean of the distribution are the true distances, scaled by a parameter relating to the 
signal strength in this subject (s). In a separate paper [17], we show that that the exact variance-
covariance matrix of d is given by  

 𝐒 𝐆, s, 𝚺�, 𝚺� = 4 𝐂𝐆�𝐂
𝐓∘𝐂𝚺�𝐂𝐓

¡
+ 2 𝐂𝚺𝐊𝐂

𝐓∘𝐂𝚺𝐊𝐂𝐓

¡ ¡-+
∙ £¤¥¦§ 𝚺¨𝚺¨

�©
.   (Eq.  27) 

Where G is the predicted second-moment matrix of the patterns, C the contrast matrix that 
transforms the second-moment matrix into distances, and ∘ refers to the element-by-element 
multiplication of two matrices. 𝚺� is the condition-by-condition covariance matrix of the estimates 
of the activation profiles across partitions, which can be estimated from the variability of the 
activation patterns around their mean (𝐁):  

 𝚺� =
+

_L+
𝐔(B)-𝐔 𝐔(B)-𝐔

Y
/𝑃[       (Eq.  28) 
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𝚺) is the voxel-by-voxel correlation matrix of the activation estimates. If multivariate noise-
normalization [20] was completely successful, then this would be the identity matrix. However, 
given the shrinkage of the noise-covariance matrix used for noise-normalization, some residual 
correlations will remain; for accurate predictions of the variance, these must be estimated and 
accounted for [17].  

Based on this approximation we can now express the log-likelihood of the measured 
distances d under the model predictions 𝐝.  

 𝑙 𝐝|𝐝s = - ª
M
𝑙𝑜𝑔 2π - +

M
𝑙𝑜𝑔 𝐒 𝐝s - +

M
𝐝-𝐝s

𝐓
𝐒 𝐝s -𝟏 𝐝-𝐝s   (Eq.  29) 

To evaluate the likelihood, we first need to estimate the scaling coefficient between predicted and 
observed distances by maximizing this expression in respect to s. This can be done efficiently using 
iteratively-reweighted least squares (IRLS): Given a starting estimate of S, we can obtain the 
generalized least squares estimate of s,  

 𝑠 = 𝐝𝐓𝐒-𝟏𝐝
L+
𝐝𝐓𝐒-𝟏𝐝,       (Eq.  30) 

re-estimate S according to Eq. 27, and iterate until convergence. 

Simulation examples 
In this paper we use 3 simulation examples inspired by real fMRI studies. The first two examples 
come from a paper investigating the representational structure of finger movements in primary 
motor and sensory cortex [8]. The representational structure of these activity patterns is highly 
reliable across different individuals. The main question was whether this invariant structure is best 
explained by the correlations of finger movements in every-day life – i.e. the natural statistics of 
movement [26], or by the patterns of muscle activity required for these movements. The predicted 
representational dissimilarity matrices for individuated movements of the five fingers (Exp. 1) are 
shown in Fig. 3A,B. The second example comes from experiment 3 from the same paper, this time 
looking at 31 different finger movements, which span the whole space of possible “piano-chord” 
combinations (Fig. 3C,D).  
 The third example uses an experiment investigating the response of the human inferior 
temporal cortex to 96 images, including animate and inanimate objects [13]. The model predictions 
are derived from a convolutional deep neural network model – with each of the 7 layers providing a 
separate prediction [27].  
 All data sets where simulated with 8 runs, 160 voxel, and independent noise on the 
observations. The noise variance was set to 𝜎M = 1. We first normalized the model predictions, 
such that the norm of the predicted squared Euclidean distances was 1. We then derived the second 
moment matrix (G) for each model using Eq. 22 and created true activity pattern that were normally 
distributed with second moment 𝐔𝐔𝐓/𝑃 = 𝐆𝑠. The signal-strength parameter s was varied 
systematically starting from 0 (pure noise data). 
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Figure 3. Representational dissimilarity matrices (RDMs) for the models used in 
simulation. Each entry of an RDM shows the dissimilarity between the patterns associated 
with two experimental conditions. RDMs are symmetric about a diagonal of zeros. Note that 
while zero is meaningfully defined (no difference between conditions), the scaling of the 
distances is arbitrary. For experiment 1, the distance between the activity patterns for the five 
fingers are predicted from the structure of (A) muscle activity and (B) the natural statists of 
movement. In Experiment 2 (C, D) the same models predict the representational 
dissimilarities between finger movements for 31 piano-like chords. For Experiment 3 (E, F), 
model predictions come from the activity of the seven layers of a deep convolutional neural 
network in response to 96 visual stimuli. The 1st convolutional layer and the 1st fully 
connected layer are shown as examples. 

