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Abstract

As the EEG inverse problem does not have a unique solution, the sources reconstructed from EEG and
their connectivity properties depend on forward and inverse modeling parameters such as the choice of an
anatomical template and electrical model, prior assumptions on the sources, and further implementational
details. In order to use source connectivity analysis as a reliable research tool, there is a need for stability
across a wider range of standard estimation routines. Using resting state EEG recordings of N=65 partici-
pants acquired within two studies, we present the first comprehensive assessment of the consistency of EEG
source localization and functional/effective connectivity metrics across two anatomical templates (ICBM152
and Colin27), three electrical models (BEM, FEM and spherical harmonics expansions), three inverse meth-
ods (WMNE, eLORETA and LCMV), and three software implementations (Brainstorm, Fieldtrip and our
own toolbox). While localizations were found to be relatively stable, considerable variability of connectivity
metrics was observed between LCMV beamformer solutions on one hand and eLORETA/WMNE distributed
inverse solutions on the other hand, but also across implementations of the same source reconstruction pro-
cedure in different packages. To provide reliable findings in the face of the observed variability, we encourage
verification of the obtained results using more than one source imaging procedure in future studies. Our
results also show that while effective and functional connectivity are similarly consistent across different
source reconstructions, effective connectivity is less reproducible than functional connectivity across par-
ticipants. This finding may indicate that there are different phenotypes of directed brain communication
patterns within resting state networks.
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1. Introduction

Two major methodological challenges in nonin-
vasive neuroimaging concern the determination of
task-specific cortical areas and the determination of
their interactions from functional data.
Functional magnetic resonance imaging (fMRI)

measures changes in blood flow induced by neuronal
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activity. While being able to distinguish brain ac-
tivations even a few millimeters apart, fMRI suffers
from poor temporal resolution with sampling rates
typically lower than 1Hz.

Compared to fMRI, electro- and magnetoen-
cephalography (EEG/MEG) provide much higher
temporal resolution thus making them attractive
techniques for studying interactions between differ-
ent brain structures.

Yet, EEG and MEG suffer from low spatial res-
olution since only superpositions of brain signals
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originating from the entire cortical gray matter can
be recorded. Sensor space analyses in general are
not suitable to infer the involvement of brain struc-
tures in interaction even in such broad terms as
‘frontal-to-occipital’ (Haufe, 2011; Van de Steen
et al., 2016). Any interpretation of EEG/MEG data
in neuroanatomical terms therefore requires a re-
construction of the sources from the recorded data.
This, however, requires a solution of an ‘ill-posed’
inverse problem, for which infinitely many solution
exists. To select a unique solution, prior knowledge
of the source characteristics needs to be employed.
Consequently, there is a host of methods estimating
sources under specific assumptions.
The choice of an inverse method is a factor that

heavily influences the reconstructed brain activity,
as well as subsequent analyses relying on the re-
covered sources. Other important factors are the
specifics of the physical model of electrical current
flow in the head and the choice of an anatomi-
cal template with which to perform the source re-
construction. In practice, researchers typically re-
sort to one of the various publicly available tool-
boxes for source analysis such as Brainstorm (Tadel
et al., 2011), FieldTrip (Oostenveld et al., 2010),
EEGLAB (Delorme and Makeig, 2004) and MNE
(Gramfort et al., 2014). These toolboxes typically
provide ready-made anatomical templates, meth-
ods for electrical forward calculations, and imple-
mentations of inverse solutions. While the meth-
ods portfolios provided by different toolboxes are
in general similar, the different possible combina-
tions of forward and inverse models, as well as the
differences in their implementations and the choice
of their numerous parameters (such as tissue con-
ductivities, segmentation and meshing parameters
for forward models, and regularization and depth
weighting constants for inverse models) may lead
to a substantial variability of possible source loca-
tion and connectivity estimates.
Numerous studies have quantified biases in the lo-

