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Abstract: 150 words 

 

We have empirically assessed the distribution of published effect sizes and estimated power by 

extracting more than 100,000 statistical records from about 10,000 cognitive neuroscience and 

psychology papers published during the past 5 years. The reported median effect size was 

d=0.93 (inter-quartile range: 0.64-1.46) for nominally statistically significant results and 

d=0.24 (0.11-0.42) for non-significant results. Median power to detect small, medium and large 

effects was 0.12, 0.44 and 0.73, reflecting no improvement through the past half-century. 

Power was lowest for cognitive neuroscience journals. 14% of papers reported some 

statistically significant results, although the respective F statistic and degrees of freedom 

proved that these were non-significant; p value errors positively correlated with journal impact 

factors. False report probability is likely to exceed 50% for the whole literature. In light of our 

findings the recently reported low replication success in psychology is realistic and worse 

performance may be expected for cognitive neuroscience. 

 

Key words: replication crisis, power, false report probability, true report probability, effect 

size exaggeration 
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Introduction 

 

Low power and selection biases, questionable research practices and errors favouring 

the publication of statistically significant results have been proposed as major contributing 

factors in the reproducibility crisis that is heavily debated in many scientific fields (Nosek et 

al. 2015a,b; Ioannidis et al. 2014a,b; Ioannidis 2005). Here, we aimed to get an impression 

about the latest publication practices in the closely related cognitive neuroscience and (mostly 

experimental) psychology literature. To this end we extracted more than 100,000 records of 

degrees of freedoms, t values, F values and p values from papers published between Jan 2011 

to Aug 2014 in 18 journals. Journal impact factors ranged from 2.367 (Acta Psychologica) to 

17.15 (Nature Neuroscience). The data allowed us to assess the distribution of published effect 

sizes; to estimate the power of studies; to estimate the lower limit of false report probability 

and to confirm recent reports about p-value reporting errors. The text-mining approach we used 

enabled us to conduct a larger power survey than classical studies. 

Low power is usually only associated with failing to detect existing (true) effects and 

therefore with wasting research funding on studies which a priori have low chance to achieve 

their objective. However, low power also has two other serious negative consequences: it 

results in the exaggeration of measured effect sizes and it also boosts false report probability, 

the probability that statistically significant findings are false (Ioannidis 2005; Button et al. 

2013; Pollard and Richardson, 1987; Berger and Sellke, 1987). 

First, if we use Null Hypothesis Significance Testing (NHST) then published effect 

sizes are likely to be, on average, substantially exaggerated when most published studies in a 

given scientific field with low power (Button et al. 2013; Sedlmeier and Gigerenzer, 1989; 

Rossi 1990; Cohen 1962; Hallahan and Rosenthal, 1996; Note that NHST is amalgamation of 

Fisher’s significance testing method and the Nyman-Pearson theory. However, the concept of 

power is only interpreted in the Nyman-Pearson framework. For extended discussion see 

Gigerenzer and Marewski, 2015; Gigerenzer et al. 1990) because even if we assume that there 

is a fix true effect size, actual effect sizes measured in studies will have some variability due 

to sampling error and measurement noise. Underpowered studies will be able to classify as 

statistically significant only the occasional large deviations from real effect sizes; conversely, 

most measured effects will remain under the statistical significance threshold even if they 

reflect true relationships (Schmidt, 1992; Sterling et al. 1995; Ioannidis, 2008; see 

Supplementary Figure 1A). Because many “negative” findings are not published, even meta-

analyses may exaggerate effects. Effect size inflation is greater, when studies are even more 

underpowered.  

Second, regarding the NHST framework the long run False Report Probability (FRP) 

can be defined the probability that the null hypothesis is true when we get a statistically 

significant finding. The long run True Report Probability (TRP) can be defined as the 

probability that the alternative hypothesis is true when we get a statistically significant finding. 

Computationally, FRP is the number of statistically significant false positive findings divided 

by the total number of statistically significant findings. TRP is the number of statistically 

significant truly positive findings divided by the total number of statistically significant 

findings. FRP and TRP can be computed by applying Bayes theorem (see Supplementary 

Material Section 4 for details and note that the concepts of FRP and TRP do not exist in the 

NHST framework.). In a simple case FRP can be computed as  
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FRP =  
Oα

Oα +  Power
 

where O stands for H0:H1 odds and α denotes the statistical significance level which is 

nearly always α=0.05. So, for given values of O and α FRP is higher if power is low. As in 

practice O is very difficult to ascertain, high power provides the most straightforward 

‘protection’ against excessive FRP (Ioannidis 2005; Button et al. 2013; Pollard and Richardson, 

1987). 

Because published effect sizes are likely to be inflated, it is most informative to 

determine the power of studies to detect pre-defined effect sizes. Hence, first we computed 

power from the observed degrees of freedom using supporting information from manually 

extracted records to detect effect sizes traditionally considered small (d=0.2), medium (d=0.5) 

and large (d=0.8) (Sedlmeier and Gigerenzer, 1989; Rossi 1990; Cohen 1962). Second, we also 

computed power to detect the reported effect sizes which were published across studies. Given 

that many of these effect sizes are likely to be inflated compared to the true ones (as explained 

above), this enabled us to estimate the lower limit of FRP (Ioannidis, 2005; Berger and Sellke, 

1987). Further, we also examined p value reporting errors in the cognitive neuroscience 

literature as recent studies found that 12.5% to 20% of psychology papers have major p value 

reporting errors which affect judgments about statistical significance (Bakker and Wicherts, 

2011; Nuijten et al. 2015; Veldkamp et al. 2014). 