 We generated 3,000 data sets for each experiment, parameter setting, and model (either 2 or 
7). Each data set was generated by one model (ground truth) and was analyzed so as to infer the 
data-generating model, using each of the inference methods. To evaluate how well the methods 
adjudicated between the models, we compared the fit of the true model (i.e. the model that 
generated that particular data set) with each alternative model by counting the number of instances, 
in which the method decided in favor of the correct model. Thus, even though there were 7 
alternative models in Experiment 3, chance performance for the pairwise comparisons was always 
50%. The percentage of correct decisions over all possible model pairs and simulation was used as a 
measure of model-selection accuracy. 

Results 

Encoding approaches without a prior on the weights 
When employing encoding approaches without a prior, one typically needs to reduce the 
dimensionality of the model matrix M. This can be done by using only the eigenvectors with the n 
highest eigenvalues of the predicted second moment matrix. How many regressors to include is a 
somewhat arbitrary decision: For example, Leo et al. [9] used 5 “synergies” (i.e. principal 
components of the kinematic data of 20 movements), as these explained 90% of the variance of the 
behavioral data.  
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 Here we explore systematically how the number of principal components influences model 
selection. For each experiment, we simulated data sets with a fixed signal-to-noise ratio (Exp 1 & 
Exp 3: 𝑠 = 0.3, Exp 2: 𝑠 = 0.1, 𝜎oM = 1), and compared model selection accuracies using between 
one and the maximal number of principal components. We used both cross-validated R2 (Eq. 12) 
and the correlation between predicted and observed values (Eq. 13) to perform model selection.  
 

 

Figure 4. Dependence of encoding approach without (blue lines) and with a prior (red line) 
on the number of included features (x-axis). (A-C) Percent correct model selections using 
either R2 (solid line) or correlations (dashed line). (D-F) Correlation between predicted and 
observed patterns (Eq. 13). (G-I) Predictive R2 (Eq. 12) for the encoding approach with 
prior. All R2 values without prior are negative.  

 Fig. 4A-C shows the percentage of correct model selections for Experiments 1-3. Results 
obtained without a prior on the weights are shown in blue. The dimensionality that differentiated 
best between competing models was 2, 3, and 5 features, respectively. As more features were 
included, the number of correct model selections declined. When the number of features was the 
same as the number of conditions, i.e. the models became saturated, model selection accuracy fell to 
chance. This is expected, as two saturated models span exactly the same subspace and hence make 
identical predictions (Fig. 2D).  
 Using correlations as selection criterion led to more accurate decisions than using R2. 
Correlations (Fig. 4D-F, blue lines) were generally positive and peaked at a number of features that 
was slightly higher than the optimal dimensionality for model selection. Predictive R2 values for 
encoding without a prior were all negative (and therefore not shown), because the approach does 
not account for the noise in the data and hence leads to predictions that are too extreme– i.e. the 
approach over-predicts the scale of the data. Correlations are insensitive to this problem as they 
allow for arbitrary scaling between predicted and observed values.  
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Encoding approaches with a prior on the weights 
We then fit the same simulated data using an encoding approach with prior (Eq. 14). In the model 
matrix, we scaled each principal component of G with the square root of the eigenvalue (Eq. 15), 
such that we could employ ridge regression to obtain the best-linear unbiased predictor for the left-
out data patterns. To determine the optimal ridge coefficient, we estimated the signal and noise 
level on each test data set using PCM.  
 With a prior, model selection performance increased with increasing number of features (red 
lines, Fig. 4A-C). Thus, dimensionality reduction of the model is not necessary here. Furthermore, 
model selection was always more powerful with than without a prior. This reflects the fact that the 
prior provides additional information about the models to be compared. It enables us to compare 
well-defined distributions of activity profiles instead of just subspaces.  
 For Exp. 2-3, the R2 criterion performed substantially worse than the correlation between 
predicted and observed activity patterns. The difference between the two criteria arises from the fact 
correlations allow for an arbitrary scaling between predicted and observed activity patterns, whereas 
R2 penalizes deviation in scale. The scaling of the prediction in turn strongly depends on the choice 
of the scalar regularization coefficient. This fact is illustrated in Fig. 5, where we simulated data 
from Exp. 2 with a fixed noise and signal strength, and varied the regularization coefficient 
systematically. While R2 is highly sensitive to the choice of the regularization coefficient, the 
correlation criterion is not. Thus, different deviations from the optimal ridge coefficient for different 
models will decrease model selection accuracy for the cross-validated R2 criterion, but not for the 
correlation criterion.  