calization of brain sources (e.g., Darvas et al., 2004;
Haufe, 2011; Gramfort et al., 2013), as well as in the
determination of brain connectivity (e.g., Schoffelen
and Gross, 2009; Haufe et al., 2010, 2012a; Ewald
et al., 2013; Rodrigues and Andrade, 2015; Haufe
and Ewald, 2016) for specific methods. The er-
ror of a statistical measure depends however not
only on its estimation bias but also on its vari-
ance. Large variability in combination with the
small sample sizes that are common in neuroimag-
ing studies have been identified as the major cause

of the lack of reproducibility that is generally ob-
served (Button et al., 2013). A recent study by
Colclough et al. (2016) consequently assessed the
consistency of MEG source connectivity metrics
across different datasets, and reported a consider-
able between-participant variability.

When working with EEG/MEG source estimates,
another source of variability to be considered is the
choice of the forward and inverse modeling param-
eters. Intuitively, we would consider results based
on reconstructed sources only meaningful if they are
reasonably consistent across a range of widely ac-
cepted estimation procedures (pipelines) when ap-
plied to the same data. An investigation of this
latter factor would help to assess the reliability of
EEG and MEG based brain connectivity estimation
as a research tool, but has not yet been provided.

With this work, we present the first comprehen-
sive assessment of the consistency of EEG source
location and connectivity analyses across common
forward and inverse models. Our data is based on
reconstructions performed in three different analy-
sis packages using combinations of three different
inverse methods, three different electrical modeling
approaches, and two different template anatomies.
We investigated the sources and communication
patterns of alpha-band (8–13 Hz) oscillations using
resting-state recordings acquired within two differ-
ent studies (N=65). We chose to use alpha oscilla-
tions because: 1) they have high signal-to-noise ra-
tio – thus ameliorating the problem of noisy record-
ings and 2) these oscillations have relatively sta-
ble spatial patterns across subjects corresponding
to sources in occipito-parietal and central areas of
the cortex.

Our main goal was to bring the attention of the
neuroimaging community to the problem of iden-
tifying interacting neuronal sources on the basis
of the multichannel EEG and MEG recordings.
We wanted to illustrate pitfalls in obtaining mea-
sures of connectivity due to different stages of the
data analysis including selection of the toolbox,
forward/inverse models and connectivity estimates.
By making researchers aware of multiple problems
in connectivity analysis, we hope to help them with
the validation of the results and consequently in
establishing reliable findings about the brain func-
tioning.

The paper starts by introducing the data, pre-
processing steps, forward and inverse modeling ap-
proaches, and robust connectivity measures. In the
experimental part we first demonstrate that the

2

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 31, 2016. ; https://doi.org/10.1101/071597doi: bioRxiv preprint 

https://doi.org/10.1101/071597
http://creativecommons.org/licenses/by-nd/4.0/


choice of the reference electrode dramatically influ-
ences EEG sensor-space connectivity maps. Using
pairwise correlations, we quantified the similarity of
inverse solutions and source connectivity matrices
when different source reconstruction pipelines are
applied to the same data. Following Colclough et al.
(2016), we also quantified the within-participant,
between-participant and between-study variability.
We conclude the paper with a discussion of the dif-
ferent sources of variability and their impact on the
reliability of results, strategies to deal with vari-
ability, general validation strategies, and the per-
haps counter-intuitive relationship between robust-
ness and consistency of connectivity measures.

2. Methods

2.1. Definition of alpha-band SNR

Alpha activity between 8 and 13Hz is predom-
inantly observed in occipital EEG channels. Its
peak frequency and range can differ across partic-
ipants. Following Nolte et al. (2008), we define an
individual alpha band for each participant cover-
ing a symmetric 5Hz range (2.5Hz left and right
of the peak) around the participant’s alpha peak
frequency, where the peak is determined using the
spectral power at electrodes O1 and O2. Alpha-
band signal-to-noise ratio (SNR) of an EEG sen-
sor or reconstructed source is defined as the ra-
tio between the spectral power at the alpha peak
and the average spectral power in 2Hz wide side
bands to the left and right of the individual alpha
band. Spectral power is computed using the Welch
method using non-overlapping Hanning windows of
200 samples length.