 

Results and Discussion 

 

The highly satisfactory performance of the extraction algorithm is reflected by the 

similarity between the distributions of automatically and manually extracted degrees of 

freedoms (which reflect the sample sizes of the studies, e.g. for an independent sample t-test, 

the degrees of freedom are the sample size minus 2) (Fig. 1A). During the validation process 

we assessed the proportion of one-sample, matched and two-sample t-tests which enabled us 

to use a mixture model to compute published effect sizes and power. The distribution of the 

computed effect sizes showed a near perfect match to the effect size distribution determined 

from records where D values were available which suggests that the mixture model we used is 

likely to well approximate the proportion of one-sample and two-sample t-tests (Fig. 1B). The 

computed D value distribution was slightly shifted to the right relative to the reported D value 

distribution, but both the medians (computed = 0.653; reported = 0.660) and means (computed 

= 0.938; reported=0.889) were very similar.  

Fig. 1C. shows the bivariate distribution of D values and degrees of freedoms and 

represents the mean and median effect sizes for statistically significant and non-significant 

records and for the whole data-set. The large discrepancy between statistically significant and 

non-significant results is clear (medians, 25th and 75th quantiles for statistically significant and 

non-significant D values, respectively: d=0.932 [0.637-1.458]; d=0.237 [0.106-0.421]). Fig. 

1D. shows the t value distribution associated with effect sizes. It is evident that a very large 

proportion of non-significant results are not reported at all (compare the shape of the 

distribution to the expected shapes shown in Supplementary Figure 1B and also see 

Supplementary Figure 2B for the distribution of p values). 
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For a certain effect size power is determined by sample size which determines degrees 

of freedom. The median of degrees of freedom was 20 for statistically significant and 19 for 

statistically non-significant results (mode=15 for both). Subfields showed large differences in 

degrees of freedom with most records having much lower degrees of freedom in cognitive 

neuroscience than in psychology and medicine (Fig 1E. 25th and 75th centiles for all records 

for cognitive neuroscience journals: df=10-28; psychology: df=17-60; medical journals: df=15-

54). Reported effect sizes also differed markedly by subfields (25th and 75th centiles for all 

records for cognitive neuroscience journals: d=0.34-1.22; psychology: d=0.29-0.96; medical 

journals: d=0.23-0.91). The larger reported effect sizes in cognitive neuroscience may well be 

the consequence of effect size inflation due to having less degrees of freedom as the following 

power analyses suggest. 

 

@ FIGURE 1 about here 

 

Median degrees of freedom and median effect sizes for each journal are depicted in Fig 

2A. The blue crosses on the left show values for non-significant records. The red (cognitive 

neuroscience), green (psychology) and orange (medical) crosses show effect sizes for 

statistically significant records. Taking into account the reported degrees of freedom we 

computed power (at α=0.05) for effect sizes which are traditionally considered low (d=0.2), 

medium (d=0.5) and high (d=0.8) (Rossi, 1990; Sedlmeier and Gigerenzer, 1989; Cohen, 

1962).  

 

@ FIGURE 2 about here 

 

The cumulative probability of records reaching a certain level of power is shown in Fig. 

2B. Median and mean power are shown in Table 1. It is apparent that cognitive neuroscience 

studies had the lowest level of power. For example, to detect a small effect (d=0.2), 90% of 

cognitive neuroscience records had power < 0.234 which is much worse chance to detect a true 

effect than relying on throwing up a coin (Sedlmeier and Gigerenzer, 1989). Importantly, the 

somehow higher power in the journals we classified as more medically oriented was driven by 

the Journal of Psychiatry Research (JPR in Fig. 2A; median power to detect small, medium 

and large effects: 0.23, 0.74, 0.86) which includes more behavioural studies than the other two 

journals we classified as ‘medical’. These other two journals, more focused on neuroimaging, 

still performed better than cognitive neuroscience journals and at about the same level as 

psychology journals (median power to detect small, medium and large effects: 0.14, 0.53, 

0.78). 

 

@TABLE 1 about here 

 

A comparison to prominent older surveys of power estimates 25 and >50 years ago 

showed that median power in psychology journals have increased to detect medium sized 

effects but remained about the same for small and large effects (see Table 1; Rossi, 1990; 

Sedlmeier and Gigerenzer, 1989; Cohen, 1962). Power for cognitive neuroscience and for all 

subfields together was lower than median and mean power reported in 1962, more than half a 

century ago9. Journal impact factors negatively correlated with median power (correlation for 
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small, medium and large effect sizes, respectively with 95% accelerated and bias corrected 

bootstrap confidence intervals [105 permutations]: r=-0.42 [-0.63; -0.09]; -0.46 [-0.71; -0.09];  

-0.45 [-0.77; -0.02]) due to the fact that cognitive neuroscience journals had the highest impact 

factors in our sample, but the worst power estimates. 

FRP depends on power, the odds of true H0 to H1 data and on reporting bias (Ioannidis, 

2005; Berger and Sellke, 1987). The continuous lines in Fig. 3 estimate lower limits for FRP, 

using the probably highly inflated effect sizes computed from published t values to calculate 

power, for various H0:H1 odds and bias values and for α = 0.05. In the best but unrealistic case 

of having H0:H1 odds=1:1=1 and zero bias, FRP is 13.5%. A 10% bias pushes this to 23%. 

Staying in the still optimistic zone when every second to every 6th of hypotheses work out (1 

≤ H0:H1 odds ≤ 5) and with relatively modest 10-30% experimenter bias, FRP is 23-71% 

(median = 51%). That is, between one to three quarters of statistically significant results will 

be false positives. If we now move into the domain of more exploratory research where even 

more experimental ideas are likely to be false (5 < H0:H1 odds < 20; bias = 10-30%) then FRP 

grows to at least 60-91% (median = 77%). 