 

Figure 5. Sensitivity of the predictive R2 (solid line) and correlation criterion (dashed line) to 
the choice of the regularization coefficient. Simulations come from Experiment 2 with a true 
signal strength of s=0.2 and a noise variance of 1.  For this combination the optimal 
regularization coefficient is 𝑠L+𝜎oM (dashed vertical line). The correlation criterion is 
generally robust against the non-optimal choice of regularization coefficient.  

 
 In sum, the use of an encoding approach with a prior yields superior model selection 
performance, even if the model has fewer features than conditions. However, it is important to note 
that adding a prior changes the hypothesis being tested. Rather than just comparing subspaces, 
adding a prior on the weights means that more specific hypotheses are being compared. From this 
perspective it is unsurprising that we can adjudicate between these hypotheses with greater 
accuracy. Furthermore, the use of correlation instead of predictive R2 makes model selection more 
robust against variations in the regularization coefficient.  
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Representational similarity analysis  
When evaluating models with RSA, there is no need to restrict the model to a specific number of 
features –the whole second-moment matrix will determine the predicted distances. As an empirical 
distance measure we calculated the cross-validated squared Mahalanobis distance [20] and then 
compared the predicted to the measured distances. This can be accomplished using a number of 
different approaches: We employed rank-based correlation of distances [16], Pearson correlation, 
correlation with a fixed intercept (Eq. 24), and the likelihood of the observed distances under the 
normal approximation (Eq. 26) using the full variance-covariance matrix of the estimated distances.  
 

 

Figure 6. Model selection accuracies for different ways of testing representational models 
using RSA. Data sets for all three experiments were generated with varying signal strength 
(x-axis). The percentage of correct decisions using different criteria is shown (dotted line). 
Models were selected based on the rank-correlation (purple), Pearson correlation (green), 
fixed intercept correlation (blue) or likelihood under the multi-normal approximation (red). 
For comparison the model selection accuracy for PCM is shown in the dotted line. 

 
For Experiment 1 (Fig. 6A), rank-based correlations performed worst. This decrement in 

performance may have been exacerbated here by the fact that the distance rank-structure under the 
two models is relatively similar. However, we expect lower performance in general for rank 
correlation, because this approach does not rely on the assumption of a linear relationship between 
predicted and measured dissimilarities. Among the other approaches, likelihood-based RSA yielded 
the best decisions; slightly better than Pearson and fixed intercept correlations.  
 The advantage of the likelihood-based approach was clearer for Exp. 2 and 3. Here, it led to 
about 10% greater accuracy of the decisions than the next-best RSA approach. This advantage is 
likely due to the fact that Pearson correlations and especially fixed-intercept correlations (Eq. 24) 
are sensitive to the observed value for the largest predicted distances, as these data points have a 
large leverage on the estimated regression line. Indeed, some of the models for Exp. 2 and 3 contain 
a few especially large distances, which will influence the model fit strongly. The likelihood-based 
approach incorporates the knowledge that large distances are measured with substantially larger 
variability, and hence discounts their influences. Notably, rank-based correlations perform 
relatively well on these models as compared to Pearson correlations, likely because they are more 
robust against outlying values for the large predicted distances.  
 In sum, these simulations show convincingly that when disambiguating between different 
representational models it is highly advantageous to take the covariance structure of the measured 
distances into account whenever the additional assumptions this requires are justified.  
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Pattern component modeling  
In the same simulations, we also applied the direct likelihood-ratio test, as implemented by PCM. 
As all the assumptions of the generative model behind PCM are met in the simulation, we would 
expect by the Neyman-Pearson lemma [12] that this method should provide us with highest 
achievable model selection accuracy.  
 Model selection performance (dotted line in Fig. 6) was indeed systematically higher than 
for the best RSA-based method. For direct comparison of the so far best methods - PCM, 
likelihood-based RSA, and encoding with a prior - we simulated the three Experiments at a single 
signal strength (Fig. 7).  
 