2.2. Spatio-spectral decomposition (SSD)

We apply spatio-spectral decomposition (SSD,
Nikulin et al., 2011) in order to remove brain activ-
ity without strong alpha peaks. SSD seeks spatial
filters w that maximize the signal power of the pro-
jected data in a frequency band of interest (here,
the alpha band) while simultaneously suppressing
the power in the left and right side (flanking) bands.
We use the same alpha and side bands as in the def-
inition of alpha-band SNR. Alpha band power was
defined as the sum of the squared signal after 2nd
order Butterworth bandpass filtering. The power
in the side bands was computed analogously after
application of an appropriate bandpass filter and
a subsequent notch filter. Apart from these minor

differences, SSD thus directly optimizes the alpha-
band SNR of the projected components as defined
above.

The first SSD spatial filter is given by

w1 = argmax
w

w⊤Csw

w⊤Cnw
, (1)

where Cs ∈ RM×M is the covariance of the sensor
data filtered in the alpha band, and Cn is the co-
variance of the data filtered in the side bands as
outlined above. A complete SSD decomposition
matrix can be computed by solving a generalized
eigenvalue problem (Nikulin et al., 2011).
To identify the number of SSD components, a

heuristic based on the achieved alpha-band SNR of
each component is employed, where only compo-
nents with SNR values larger than 2 are retained
for further analysis.

2.3. EEG source modeling

The generative model of EEG data is given by

x(t) =
∑
ui∈β

Liji(t) + ϵ(t) , (2)

where x(t) ∈ RM is the signal measured at M EEG
electrodes at time t, ji(t) ∈ R3 is the activity of a
single source at a brain location ui, and where the
lead field Li ∈ RM×3 models the propagation of
three orthogonal electrical point sources (dipoles)
originating at ui to the EEG sensors. One can
rewrite the equation in matrix form as

x(t) = Lj(t) + ϵ(t) , (3)

where J(t) ∈ R3N is the activity of N sources
with 3D orientation, and L ∈ RM×3N is a matrix
summarizing the lead fields of N current sources
throughout the brain. Given the geometry and elec-
trical conductivities of the various tissues in the
head, L can be computed; this step is called for-
ward modeling. The reverse step of estimating j(t)
given x(t) and L is called inverse source reconstruc-
tion.

2.3.1. Forward modeling

The lead field L describes the physical process of
neuronal current propagation from the source re-
gions within the brain to the EEG electrodes. It
can be computed based on the known geometry and
electrical conductivities of the tissues in the head.
Ideally, an individual geometric model should be
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created from a structural MRI of the participant’s
own head and digitized electrode positions. How-
ever, the acquisition of individual MRI is not always
possible and generally comes at a high cost. There-
fore, it is common practice in EEG source analy-
sis to use template anatomies such as the Colin27
head (a detailed MR image made of 27 scans of a
single individual head, see Holmes et al., 1998) or
the ICBM152 head (a non-linear average of the MR
images of 152 individual heads, see Mazziotta et al.,
1995; Fonov et al., 2011a).
The predominant electrical model in EEG source

analysis is the boundary element method (BEM,
Mosher et al., 1999). Most BEMs model include
realistically-shaped shells representing the brain,
skull and scalp, where the electrical conductivity
within each shell is assumed to be homogenous.
While the BEM solution relies on numerical opti-
mization, a quasi-analytic solution can be obtained
within the same three-shell geometry using spher-
ical harmonics expansions (SHE) of the electric
lead fields (Nolte and Dassios, 2005). More accu-
rate head models compared to the three-shell ap-
proach can be obtained using finite element based
approaches (Cho et al., 2015; Vorwerk et al., 2014),
however at the expense of higher computational
cost.
An extension of the ICBM152 anatomy down to

the neck is the so-called New York Head (Huang
et al., 2015). A highly-detailed FEM solution in-
volving six different types of tissue (scalp, skull,
CSF, gray matter, white matter and air cavities) is
provided by the authors for a set of 231 standard-
ized electrode positions.