When comparing reported to computed p values from F tests, we found that in 2.3%  

(n=1546 of 68,762) of all reported  results with original p value reports  from 14% of papers 

(879 papers), the reported p values were statistically significant, but when we computed the p 

values given the provided degrees of freedom and F statistic, these were actually non-

significant (e.g. a study gave 2 and 45 as nominator and denominator degrees of freedom for 

an F-test statistic of 3.13 and reported the p-value as p≤0.05, while with these values, the p-

value is p=0.0534). This finding is very similar to previous such estimates (Bakker and 

Wicherts, 2011; Nuijten et al. 2015; Veldkamp et al. 2014). In 10% of the above erroneous 

reports the p value error was larger than 0.01 and in about 20% of cases it was larger than 0.006 

(see Supplementary Figure 2). In 15% of papers with reporting errors affecting nominal 

significance more than 25% of all p value records were erroneous so that they were significant 

rather than non-significant. Conversely, in 0.7% (n=487) of all reported results from 323 

papers, the computed p values were significant but reported p values were non-significant. All 

journals and all three science subfields were equally affected by reporting errors and both the 

proportion of articles with more favorable p value records (r=0.635 [95% bootstrap confidence 

interval: 0.17-0.87]) and the proportion of more favourable p value records (r=0.572 [95% 

bootstrap confidence interval: 0.10-0.93]) positively correlated with journal impact factors (see 

further details and results in Supplementary Material, Section 5). 

@ FIGURE 3 about here 

 

General discussion 

 

The probability of research hypotheses depends on H0:H1 odds, experimenter bias and 

power (Pollard and Richardson, 1987; Berger and Sellke, 1987; Ioannidis, 2005). H0:H1 odds 

are inherent to each research field, and some biases are more recalcitrant and difficult to control 

than others, while power can in principle be easily increased by increasing sample size. 

However, contrary to its importance for the economic spending of research funding, the 

accurate estimation of effect sizes and minimizing FRP our data suggest that power in cognitive 

neuroscience and psychology papers is stuck at an unacceptably low level. Overall power has 

not improved during the past half century (Cohen 1962; Sedlmeier and Gigerenzer, 1989; 
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Rossi, 1990). Results are also similar to other fields, such as behavioural ecology where power 

to detect small and medium effects was 0.13-0.16 and 0.4-0.47, respectively (Jennions and 

Moller, 2003). 

We actually found that cognitive neuroscience journals had much lower power levels 

than more psychologically and medically oriented journals. This confirms previous similar 

inference asserting that FRP is likely to be high in the neuroimaging literature (Button et al. 

2013; Yarkoni 2009). This phenomenon can appear for a number of reasons. First, 

neuroimaging studies and other studies using complex and highly sophisticated measurement 

tools in general tend to require more expensive instrumentation than behavioural studies and 

both data acquisition and analysis may need more time investment and resources per 

participant. This keeps participant numbers low. A related issue is that science funders may 

have reluctance to fund properly powered but expensive studies. Second, data analysis is highly 

technical and it can be very flexible, and many analytical choices have to be made on how 

exactly to analyse the results. This allows for running a very high number of undocumented 

and sometimes poorly understood and difficult to replicate idiosyncratic analyses influenced 

by a large number of arbitrary ad hoc decisions which, in their entirety, may be able to generate 

statistically significant false positive results with high frequency (Carp 2012; Vul et al. 2009; 

Kriegeskorte, 2009; Uttal 2012), especially when participant numbers are low. It is also 

important to consider that complicated instrumentation and (black box) analysis software is 

now more available but training may not have caught up with this wider availability. Third, in 

relation to more medical journals the stakes at risk are probably lower in cognitive neuroscience 

(no patients will die, at least not immediately) which may also allow for more biased 

publications. Nevertheless, generalizations need to be cautious, since there can be large 

variability in the extent of these potential biases within a given subfield. Some teams and 

subfields may have superb, error-proof research practices, while others may have more 

frequent problems. The power failure of the cognitive neuroscience literature is even more 

notable as neuroimaging (‘brain based') data is often perceived as 'hard' evidence lending 

special authority to claims even when they are clearly spurious (Weisberg, 2008).  

The reporting of p values as significant when they are not (even when juxtaposed 

against the other statistics form the same analysis) are probably only a modest contributor in 

the greater drive to generate and report statistically significant results. Most of the significance 

chasing would not be possible to detect through such inconsistencies. The high prevalence of 

reported significant results (amounting to three quarters of the reported p values and related 

statistics) it unrealistically high and consistent with strong selective reporting biases. This has 

been demonstrated also in distributions of p values reported in abstracts and full texts of 

biomedical papers (Chavalarias, et al. 2016). The positive correlation between p value reporting 

errors and journal impact factors suggests that such errors are more prevalent in 'high impact' 

journals and these journals also had less power in the studies that they reported.  

Some limitations need to be mentioned for our study. First, given the large scale 

automation, we cannot fully verify whether the extracted data reflect primary, secondary or 

even trivial analyses in each paper. In the absence of pre-registered protocols, however, this is 

extremely difficult to judge even when full papers are examined. Evaluation of biomedical 

papers suggests that many reported p-values, even in the abstracts, are not pertinent to primary 

outcomes (Ioannidis 2014). Second, some types of errors, such as non-differential 

misclassification, may lead to deflated effect sizes. However, in the big picture, with very small 
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power, inflation of the statistically significant effects, is likely to be more prominent than errors 

reducing the magnitude of the effect size.  Third, given the large scale automated extraction, 

we did not record information about characteristics of the published studies, e.g. study design. 

It is likely that studies of different designs (e.g. experimental versus observational studies) may 

have different distribution of effect sizes, degrees of freedom, and power even within the same 

sub-discipline.  

In all, the combination of low power, selective reporting and other biases and errors 

that we have documented in this large sample of papers in cognitive neuroscience and 

psychology suggest that high FRP are to be expected in these fields. The low reproducibility 

rate seen for psychology experimental studies in the recent Open Science Collaboration (Nosek 

et al. 2015a) is congruent with the picture that emerges from our data. Our data also suggest 

that cognitive neuroscience may have even higher FRP rates, and this hypothesis is worth 

evaluating with focused reproducibility checks of published studies. Regardless, efforts to 

increase sample size, and reduce publication and other biases and errors are likely to be 

beneficial for the credibility of this important literature.     