 

Figure 7. Model selection accuracy and execution time of likelihood-based RSA, PCM, and 
encoding approaches using either R2 (Eq. 12) or correlation (Eq. 13) as a fitting criterion. 
(A-C) Significant differences in model selection accuracy were tested for N=3,000 
simulations using a likelihood-ratio test of counts of correct model decisions [28]. The signal-
strength parameter for the simulation was set to s = 0.3 for Exp. 1, s = 0.15 for Exp. 2, and s 
= 0.5 for Exp. 3.  (D-F) Execution times for the evaluation of a single data set under a single 
model. For encoding, the time is split into the time required to estimate regression 
coefficients (light blue) and the time to determine the regularization constant (dark blue).  

 In this simulation, PCM resulted in 1.48%, 3.01% and 2.86% (for Exp. 1-3, respectively) 
better model selection accuracy than likelihood-based RSA, and 1.98%, 1.17% and 0.85% higher 
model selection accuracies than an encoding approach using correlations. In many cases, PCM 
performed significantly better than the other two approaches (Fig. 7). There were no significant 
performance differences between RSA and encoding methods. Among encoding approaches, the 
simulations again showed the advantage of using correlations, rather than R2 as an evaluation 
criterion for encoding models. Overall, despite a significant slight advantage for PCM, all three 
methods were very close in performance. 
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Computational cost 
A practical concern is the speed at which the model comparison can be performed. This is usually 
not an important constraint when evaluating the model fit on a small number of participants or 
ROIs. However, if models are evaluated continuously over the cortical surface using a searchlight 
approach [29, 30], or in data sets with large numbers of participants, computational speed becomes 
a practical issue.  
 Both RSA and PCM approaches operate on the inner product matrix of the activity 
estimates, thus the computational costs for these approaches is virtually independent from the 
number of voxels. PCM works on the MK x MK inner product matrix of the activity estimates, 
whereas RSA operates on a KxK matrix of distances between conditions. For small number of 
conditions, this explains the relatively favorable computational costs for RSA. However, when 
using likelihood-based RSA, the covariance matrix of the distances needs to be calculated and 
inverted. The size of this matrix is (K(K-1)/2)2 and it therefore grows with the 4th power of the 
number of conditions. For Exp. 3 (Fig 7F) with K = 96, this leads to rather slow performance, 
whereas PCM still needs to only invert matrices of size MK2.  
 For encoding approaches, the optimal ridge coefficient needs to be determined for each 
cross-validation fold. In our simulations, we used PCM to do so – therefore the computational cost 
for this task (Fig. 7D-F, dark blue area) is always M times higher than for PCM alone. Conducting 
the actual ridge regression (light blue area) is comparably fast and efficient. Thus, if high speeds are 
required, one could use a constant ridge coefficient and accept the possible loss in model selection 
accuracy.  

Discussion  
In this paper we defined representational models as formal hypotheses about the distribution of the 
activity profiles in the space defined by the experimental conditions. That is, a representational 
model specifies, which features are represented in a brain region, and how strongly they are 
represented. The “strength” of representation of a feature has two aspects: the number of responses 
(e.g. neurons) dedicated to a feature and the scaling of their activity profiles relative to the noise. 
The second-moment matrix of the activity profiles captures the combined effect of both of these 
aspects of feature strength. Two distinct representations with identical second-moment matrices 
therefore support decoding of any given feature at the same signal-to-noise ratio. This motivates 
using the second moment as a summary statistic for characterizing representations. 