2.3.2. Inverse modeling

To deal with the ambiguity of the solution of
the EEG inverse problem that is caused by mea-
suring brain activity only outside the head, it is
crucial to constrain the solution to be consistent
with prior domain knowledge. Common constraints
include the number of sources (Scherg and von
Cramon, 1986), spatial smoothness (Hämäläinen
and Ilmoniemi, 1994; Pascual-Marqui, 2007), spa-
tial sparsity (Matsuura and Okabe, 1995; Gorodnit-
sky et al., 1995), the combination of sparsity and
smoothness (Vega-Hernández et al., 2008; Haufe
et al., 2008, 2011; Sohrabpour et al., 2016), as well
as constraints on the dynamics of the source time
courses (Van Veen et al., 1997; Gross et al., 2001;
Gramfort et al., 2013; Castaño Candamil et al.,
2015).

In distributed inverse imaging, dipolar sources
are modeled at many locations within the brain
(in our case only in the cortical areas), and the
activity at all those locations is estimated jointly.
Methods that impose ℓ2-norm constraints on the
source distribution are particularly popular, as
they lead to solutions that are linear in the sen-
sor data and therefore efficient to compute. We
here consider the weighted minimum-norm estimate
(WMNE Hämäläinen and Ilmoniemi, 1994), and
eLORETA (Pascual-Marqui, 2007, eLORETA) as
representatives for such solutions.

Another popular class of inverse methods are
beamformers, which estimate brain activity sep-
arately for each source location. For each lo-
cation, a beamformer finds a spatial projection
of the observed signal, such that signals from
that location are preserved, while contributions
from all other signals contributions are maximally
suppressed. The linearly constrained minimum-
variance (LCMV) beamformer (Van Veen et al.,
1997) does that by minimizing the variance of the
filtered signal subject to a unit-gain constraint (that
is, the product of filter and forward matrix at the
desired location is enforced to be the identity ma-
trix).

2.4. Robust connectivity estimation

The choice of the connectivity measure crucially
determines not only the type of interaction that can
be detected, but also whether connectivity can be
reliably detected at all. It is known that various
popular measures of time series interaction are not
suitable for EEG-based brain connectivity analysis,
as the inevitable mixing of brain sources in EEG
sensors and reconstructed sources leads to excess
detections of spurious connectivity based on data
properties unrelated to true interaction (e.g., Schof-
felen and Gross, 2009; Haufe et al., 2012a). To over-
come this problem, robust connectivity measures
have been proposed (e.g., Nolte et al., 2004, 2008;
Haufe et al., 2012b,a; Ewald et al., 2012).

Robustness (w.r.t. source mixing) of a connec-
tivity measure is defined here as the desirable prop-
erty to yield zero (non-significant) results when ap-
plied to linear mixtures of independent signals.

2.4.1. Functional connectivity

Functional connectivity (FC) concerns the esti-
mation of undirected relationships between time se-
ries. Coherency is defined as the normalized version
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complex cross-spectrum (Nunez et al., 1997) and
quantifies the linear relationship between two time
series at a specific frequency. Its phase indicates
the average phase difference between those series,
while its absolute value (termed coherence) quan-
tifies the stability of that phase delay. As such,
coherence is a popular measure of functional con-
nectivity. However, as it does not distinguish be-
tween non-zero and zero (which can be explained
by source mixing even in case of independent brain
sources) phase delays, it is non-robust, and may
yield spurious results in practice. The imaginary
part of coherency (iCOH) on the other hand is a
provenly robust measure of functional connectiv-
ity as it is only non-zero for non-zero phase delays,
which cannot be explained by source mixing (Nolte
et al., 2004).
In this work, we use iCOH to robustly identify