 

Materials and Methods 

 

Data extraction and validation 

 

We extracted statistical information from cognitive neuroscience and psychology 

papers published as pdf files. We sampled a range of 18 journals frequently cited in cognitive 

neuroscience and psychology. Our aim was to collect data on the latest publication practices. 

To this end, we analysed four years’ regular issues of all journals published between Jan 2011 

to Aug 2014.  

We categorized 10 journals as focused more on (cognitive) neuroscience (Nature 

Neuroscience, Neuron, Brain, The Journal of Neuroscience, Cerebral Cortex, NeuroImage, 

Cortex, Biological Psychology, Neuropsychologia, Neuroscience) and 5 journals focused more 

on psychology (Psychological Science, Cognitive Science, Cognition, Acta Psychologica, 

Journal of Experimental Child Psychology). We also searched three more medically oriented 

journals which are nevertheless often cited in cognitive neuroscience papers so as to increase 

the representativeness of our sample (Biological Psychiatry, Journal of Psychiatric Research, 

Neurobiology of Ageing). Journal impact factors ranged from 2.367 (Acta Psychologica) to 

17.15 (Nature Neuroscience). 5-year impact factors were considered as reported in 2014 (see 

Supplementary Table 1). 

We extracted statistical information about t tests and F tests (t values, F values, degrees 

of freedoms, p values and effect sizes). A computer algorithm searched through each paper for 

frequently occurring word and symbol combinations for reporting degrees of freedoms and 

effect sizes provided as Cohen’s D. When there were less than 20 empirical papers in a journal 

issue all empirical research reports with any t and F statistics reports were analysed. When 

there were more than 20 papers in an issue, a random sample of 20 papers were analysed merely 

because this was the upper limit of papers accessible in one query. This procedure sampled 

most papers in most issues and journals. All algorithms and computations were coded in Matlab 

© 2015b. 
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The whole database was checked for errors in reporting and potential double entries so 

that only unique records were kept for analysis. Further, during a validation procedure we 

randomly selected 100 papers with t value, df and effect size reports and 100 papers with F 

value and df reports. We manually checked through all records in these papers and compared 

them to the automatically compiled database. This was done to see the accuracy of the computer 

algorithm and to gather information on the data. Validation results showed that the automatic 

extraction mechanism performed very well. The papers selected for validation included 1478 

records of data, the algorithm missed only 76 records (5.14%), usually due to atypical 

punctuation or line breaks. We found that the overwhelming majority of records related to two 

sample t-tests reported close to equal group numbers (median ratio of group numbers = 1). The 

ratio of the participant numbers in the larger group to the participant numbers in the smaller 

group was smaller than 1.15 in 77% of records. We also established that with a df value of 10 

or less about 94% of tests were one sample or matched t-tests whereas about 72% of records 

with higher df values were one-sample t-tests. The F test validation procedure for 100 randomly 

selected papers showed that the algorithm missed only 84 out of 1084 records (92.25% of 

records correctly found). 

 

Computing effect sizes from t tests 

 

t-test data was used for effect size, power and false report probability analysis as it is 

straightforward to estimate effect sizes from published t values. After checks for reporting 

errors 7 records with df>10,000 were excluded from analysis as clear outliers. This left 27,414 

potential records. 26,841 of these records from 3801 papers had both degrees of freedoms and 

t values reported. We used this data for the effect size analysis. 17,207 t-test records (64.1%) 

were statistically significant (p≤0.05) and 9634 (35.9%) t-test records were statistically non-

significant (p>0.05). 2185 t-test records also reported Cohen's D as a measure of effect size 

(1645 records with p≤0.05 [75.3%] and 540 records with p>0.05 [24.7%]). 

As it is not possible to establish the exact participant numbers in groups for our large 

sample size making a few reasonable assumptions is inevitable. First, based on our validation 

data from 1478 records we made the assumption that participant numbers in two-sample t-test 

groups were equal on the average. The number of participants in groups was approximated as 

the upwards rounded value of half the potential total number of participants in the study, i.e.: 

Nsubgroup = roundupper((df+2)/2). This formula even slightly exaggerates participant numbers in 

groups, so it can be considered generous when computing power. Second, regarding matched 

t-tests we assumed that the correlation between repeated measures was 0.5. In such a case the 

effect sizes can be approximated in the same way for both one-sample and matched t-tests. 

These assumptions allowed us to approximate effect sizes associated with all t-tests records in 

a straightforward way (Hunter and Schmidt, 1990; Fritz et al. 2002). Computational details are 

provided in Supplementary Material, Section 2. 

Considering the validation outcomes we assumed that each record with a df of 10 or 

less had 93% chance to be related to a one-sample or matched-sample t-test and other records 

had 72% chance to be related to a one-sample or matched-sample t-test. Hence, we estimated 

the effect sizes for each data record with an equation assuming a mixture of t-tests where the 

probability of mixture depended on the df value: 
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𝐷 = 𝑝𝑟(𝑡1|𝑑𝑓) ∙ 𝐷𝑡1 +  𝑝𝑟(𝑡2|𝑑𝑓) ∙ 𝐷𝑡2 

 

where pr(t1|df) and pr(t2|df) refer to the respective probabilities of one sample and 

matched t-tests (t1) and independent sample t tests (t2) and Dt1 and Dt2 refer to the respective 

effect sizes estimated for these tests. 

 

The power of t-tests was computed from the non-central t distribution assuming the 

above mixture of one-sample, matched and independent sample t-tests (Harrison and Brady, 

2004). Computational details are provided in Supplementary Material, Section 3. 