RSA, PCM and encoding approaches offer different tests of representational models, but all 
rely on the second moment matrix to characterize the representational hypotheses. The main 
characteristics of the three methods are summarized in Table 1. Thus, these multivariate methods 
are highly related and should indeed be understood as part of the same multivariate toolbox.  

Encoding approaches without prior test models about subspaces, not distributions 
There is a fundamental difference between encoding approaches with and without a prior. Without a 
prior – when using standard regression analysis to estimate the response weights – encoding 
approaches test how well the subspace spanned by the model features describes the subspace 
occupied by the observed activation profiles. This necessitates the dimensionality (i.e. the number 
of features) of each model to be substantially lower than the number of tested conditions. As the 
number of model dimensions increases, the subspaces of competing models increasingly overlap. 
Once two models have as many features as stimuli their subspaces and hence their prediction for 
unseen data become the same.  

L2-norm regularization (i.e. ridge regression) is equivalent to imposing a Gaussian prior on 
the regression weights. With such a prior, the representational model specifies a probability 
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distribution over the space of possible activity profiles, rather than just a subspace. When changing 
the form of regularization, one also changes the implicit prior, and hence the representational model 
that is being tested. Thus, regularization is not simply a trick to make regression more stable, but 
should be considered an integral part of each representational model. The choice of the prior is 
therefore a neuroscientific rather than methodological consideration: It specifies what  
representational hypothesis is to be tested. 

Encoding models do not support inferences about the particular model-defining 
feature set 
Even when using a prior, the feature sets that characterize encoding models are not unique. Features 
should not be artificially constrained to be orthogonal in the space of experimental conditions, as 
otherwise the structure of the model would depend on the experiment conducted. Without this 
orthogonality constraint, there are an infinite number of basis sets of features that express the same 
representational model (inducing the same second moment of activity profiles, Eq. 3). For example, 
two equally long correlated feature vectors can equally well describe a distribution with elliptical 
isoprobability-density contours (Fig. 2A) as two orthogonal features, with one vector longer than 
the other. Thus, when one representational model is shown to be superior to others, it does not 
imply anything special about the feature set chosen to describe that model. Rather, it is the feature 
space in conjunction with the prior that determine the representational model. These complications 
need to be kept in mind in the interpretation of the results of encoding model analyses. It is very 
tempting to assign meaning to the particular feature basis chosen, especially when they are mapped 
onto the cortical surface [6, 9]. When interpreting these maps, one needs to remember that a feature 
set only describes a distribution of activity profiles, and that very different maps can emerge when 
the same distribution is described by a rotated set. In PCM and RSA, the equivalence of different 
feature sets is made explicit, as they lead to the same second-moment and representational 
dissimilarity matrices.  

Likelihood-based RSA is more sensitive than correlation-based RSA 
When using RSA to test representational models, the cross-validated Mahalanobis distance 

provides a highly reliable measure of dissimilarity with the added advantage of having an 
interpretable zero-point [20]. Rank-based, Pearson, and fixed-intercept correlations provide a 
straightforward ways of measuring the correspondence between predicted and observed distances, 
so as to select the representational model most consistent with the data. However, using simple 
correlations ignores the dependence of the distance estimates, as well as their unequal variances. 
This problem is addressed in likelihood-based RSA, which uses a multivariate-normal 
approximation to the sampling distribution of the crossnobis distance [17]. The approximation 
provides an analytical expression for the statistical dependency of distance estimates, as well as 
their signal-dependent variances. In the simulations, likelihood-based RSA was shown to be more 
powerful than correlation-based RSA. Its performance was only slightly below the theoretically best 
achievable level, as established by PCM.  