the presence or absence of functional connections.
For those interactions that are present according
to iCOH, we then use absolute coherence (COH)
to quantify the strength of functional connections.
This procedure aims to ensure that the estimated
FC strengths are neither caused by volume conduc-
tion (zero lag) nor biased by the actual value of
the non-zero phase lag. Similar results were how-
ever obtained when using only iCOH for both FC
detection and quantification.
The empirical cross spectrum is calculated here

as in Nolte et al. (2008). First, the data are divided
into K non-overlapping segments of 2 s duration,
corresponding to a frequency resolution of 0.5Hz.
Each segment is multiplied with a Hanning window
before calculating the Fourier transform within the
contiguous set of frequencies in the participant’s in-
dividual alpha range F . Denote the k-th segment
of the i-th (sensor or source) time course by xi,k(t),
and its Fourier transform by Xi,k(f) , f ∈ F . The
cross-spectral matrix is defined as

Si,j(f) =
1

K

K∑
k=1

X∗
i,k(f)Xj,k(f) , (4)

where (·)∗ denotes complex conjugation. Coherency
between time series xi(t) and xj(t) is defined as

Ci,j (f) =
Si,j (f)

(Si,i (f)Sj,j (f))
1
2

. (5)

Coherence and imaginary coherence are defined as

COHi,j(f) = |Ci,j(f)| and (6)

iCOHi,j(f) = ℑ(Ci,j(f)) , (7)

respectively.
Global alpha-band imaginary coherence (analo-

gously: coherence) between two brain ROIs p and
q is calculated by averaging across all pairs of vox-
els (i, j) within these ROIs and over all |F | = 11
frequency bins within the alpha range

iCOHp,q =
1

|F |NpNq

∑
f∈F

Np∑
j=1

Nq∑
i=1

iCOHi,j(f) , (8)

where Np and Nq are the numbers of voxels inside
the ROIs. Each entry of the iCOH matrix (anal-
ogous for COH) is finally divided by its standard
deviation as estimated using the jackknife method
to yield a standard normal distributed score

iCOHp,q ←
iCOHp,q

std (iCOHp,q)
. (9)

Note that COH is symmetric (COHp,q = COHq,p),
while iCOH is anti-symmetric (iCOHp,q =
−iCOHq,p).

2.4.2. Effective connectivity

Effective connectivity concerns the estimation of
directed interactions, in which a channel can either
assume the role of the sender or the role of the re-
ceiver, or both. Granger causality (GC) (Granger,
1969) and its many variants are widely used for that
purpose even though they are known to be non-
robust to source mixing (Nolte et al., 2008; Haufe
et al., 2012a; Haufe and Ewald, 2016). The phase
slope index (PSI, Nolte et al., 2008) is capable of de-
termining band-limited effective connectivity while
being robust by construction. It is therefore well
suited for our investigation. PSI is based on the
observation that for a constant delay between two
signals, the phase of their cross-spectrum is a lin-
ear function of frequency. The sign of the slope of
the phase spectrum therefore determines the lead
signal. Similar to iCOH, PSI only detects non-zero
delays, and is anti-symmetric. The phase-slope in-
dex between time series i and j is defined as

Ψi,j = ℑ

∑
f∈F

C∗
i,j (f)Ci,j (f + δf)

 , (10)

where δf is the frequency resolution. Global PSI
between source-space ROIs p and q is obtained as

Ψp,q =
1

NpNq

Np∑
j=1

Nq∑
i=1

Ψi,j . (11)
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As for iCOH/COH, we here divide PSI by a jack-
knife estimate of its standard deviation.

2.5. Grand-average analysis

Grand-average SNR is obtained by averaging
SNR values across all participants. Correlations be-
tween processing pipelines or participants (see the
Consistency across source reconstruction pipelines
and Consistency across datasets sections) are av-
eraged across participants or pairs of participants.
Participant-wise standard normal distributed FC
and EC scores of all participants are averaged and
multiplied by the square root of the number of par-
ticipants to ensure that the obtained grand-average
scores are also standard normal distributed. De-
note the standardized participant-wise iCOH/COH
or Ψ scores by zi, i ∈ {1, . . . , N}, the grand-average
score is thus given by zGA = N−1/2

∑N
i=1 zi.