Published effect sizes are likely to be highly exaggerated. Using these exaggerated 

effect sizes for power calculations will then overestimate power. Hence, if we calculate FRP 

based on power calculated from published effect size reports we are likely to estimate the lower 

limits of FRP. So, we estimated the lower limits for FRP, using the probably highly inflated 

effect sizes (computed from published t values) to calculate power for various H0:H1 odds and 

bias values and with α = 0.05. (The computation of FRP is laid out in detail in Supplementary 

Material, Section 4.) 

In order to get the expected value of FRP for the whole literature we weighed the FRP 

computed for each df and D value combination by the probability of that particular (df,D) 

combination occurring in the research literature and summed the results for all (df,D) 

combinations: 

𝐸[𝐹𝑅𝑃] =  ∑ 𝐹𝑅𝑃(𝑑𝑓𝑖, 𝐷𝑗)  𝑝𝑟(𝑑𝑓𝑖, 𝐷𝑗)

𝑖=𝑛;𝑗=𝑚

 𝑖=1;𝑗=1

 

Checking for p value reporting errors: F tests 

 

F tests were used for examining p value reporting errors as this is more difficult with t-

tests which may report either one and two-tailed p values. We extracted 75,904 records of data. 

73,532 F-test records from 6273 papers were used for examining p value reporting errors. 

51,920 records (70.6%) were statistically significant and 21,612 records (29.4%) were not 

significant. 68,762 records also explicitly reported p values (significant: 51,338 [74.7%]; non-

significant: 17,424 [25.3%). This data allowed us to compare exact computed (from degrees of 

freedoms and F values) and reported p values. 
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TABLES 

 

  Small effect Medium effect Large effect 

Subfields or other Surveys Records/Articles Median Mean Median Mean Median Mean 

Cognitive Neuroscience 7888/1192 0.11 0.14 0.40 0.44 0.70 0.67 

Psychology 16887/2261 0.16 0.23 0.60 0.60 0.81 0.78 

Medical 2066/348 0.15 0.23 0.59 0.57 0.80 0.77 

All subfields 26841/3801 0.11 0.17 0.44 0.49 0.73 0.71 

Cohen (1962) 2088/70 0.17 0.18 0.46 0.48 0.89 0.83 

Sedlmeier & Gigerenzer (1989) 54 articles 0.14 0.21 0.44 0.50 0.90 0.84 

Rossi (1990) 6155/221 0.12 0.17 0.53 0.57 0.89 0.83 

Rossi (1990); means of surveys 25 surveys  0.26   0.64   0.85 

 

Table 1. Median and mean power to detect small, medium and large effects in the 

current study and in three often cited historical power surveys. The bottom row shows 

mean power computed from 25 power surveys. 
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FIGURES 

 

Figure 1. Degrees of freedom (df), effect size (D value) and t value distribution in 

the literature. The histograms are zoomed in for better visibility but all data were used in 

calculations. Colour schemes reflect the probability of observations and are scaled to the 

minimum and maximum values in the images. (A) The distribution of degrees of freedom in 

all records, in records with D values (full records) and in manually validated records. (B) The 

distribution of D values in significant and non-significant (p>0.05) records in the whole data 

set and in the subset of data with D value reports (full records). (C) The bivariate distribution 

of D values with degrees of freedom in the whole data set. The white curve denotes the 

significance threshold for α≤0.05 in terms of D values. The red and magenta curves show the 

mean and median of statistically significant effect sizes only, for various degrees of freedom. 

The yellow curve shows the expected value of effect sizes if the null hypothesis is true. The 

cyan curve shows the mean effect size from non-significant records in the data (the median was 

nearly the same). (D) The bivariate distribution of t values with degrees of freedom in the whole 

data set. The yellow curve overlays the univariate distribution of t values. Note how publishing 

only overwhelmingly significant reports distorts the observed distribution of t values. (E) The 

fraction of studies with at least a certain level of degrees of freedom by science subfield.  
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Figure 2. Power in journals and subfields. (A) Median effect sizes and degrees of 

freedoms in the journals analysed colour coded by science subfields. Values for non-significant 

data are shown on the left of the significance threshold line by horizontal lines (range of 

medians: D=0.15-0.29).Values for statistically significant data are shown on the right of the 

significance threshold line by plus signs (range of medians: 0.57-1.17). (B) The fraction of 

studies with at least a certain level of estimated power by science subfield. Journal 

abbreviations: Neuroscience: Nature Neuroscience (NN), Neuron, Brain (B), The Journal of 

Neuroscience (JN), Cerebral Cortex (Ccrx), NeuroImage (Ng), Cortex (Cx), Biological 

Psychology (BP), Neuropsychologia (NPy), Neuroscience (NSci). Psychology: Psychological 

Science (Psi), Cognitive Science (CS), Cognition (Cogn), Acta Psychologica (Acta), Journal 

of Experimental Child Psychology (JC). Medically oriented journals: Biological Psychiatry 

(BPS), Journal of Psychiatric Research (JPR), Neurobiology of Ageing (Nage). 
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Figure 3. Lower estimates of false report probability (FRP) for various H0:H1 odds 

and Bias values.  
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Supplementary Material 

 

Section 1: Journal information 

 

Supplementary Table 1. shows information about the journals examined. 

 

Journals 5 year I.F. Records Papers Records/Papers 

A. Psychology     

Psychological Science 6.16 2208 387 5.7 

Cognitive Psychology 5.508 493 53 9.3 

Cognition 5.088 2505 316 7.9 

Acta Psychologica 3.016 769 161 4.8 

JECP 3.353 1913 275 7.0 

B. Neuroscience     

Nature Neuroscience 17.15 1212 121 10.0 

Neuron 16.485 834 79 10.6 

Brain 10.846 584 75 7.8 

The Journal of Neuroscience 7.87 5408 621 8.7 

Cerebral Cortex 8.372 1744 252 6.9 

Neuroimage 6.956 971 193 5.0 

Cortex 5.389 1508 198 7.6 

Biological Psychology 4.173 1338 205 6.5 

Neuropsychologia 4.495 2089 354 5.9 

Neuroscience 3.458 1199 163 7.4 

C. Medical     

Biological Psychiatry 10.347 1101 187 5.9 

Journal of Psychiatric Research 4.46 468 94 5.0 

Neurobiology of Aging 5.127 497 67 7.4 

 

Supplementary Table 1. Journal information for the three subfields considered for t tests. 