We therefore think that likelihood-based RSA might become the approach of choice when 
comparing representational models using crossnobis distances. However, there are situations, in 
which the models are not specific enough to support ratio-scale predictions of representational 
dissimilarities. Moreover, for measurement modalities like fMRI, it might be undesirable to assume 
a linear relationship between predicted and measured representational dissimilarities. In these cases, 
rank-correlation-based RSA [16] should remain in our toolkit as a safe, though perhaps not 
optimally sensitive, method of inference. Likelihood-based RSA becomes computationally 
expensive as the number of conditions increases. In this case a practical approach is to only use the 
diagonal of the variance-covariance matrix, which would dramatically reduce computational 
complexity at the expense of neglecting dependencies among dissimilarity estimates. 
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Which method is best?  
For all simulations, model selection using PCM [10] was better than competing methods. This is 
not surprising, as the data were simulated exactly according to the generative model underlying this 
approach (Gaussian distribution of noise and signal, independence across voxels). In this case, PCM 
implements the likelihood-ratio test, which by the Neyman-Pearson lemma [12] is the most 
powerful test. The simulations, however, also show that compared to this theoretical ceiling, 
encoding models with a prior and likelihood-based RSA perform near-optimally. In practice, we 
therefore expect these three approaches to provide similar answers. While PCM has clear 
advantages for model comparison in terms of power, computational speed, and analytical 
tractability, the other two approaches have other distinct advantages that make them attractive 
choices for specific applications. 

RSA provides readily interpretable intermediate statistics (cross-validated distances), which 
are closely related to linear decoders for all pairs of stimuli. These statistics can be used to test 
whether two conditions have different activity patterns [16, 17], or whether the dissimilarity is 
larger between one pair than between another pair of conditions. Multidimensional scaling of the 
stimuli on the basis of their representational dissimilarities also provides a intuitive visualization of 
the representational structure [14], which can be very helpful in the generation of novel 
representational hypotheses. 
 In contrast, PCM sometimes demands complicated approaches to answer simple questions: 
For example, to test the hypothesis that a difference between two conditions is encoded, one would 
need to fit one model that allows for separate patterns and one model that does not – and then 
compare the marginal likelihood of these models. Furthermore, PCM requires the noise to be 
explicitly modeled, whereas RSA removes the effect of noise through cross-validated distances.  
 Encoding approaches explicitly estimate the parameters that describe the response for each 
individual voxel. This enables the mapping of the estimated features onto the cortical surface to 
study their spatial distribution [6, 9]. Furthermore, the model fit can be assessed for each individual 
measurement channels, rather than for groups of voxels (such as for ROIs or searchlights). Latter 
advantage, however, comes at the cost that multivariate noise normalization cannot be performed on 
single voxels. Note also that the searchlight approach for RSA and PCM can be reduced to single 
voxels, if this is preferred. However, larger searchlights enable us to take noise covariance into 
account and to pool the local evidence, supporting more robust statistical inferences. Based on our 
previous results [20], we expect that ignoring voxel dependencies will entail a loss of sensitivity 
when making inferences on representational models for regions of interest comprising multiple 
responses.  
 Many studies using encoding models have tested whether a representational model 
generalizes to new experimental conditions (e.g. a different sample of visual stimuli). This requires 
a test set with experimental conditions that are not included in the training set. The features (and 
their prior) provide a straightforward way of making predictions for such unobserved conditions. 
Generalization is an especially useful test for representational models with free parameters, which 
can otherwise overfit of the data. Although used much less frequently, generalization to new 
conditions can also be assessed within RSA or PCM. Here one simply leaves out part of the second-
moment matrix for parameter estimation and then evaluates the model likelihood only for the left-
out components [31]. 

Note that encoding models strictly require independent test sets to account for the over-
fitting of the weights. Weight fitting cannot be avoided in encoding models, because individual 
responses are to be predicted. RSA and PCM rely explicitly on summary statistics of the responses. 
This renders weight fitting optional. RSA and PCM can therefore compare fixed representational 
models without cross-validation. 
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What about decoding approaches?  
 While decoding approaches are widely used in multivariate analysis of brain imaging data 
[32-34], we have not considered them in the context of model comparison. It is possible to use 
classification accuracy instead of correlation or R2 to evaluate the fit of an encoding model on left-
out data [4, 9] – or to use classification accuracy as a measure of dissimilarity between two 
conditions [35]. However, classification essentially converts a continuous measure of dissimilarity 
into a binary label of correct / incorrect. It is therefore expected to be less informative than the 
underlying continuous measure, and we have shown that this entails a loss of sensitivity in practice 
[36]. Hence, decoding approaches are not particularly useful for the evaluation of representational 
models [3, 11], and should therefore be limited to situations, in which the quality of the decoding is 
in itself the measure of interest. 