3. Experiments

Alpha-band oscillations constitute the strongest
neural signals in the EEG. There are multi-
ple rhythms with spectral peaks around 10Hz
that relate to different cognitive systems includ-
ing the visual system (posterior alpha-rhythm) and
the sensori-motor system (rolandic mu-rhythms).
These oscillations are thought to represent feed-
back loops between the various brain structures
working together to implement cognitive functions
(Klimesch, 1999; Palva and Palva, 2007). Little is
however known about the exact locations of alpha-
band generators and their roles as senders or re-
ceivers of information. As each of these rhythms is
strongest during inactivity of the underlying brain
circuit, the resting state is ideally suited to study
these questions. Nolte et al. (2008) have reported
directed information flow from frontal to occipi-
tal EEG sensors using PSI. In the present set of
experiments, we revisit the questions using both
sensor- and source-space analysis. Furthermore,
we quantify the variability of source-space based
results to demonstrate the uncertainty associated
with anatomical interpretations of EEG source lo-
calization and connectivity analyses.

3.1. Data and preprocessing

For this study, we analyzed resting-state EEG
data (eyes closed condition) acquired from healthy
participants within two different experiments. Eth-
ical approval was obtained for both studies.

Fasor data (FD): Data of NFD = 30 partici-
pants (29 right-handed, one left-handed; 20 males,
9 females; age average 29.2, range 23–49) were
recorded with 128 scalp electrodes (extended 10-
20 system, 1,000 Hz sampling rate, nose reference,
Easycap by Brainproducts GmbH, Munich). The
recording was part of a baseline measurement em-
bedded in an in-car EEG-study on attentional pro-
cesses (Schmidt et al., 2009). Participants sat in
the driver’s seat, while the car was in a parking
position with the engine switched off.

Würzburg data (WD): Data of NWD = 35
participants (28 right-handed, 7 left-handed; 13
males, 22 females; age average 25.4, range 19–35)
were collected from 64 scalp electrodes (extended
10-20 system, 1,000 Hz sampling rate, right mas-
toid reference, Brainvision Acticap, Brainproducts
GmbH, Munich) as part of a brain-computer inter-
face study conducted in a laboratory environment.
Two sessions on separate days were conducted per
participant.

The length of each recording was five minutes.
Data were band-stop filtered between 45 and 55Hz,
band-pass filtered between 2 and 40Hz, and down-
sampled to 100Hz. Since source space connectivity
and localization could be affected by sensor density
and coverage (Hassan et al., 2014; Song et al., 2015),
a subset of M = 49 electrodes common to both
datasets was selected (see Figure 1, upper panel).
Each resulting dataset consisted of an M×T multi-
variate time series, where T = 5 · 60 · 100 = 30, 000.

3.2. Sensor-space analysis

Nolte et al. (2008) reported global directed infor-
mation flow in the alpha-band from more frontal to
more occipital EEG sensors on data acquired us-
ing physically-linked mastoids as the electrical ref-
erence. We employed the identical methodology
on our data to demonstrate that such sensor-space
results greatly depend on the electrical reference,
which is essentially an arbitrary choice. On the Fa-
sor data, we calculated grand-average sensor-space
SNR and the phase-slope index for all pairs of elec-
trodes. We then transformed the data into com-
mon average reference, and repeated the analysis.
Finally, we repeated the analysis for both the Fasor
and Würzburg data after transforming the signals
to a ‘virtual’ linked-mastoids reference by subtract-
ing the average activity from Electrodes TP9 and
TP10 from each channel. As no electrodes were
placed on the left and right mastoids in these stud-
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1

Figure 1: Upper Panel: Positions of the 49 EEG electrodes used in this study. Lower Panel: Regions of interest (ROI)
representing the left and right frontal, parietal, temporal and sensorimotor areas, mapped onto the ICBM152 template anatomy.
ROIs are defined according to the Desikan-Killiany atlas.

ies, TP9 and TP10 were selected as the electrodes
closest to the mastoids.