5-year journal impact factors used in the study; the number of records in journals; the number 

of papers by journals and the average number of records per paper. 

Section 2: Computing effect sizes from t-tests 

 

Effect size calculation for one-sample t-test: 

 

𝐷𝑡1:𝑜𝑛𝑒−𝑠𝑎𝑚𝑝𝑙𝑒 =
𝑡

√𝑁
=

𝑡

√𝑑𝑓 + 1
; (1) 

 

where N stands for the potential total number of participants which is df+1 for one-

sample and matched t-tests. 

 

Because, by definition: 
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𝐷 =  
𝑥 − 𝑥0

𝑠
; (2) 

So: 

𝑡𝑜𝑛𝑒−𝑠𝑎𝑚𝑝𝑙𝑒 =
𝑥 − 𝑥0

𝑠
√𝑁 = 𝐷√𝑁; (3) 

 

 

Effect size calculation for two sample t-test: 

 

𝐷𝑡2:𝑡𝑤𝑜−𝑠𝑎𝑚𝑝𝑙𝑒 =
2𝑡

√𝑁
=

2𝑡

√𝑑𝑓 + 2
; (4) 

where N stands for the potential total number of participants which is df+2 for 

independent sample t-tests. 

 

Because 

𝑡𝑡𝑤𝑜−𝑠𝑎𝑚𝑝𝑙𝑒 =  
𝑥2 − 𝑥1

𝑠12√
1

𝑛1
+

1
𝑛2

; (5) 

Where: 

𝑠12 =  √
(𝑛1 − 1)𝑠1

2 +  (𝑛2  − 1)𝑠2
2

𝑛1 +  𝑛2 − 2
; (6) 

And by definition: 

𝐷 =
𝑥2 − 𝑥1

𝑠12
; (7) 

 

Assuming that n1 = n2 = nc and letting N = n1 + n2 (ie. N = total number of participants) 

we get: 

𝑡𝑡𝑤𝑜−𝑠𝑎𝑚𝑝𝑙𝑒 =
𝐷

√
1
𝑛1

+
1

𝑛2

=
𝐷

√
2

𝑛𝑐

=
𝐷

√
2
𝑁
2

=
𝐷

√4
𝑁

=
𝐷

2

√𝑁

= 𝐷 
√𝑁

2
; (8) 

So: 

𝐷𝑡2:𝑡𝑤𝑜−𝑠𝑎𝑚𝑝𝑙𝑒 =
2𝑡

√𝑁
=

2𝑡

√𝑑𝑓 + 2
; (9) 

 

 For matched-sample t-tests: 

 

𝐷𝑡1:𝑚𝑎𝑡𝑐ℎ𝑒𝑑−𝑠𝑎𝑚𝑝𝑙𝑒 =
𝑡√2 ∙ (1 − 𝑟)

√𝑁
=

𝑡

√𝑑𝑓 + 1
; 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 𝑟 = 0.5 ; (10) 
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Based on our mixture model of one-sample and two-sample t-tests we can expect a t value 

distribution as depicted in Supplementary Figure 1A-B. The figure illustrates the 

mechanism of effect size exaggeration and the importance of H0:H1 odds. 

 

 

Supplementary Figure 1. t value distributions when all negative and positive results are 

published. (A) Illustration of effect size exaggeration due to lack of power (df=22). ±t(α) stand 

for the critical t values with α=0.05. The figure depicts the probability density of t values under 

a mixture model (Eq. 11) assuming a 70% proportion of one-sample t-tests. The blue line 

denotes the probability density of t values if the null hypothesis is true. The red line denotes 

the probability density of t values if the alternative hypothesis is true with an effect size of 

D=0.75. The black dashed line denotes the probability density of t values if in half the data the 

null hypothesis is true and in the other half the alternative hypothesis is true (ie. The H0:H1 

odds are 1). The crosses mark the expected value of absolute t values (which depend on the 

actual effect size measured), note that these are dramatically different in significant and non-

significant data irrespective of whether the null hypothesis is true or not. Blue crosses: the 

expected t value in data where the null hypothesis is true and the test outcome is non-significant 

(left cross: true negative) and when the test outcome is significant (right cross: false positive).  

Red crosses: the expected t value in data where the alternative hypothesis is true and the test 

outcome is non-significant (left cross: false negative) and when the test outcome is significant 

(right cross: true positive). Black crosses: the expected t values in non-significant (left cross) 

and significant (right cross) data. (B) Expected mixture model t value distribution for df = 30 

for various H0:H1 odds. 

Section 3: Power calculations 

The power of t-tests can be computed from the non-central t distribution assuming an mixture 

of t tests (see main text for the mixture model we used). 

For simpler writing we can first define the cdf for the mixture distribution where the 

probability of a t value depends on the proportion of one and two-sample t-tests in the data: 

MixtureCdf(t,df,pr(t1),D) = pr(t1)*nctcdf(t,df,ϴt1) + [1-pr(t1)]*nctcdf(t,df,ϴt2) ; (11) 

Where 
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nctcdf stands for the cumulative non-central t probability density function, 

t stands for a t value, 

df stands for the given degrees of freedom, 

pr(t1) stands for the probability of a one-sample or matched t-test. 

ϴt1 and ϴt2 are non-centrality parameters dependent on Cohen’s D (Harrison and Brady, 

2004): 

ϴt1 = D * sqrt(nt1) ; (12) 

Where nt1 = total number of participants; i.e. nt1 = df+1. 

ϴt2 = D * ½ * sqrt(nt2) ; (13)  

Where nt2 = the number of participants in one experimental group; i.e. nt2 = 

roundupper((df+2)/2). 