Extensions of the present exploration 
 Our simulations here have focused on a particular class of representational model. There are, 
however, a number of immediate extensions to our general framework; and it is important to 
consider how easily each approach can be extended to encompass a broader class of models.  
 The first major restriction is that all models considered here were “fixed”, i.e., they did not 
include free parameters that would change the predicted second-moment matrix. In many 
applications, however, the relative importance of different features (for example encoding strength 
for orientation and color) are unknown. In this case, the predicted second moment can be expressed 
as the weighted sum of different pattern components, i.e. 𝐆 = 𝜔P𝐂𝐢P  [10, 31], with the weights 
being free parameters. In other situations, G is a nonlinear function of free model parameters: For 
example, G depends non-linearly on the spatial tuning width in population receptive field modeling 
[37]. Both RSA and PCM already provide a mechanism to estimate such parameters, as both 
approaches already need to estimate the signal strength parameters s by maximizing the respective 
likelihood function (Eq. 17, 28). Thus, for these methods the extension to parameterized models 
does not require new algorithms.  

In encoding approaches using ridge regression, free model parameters that change the model 
structure would result in scaling and rotations of the model matrix M. Each of these possible 
changes needs to be evaluated using cross-validation. Hence optimization of parameters will be 
generally more cumbersome than in the other two approaches, for which analytical derivatives of 
the likelihood (Eq. 17, 28) in respect to the parameters are easily obtained. 
  The inclusion of free parameters into the model also enables the specification of 
measurement models. Representational models ideally test hypotheses about the distribution of 
activation profiles of the core computational elements – i.e. neurons. When using indirect measures 
of brain activity such as fMRI or MEG, the distribution of activity profiles across measurement 
channels is also influenced by the measurement process, which samples and mixes neuronal activity 
signals in the measurement channels [2]. As the underlying brain computational models become 
more specific and detailed, the corresponding measurement models will also have to be improved. 
 A final important extension of representational models concerns the distributional 
assumptions of the true activity profiles of the measurement units. In this paper, we focused on 
approaches that characterize the distribution by its second moment. If the true distribution of the 
activity profiles is a multivariate Gaussian, then this is a fully sufficient approach. However, a 
representational hypothesis may not only predict that the response across channels to condition A is 
uncorrelated to the response to condition B, but, for example, that channels either respond to A or 
B, but with much lower probability to both A and B. Such tuning is for example prevalent in 
primary visual cortex, where neurons (and voxels) respond a stimulus in a one specific part of the 
visual field, but less often two or more disparate locations [37]. This would correspond to a non-
Gaussian prior on the feature weights. In a recent publication, Norman-Haignere and colleagues 
[38] suggested a likelihood-based method, in which the Gaussian prior on the feature weights W is 
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replaced with a Gamma distribution, providing a non-Gaussian extension of PCM. It will be 
interesting to determine to what degree such non-Gaussian distributions are present in fMRI or 
single-cell data, and what computational function these may play. It is important to stress that the 
presence of non-Gaussian distributions does not invalidate the approaches considered here. Even in 
this case the second-moment remains a very important characteristic of the activity patterns; it 
determines the linear decodability, and hence the representation, of all possible features. Taking 
into account higher moments of the activity profiles would enable us to distinguish between 
representations that afford the same linear readout of features, but achieve this by distinct 
distributions of activity profiles. 

Summary  
If advances in brain-activity measurements are to yield theoretical insights into brain computation, 
they need to be complemented by analytical methods to test computational models of information 
processing [1]. The main purpose of this paper was to provide a clear definition of one important 
class of models – representational models – and to compare three important approaches of testing 
these. We have shown that PCM, RSA and encoding approaches are all closely related, testing 
probabilistic hypotheses about the distribution of activity profiles. Moreover, all three approaches, 
in their dominant implementations, are sensitive only to distinctions between representations that 
are reflects in the second moment of the activity profiles. Thus, these three methods are properly 
understood as components of a single analytical framework. Each of the three methods has 
particular advantages and disadvantages and preferred areas of application.  