3.3. Source localization and connectivity estimation

Prior to source reconstruction, the data were
transformed to common average reference. We then
applied SSD to remove data components lacking a
strong alpha peak. The median number of retained
SSD components was 9 for the Fasor data (range
4–22), and 13 for the Würzburg data (range 4–25).
These components were projected back to sensor
space as in Haufe et al. (2014a), using the acti-
vation patterns corresponding to the SSD spatial
filters (Haufe et al., 2014b).
Source reconstruction was conducted using com-

mon forward and inverse models implemented in
different software packages. Specifically, we used
Fieldtrip (Oostenveld et al., 2010), Brainstorm
(Tadel et al., 2011), and our own Matlab-based
‘Berlin toolbox’ (Haufe and Ewald, 2016).
Brainstorm (BS) In Brainstorm, the EEG for-
ward problem was solved in the ICBM152 (BS ver-
sion 2015) template anatomy (Fonov et al., 2011b).
Realistically-shaped surface meshes of the brain,

skull and scalp were extracted from the provided
template MR image using the default number of
1922 vertices per layer. The cortical surface dis-
tributed with Brainstorm was down-sampled to
around 2,000 vertices. The surface was divided
into ten broad regions-of-interest (ROIs) as defined
by the Desikan-Killiany atlas (Desikan et al., 2006,
see Table 1 for details). After excluding vertices
located outside the ten ROIs (mostly voxels close
to subcortical structures), PBS = 1, 815 vertices
were retained for further analysis. The forward
model (lead field) from these source locations to
the 49 EEG channels was calculated using three-
shell BE modeling as implemented in the Open-
MEEG package (Gramfort et al., 2010). The elec-
trical conductivities used for the three compart-
ments were σbrain = 1S/m, σskull = 0.0125S/m
and σskin = 1S/m. Inverse estimation of sources
was carried out using WMNE and LCMV.

Fieldtrip (FT) Source reconstruction in Field-
trip was carried out in the Colin 27 head (Holmes
et al., 1998; Oostenveld et al., 2003). The corti-
cal surface provided by FT for this anatomy was
down-sampled to 2,000 vertices. In order to define
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ROIs on this surface, we first tesselated a Colin 27
based cortical mesh within Brainstorm using the
Desikan-Killiany atlas. This mesh was then co-
registered to the FT template mesh using the min-
imum Euclidean distance approach. Distances be-
tween vertices of the two templates were kept less
than 2mm. The division of the FT template into
ten ROIs left PFT = 1, 841 vertices for further anal-
ysis. Source reconstruction was conducted using
eLORETA, WMNE and LCMV. In order to cir-
cumvent a location bias toward the center of the
brain, LCMV results were normalized by a noise
estimate according to Equation (27) of Van Veen
et al. (1997).
Berlin toolbox (BT) For use with the Berlin
toolbox, a BE forward model of the ICBM152
v2009 anatomy (Fonov et al., 2011b) was con-
structed in analogy to the procedures reported for
BS. To define the source space, we here however
used a cortical surface provided by Freesurfer
(Fischl et al., 1999; Dale et al., 1999). ROIs were
defined in analogy to what is reported for FT
leading to PBT = 1, 796 source voxels. In the same
geometry used for BE modeling, we also computed
a forward model based on spherical harmonics
expansions (SHE) of the electric lead fields (Nolte
and Dassios, 2005). Finally, we also used the
‘New York Head’ representing a highly-detailed
FE forward model of an extended ICBM anatomy.
More details on the BE, FE and SHE modeling
within the Berlin toolbox is provided in Huang
et al. (2015). Sources were reconstructed using
LCMV, WMNE and eLORETA.