Given the above notation, power for a given effect size (D), df and critical t value (t(α)) can 

be computed as (Harrison and Brady, 2004): 

Power(t(α), df, pr(t1), D) = MixtureCdf(t(α),df,pr(t1), D) + (1 - MixtureCdf(t(α),df,pr(t1), D)) 

; (14) 

 

Section 4: False and True Report probability 

If we use Null Hypothesis Significance Testing (NHST) then the long run False Report 

Probability (FRP) is the long run probability that the null hypothesis (H0) is true when we get 

a statistically significant finding. The long run True Report Probability (TRP) is the long run 

probability that the alternative hypothesis (H1) is true when we get a statistically significant 

finding. Computationally, FRP is the number of statistically significant false positive findings 

divided by the total number of statistically significant findings. TRP is the number of 

statistically significant truly positive findings divided by the total number of statistically 

significant findings. 

FRP and TRP can be computed by Bayes' theorem. If we take 'sig' to stand for 'statistically 

significant test outcome' then the total probability of finding a statistically significant result is: 

pr(sig) =  pr(sig|H0) ∗ pr(H0) +  pr(sig|H1) ∗ pr(H1)  ; (𝐸𝑞. 15) 

Hence, FRP and TRP can be written as: 

FRP =  
pr(sig|H0) ∗ pr(H0)

pr(sig)
  ; (𝐸𝑞. 16) 

TRP =  
pr(sig|H1) ∗ pr(H1)

pr(sig)
  ; (𝐸𝑞. 17) 
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Considering a long run of NHST studies, the long run probability of having a significant test 

outcome when H0 is true is α and the long run probability of having a significant test outcome 

when H1 is true is Power = 1 - β. That is, 𝛼 =  pr(sig|H0) and Power =  p(sig|H1). Hence, 

Eq.16. and Eq.17. can be re-written as: 

FRP =  
α ∗ pr(H0)

pr(sig)
  ; (𝐸𝑞. 18) 

TRP =  
Power ∗ pr(H1)

pr(sig)
  ; (𝐸𝑞. 19) 

Eq.16. and Eq.17. can also be expressed in terms of odds ratios of true H0 and true H1 

situations. For example, we can denote the odds of true H0 situations as ‘O’ and write: 

O =  
𝑝𝑟(𝐻0)

𝑝𝑟(𝐻1)
 ; (𝐸𝑞. 20) 

We can express pr(H0) using the above as: 

pr(𝐻0) =  𝑂 ∗ pr(H1)  ; (𝐸𝑞. 21) 

then Eq.16. Can be rewritten as: 

FRP =  
pr(sig|H0) ∗ O ∗  pr(H1)

pr(sig|H0) ∗ O ∗  p(H1) +  pr(sig|H1) ∗ pr(H1)
  ; (𝐸𝑞. 17) 

This can be simplified by pr(H1): 

FRP =  
pr(sig|H0) ∗ 𝑂𝑑𝑑𝑠𝐻0

pr(sig|H0) ∗ 𝑂𝑑𝑑𝑠𝐻0 +  pr(sig|H1)
  ; (𝐸𝑞. 18) 

Using α and Power = 1 - β we can write: 

FRP =  
Oα

Oα +  Power
  ; (𝐸𝑞. 19) 

TRP =  
Power

Oα +  Power
  ; (𝐸𝑞. 20) 

FRP + TRP = 1; e.g.: 

Oα

Oα +  Power
+ 

𝑃𝑜𝑤𝑒𝑟

Oα + 𝑃𝑜𝑤𝑒𝑟
=  

Oα + 𝑃𝑜𝑤𝑒𝑟

Oα + 𝑃𝑜𝑤𝑒𝑟
= 1  (𝐸𝑞. 21) 

Consequently: 

FRP = 1 −  TRP  (𝐸𝑞. 22) 

and 

TRP = 1 −  FRP  (𝐸𝑞. 23) 
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Equivalently to the above, we can also express the odds of true H1 situations as the ratio of 

pr(H1) and pr(H0) and denote it with ‘R’ as in Ioannidis (2005): 

𝑅 =  
𝑝𝑟(𝐻1)

𝑝𝑟(𝐻0)
 ; (𝐸𝑞. 24) 

pr(𝐻1) =  𝑅 ∗ pr(𝐻0)  ; (𝐸𝑞. 25) 

Substituting Eq.25. into Eq.16.: 

TRP =  
pr(sig|H1) ∗ 𝑅 ∗ pr(H0)

pr(sig|H0) ∗ p(H0) +  pr(sig|H1) ∗ R ∗ pr(H0)
  ; (𝐸𝑞. 26) 

Simplifying: 

TRP =  
pr(sig|H1) ∗ 𝑅

pr(sig|H0) +  R ∗ 𝑂𝑑𝑑𝑠𝐻1
  ; (𝐸𝑞. 27) 

Using α and Power = 1 - β we can write: 

TRP =  
R ∗ Power

α +  R ∗ Power
  ; (𝐸𝑞. 28) 

FRP =  
α

α +  R ∗  Power
  ; (𝐸𝑞. 29) 

Eq.28. is equivalent to the one used by Ioannidis (2005) with a slightly different notation. 