1. PCM provides an analytic expression for the marginal likelihood of the data under the 
model, and therefore constitutes the most powerful test between representational models. Its 
computational efficiency and analytical tractability further makes it the best method to test 
representational models, especially when considering models with increasing numbers of 
free parameters. 

2. RSA provides highly interpretable intermediate statistics and is therefore ideally suited for 
the visualization and exploratory analysis. Furthermore, simple models are often more easily 
tested than with PCM. The normal approximation to the distribution of estimated distances 
enables inference that is nearly as powerful as the likelihood-ratio test provided by PCM. 
Finally, dissimilarity-rank-based RSA, though less sensitive, provides a means of inference 
that does not rely on the assumption of a linear relationship between predicted and measured 
dissimilarities. 

3. Encoding approaches enable the voxel-wise mapping of model features onto the cortical 
surface. They therefore are the natural choice when the spatial distribution of features or the 
voxel-wise comparison of representational models is the main interest.  

 
We hope that general framework presented here will enable researchers to optimally combine these 
approaches to make progress in uncovering the nature of information processing in the brain.  
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Appendix  

Notation 
K:    Number of conditions  
M:    Number of independent partitions of the data (imaging runs)  
P:   Number of measurement channels (voxels, electrodes, neurons) 

N:    Overall number of measurements (Nm×M)  
Q:    Number of features in model  
Nm:    Number of measurements for partition m  
U: KxP   Matrix of true activation patterns  
𝒖𝒊,∙: 1xP   Activation pattern for condition i; ith row of U 

𝒖∙,𝒋: Kx1   Activation profile for measurement channel j; jth column of U  

𝐔(B): KxP   Matrix of estimated activity patterns, based on data from partition m 

𝐔(~B): 1xP  Model prediction for activity patterns, based on data independent of m 
M: KxQ   Matrix of model features for all condition  
W:  QxP  Matrix of voxel weights for each feature 
Y: N x P  Matrix of brain measurements, concatenated activity estimates or time 
    series data 
Z: N x K   Design matrix, indicating how measurements relate to activity patterns  
X:  N x Q   Design matrix containing n regressors of no-interest  
G: KxK  Second moment of U  
dj:   jth distance, defined between condition i and k   
J:    Number of distances, normally K(K-1)/2 
D:  KxK   Representational dissimilarity matrix of all pairwise distances  
d:  Jx1   Vector of all pairwise distances  

𝐝: Jx1  Vector of predicted distances  
C:  JxK  Contrast matrix, defining the J pairwise differences between conditions 
𝚺): PxP  Variance-covariance matrix between the P voxels  

𝚺�: KxK  Variance-covariance matrix of the columns of 𝐔(B) 

V: NxN  Variance-covariance matrix of Y 
S:  JxJ   Variance-covariance matrix of all pair-wise distances  
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Tables 
 
 Encoding approach PCM RSA 

Model definition Model-feature matrix M, 
regularization prior 

Predicted second-moments 
matrix (G) 

Representational 
dissimilarity matrix (RDM) 

Prediction target Responses to test 
conditions 

Distribution of 
measurement channels in 
activity-profile space 

Dissimilarities among 
activity patters 

Response parameters One weight for each feature 
and measurement channel 

None; integrated out in the 
likelihood  

None; integrated out when 
calculating dissimilarities 

“Nuisance” parameters for 
fixed models 

Regularization / Ridge 
coefficient (determined by 
noise / signal ratio) 

Scale parameter s  

Noise variance  

Scaling between predicted 
and observed distances (s) 

Training data required always not for fixed models, only if 
additional model 
parameters are to be fitted 

not for fixed models, only if 
additional model 
parameters are to be fitted 

Explicit likelihood for fitting 
additional model 
parameters 

No – need to do nested 
within crossvalidation 

Yes Yes 

Fitting algorithms  - EM 

Gradient descent 

Newton-Raphson 

Linear and non-negative 
regression 

IRLS  

 
Table 1: Comparison of encoding models with regularization, pattern component modelling (PCM 
and representational dissimilarity analysis (RSA).  
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