He defined PPV = TRP; Power = 1-β and equivalently to Eq. 28 he wrote: 

PPV =  
(1 − β) ∗ R

α + (1 −  β) ∗ 𝑅
=  

(1 − β) ∗ R

α + R −  β𝑅
  ; (𝐸𝑞. 29) 

Ioannidis (2005) also defined Bias, signified by ‘u’. On the one hand, bias results in 

categorizing fraction u (u*(1 - α)) of otherwise true negative results (in case there is no bias) 

as positive results. On the other hand, bias results in categorizing fraction u (uβ = u*(1 - Power)) 

of otherwise (in case there is no bias) missed true positive results as positive results. That is, 

bias alters Eq.28. as: 

TRP =  
Power ∗ 𝑅 + 𝑢 ∗ (1 −  Power) ∗ R

α + u ∗  (1 −  α)  +   Power ∗  R + 𝑢 ∗ (1 −  Power) ∗ R
  ; (𝐸𝑞. 30) 

Using the notation of Ioannidis (2005) this can be rewritten as: 

PPV =  
(1 − β) ∗ R + uβR

α + u(1 −  α) +  (1 −  β) ∗  𝑅 + 𝑢βR

=  
(1 − β) ∗ R + uβR

α + u − αu + R −  β𝑅 + 𝑢βR
  ; (𝐸𝑞. 31) 

Also, notice the relation between O and R: 
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𝑂 =  
𝑝(𝐻0)

𝑝(𝐻1)
=  

1

𝑅
 ;  (𝐸𝑞. 32) 

Hence, 

FRP =  
α ∗

1
𝑅

α ∗
1
𝑅 +  Power

 =  

α
𝑅

α + Power ∗ 𝑅
𝑅

=  
α

α + Power ∗ 𝑅
; (𝐸𝑞. 33) 

 

Similarly: 

𝑅 =  
𝑝(𝐻1)

𝑝(𝐻0)
=  

1

𝑂
 ;  (𝐸𝑞. 34) 

Hence, 

TRP =  
Power ∗  

1
𝑂

α +  Power ∗  
1
O

 =  

𝑃𝑜𝑤𝑒𝑟
O

α ∗ O + 𝑃𝑜𝑤𝑒𝑟
𝑂

=  
𝑃𝑜𝑤𝑒𝑟

α ∗ O + 𝑃𝑜𝑤𝑒𝑟
   ; (𝐸𝑞. 35) 

 

Section 5: Supplementary Results; p value reporting errors 

 

A very large number of records relied on graded p value reporting as shown in 

Supplementary Figure 2A. (e.g. reporting p<0.05 instead of p=0.047). There was a definite 

bias towards reporting significant p values (Supplementary Figure 2B.). 

Supplementary Figure 2C shows the distribution of the difference between reported 

and computed p values. First, if computed p values were significant, relatively few records 

reported lower p values than the computed ones and most reported p values were in fact larger 

than the computed ones due to graded reporting (green curve in Supplementary Figure 2B). 

In contrast, when computed p values were non-significant there was more variability between 

reported and computed p values (black dashed curve in Supplementary Figure 2C) into both 

negative and positive directions, mostly in the p±0.01 range. The difference between the 

respective distributions is depicted by the black curve in Supplementary Figure 2D. 

In 1546 cases (3% of all reported significant results) from 879 papers (14% of all 

papers) computed p values were non-significant but researchers reported significant p values 

(continuous red curve in Supplementary Figure 2C). In 10% of such cases the p value error 

was larger than 0.01 and in about 20% it was larger than 0.006 (see circled points in 

Supplementary Figure 2C). In such cases the absolute magnitude of the deviation from the 

real p value was much larger than in the case when both computed and reported p values were 

non-significant (blue curve in Supplementary Figure 2C). The difference between the 

respective distributions is depicted by the red curve in Supplementary Figure 2D.  

In 2.79% of all reported non-significant results (487 cases) from 323 papers computed 

p values were significant but reported p values were non-significant (dotted red curve in 
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Supplementary Figure 2C). Again, there was a higher proportion of p values which were 

highly diminished relative to their real value compared to the distribution of  p value differences 

in the case when both the computed and reported p values were non-significant (dotted blue 

curve in Supplementary Figure 2C and see the dotted red difference curve in Supplementary 

Figure 2D). 

We also assessed the fraction of records with erroneous (‘erroneous’ referring to 

misclassified statistical significance here) p values in all the 879 papers with erroneous p values 

(Supplementary Figure 3A). Profiles did not differ between science subfields which suggests 

that p value reporting errors may be equally typical of many fields. Overall, in about 50% of 

papers less than 10% of all reported records were erroneous but in some papers a very large 

number of records were erroneous (Supplementary Figure 3B). While a few reporting errors 

could be attributed to random errors it is notable that in 15% of the 879 papers with errors more 

than 25% of all p value records were erroneous. 

We found that all journals in our sample were affected by p value inflation both by 

looking at the fraction of records with erroneous p values and the fraction of papers with 

erroneous p values (Supplementary Figure 3C.). Both the proportion of articles with 

erroneous p value records (r=0.635 [95% bootstrap confidence interval: 0.17-0.87]) and the 

proportion of erroneous p value records (r=0.572 [95% bootstrap confidence interval: 0.10-

0.93]) positively correlated with journal impact factors (Supplementary Figure 3D-E). 
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Supplementary Figure 2. P value analysis from F tests. (A) Graded reporting of p 

values. (B) The distribution of computed p values reflects a clear bias to report more significant 

than non-significant results. (C) The difference between reported and computed p values 

(reported minus computed). See explanation in text. (D) The difference between the noted 

numbered difference distributions in Panel B. See explanation in text. The dashed vertical lines 

in Panels C and D denote potential tolerance bands for computational errors. Within such bands 

the differences quickly drop to zero. 

 

 

Supplementary Figure 3. The percent of erroneous records in journals.  (A) The 

fraction of the 879 papers with erroneous effect sizes (y) in which at least a certain fraction of 

records were erroneous (x). (B) The fraction of erroneous records in a paper vs. all the records 

in a paper. Papers with more than 25% erroneous p value records are marked by red. (C) The 

median percentage of records (blue) and papers (red) with erroneous effect sizes in a journal. 

(D) The correlation of the median percentage of erroneous record.s in papers in a given journal 

and journal impact factors. (E) The correlation of the median percentage of papers with 

erroneous records in a given journal and journal impact factors. Both linear and logarithmic 

(log[journal impact factor]) trend lines are shown. 
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