The combination of forward and inverse models
available in the various packages defined the follow-
ing 14 different source reconstruction pipelines: BS-
WMNE-BEM, BS-LCMV-BEM, FT-eLORETA-
BEM, FT-WMNE-BEM, FT-LCMV-BEM, BT-
eLORETA-BEM, BT-WMNE-BEM, BT-LCMV-
BEM, BT-eLORETA-SHE, BT-WMNE-SHE, BT-
LCMV-SHE, BT-eLORETA-FEM, BT-WMNE-
FEM, BT-LCMV-FEM. For all pipelines, three-
dimensional dipolar sources were reconstructed un-
der the free-orientation model using the default pa-
rameters (such as regularization constants) of each
package, yielding a 3P × T source times series per
dataset. At source level, we then applied SSD sep-
arately to each voxel’s 3D time course. The first
SSD component was retained as the dominant ori-
entation of that voxel. In order to normalize scales
across source estimation pipelines, each resulting

P × T source time series was divided by its Frobe-
nius norm. On the normalized sources of each par-
ticipant, we calculated the voxel-wise alpha-band
SNR as an index of the localization (LOC), as well
as PSI, iCOH and COH between all pairs of ROIs.

3.4. Grand-average source analysis

To obtain a source-space equivalent of Figure 2,
grand-average source localization maps and ROI-
to-ROI functional and effective connectivity matri-
ces were calculated from the combined data of the
Fasor and Würzburg cohorts. Grand-average con-
nectivity scores were tested for statistical signifi-
cance using a z-test. The resulting p-values of all
simultaneous tests were then FDR corrected (Ben-
jamini and Hochberg, 1995) using a significance
level of α = 0.05. Due to the anti-symmetry prop-
erty of iCOH and PSI, the number of distinct si-
multaneous tests was 10 · (10−1)/2 = 45. Effective
connectivity was measured using PSI, where scores
not passing FDR correction were set to zero. Func-
tional connectivity was measured in terms of abso-
lute coherence (COH), where scores for which the
corresponding imaginary coherence (iCOH) did not
pass FDR correction were set to zero.

3.5. Consistency across source reconstruction
pipelines

We quantified the consistency of source localiza-
tion and connectivity results across the 14 differ-
ent source reconstruction pipelines defined by the
various combinations of head model, inverse solu-
tion, and implementation (software package). To
this end, the source distribution of each partici-
pant was summarized in a ten-dimensional vector
by averaging alpha-band SNR within each ROI.
Participant-level ROI-to-ROI functional connectiv-
ity as measured by absolute coherence was set to
zero if the corresponding standardized imaginary
coherence score attained an absolute value below
two. Effective and functional connectivity matri-
ces were then stacked into 45-dimensional vectors.
Consistency of the results attained by two different
pipelines on the same data was assessed by means of
the linear Pearson correlation between the respec-
tive localization and connectivity vectors. These
correlations were computed for all pairs of pipelines,
and averaged across all participants.

8

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 31, 2016. ; https://doi.org/10.1101/071597doi: bioRxiv preprint 

https://doi.org/10.1101/071597
http://creativecommons.org/licenses/by-nd/4.0/


ROI Brain structures according to Desikan et al. (2006) BS l/r FT l/r BT l/r

frontal caudal middle frontal, frontal pole, lateral orbitofrontal, medial or-
bitofrontal, pars opercularis, pars orbitalis, pars triangularis, rostral
middle frontal, superior frontal

296/293 243/250 287/286

central paracentral, postcentral, precentral 103/105 112/137 107/101
temporal inferior temporal, middle temporal, superior temporal, temporal pole,

transversal temporal, parahippocampal, banks of the superior temporal
sulcus, insula, enthorhinal, fusiform

212/200 210/228 201/198

parietal inferior parietal, precuneus, superior parietal, supramarginal 193/200 218/222 191/196
occipital cuneus, lateral occipital, lingual, pericalcarine 107/106 120/101 112/117

Total 1,815 1,841 1,796

Table 1: Brain structures included in the left and right frontal, central, temporal, parietal and occipital regions-of-interest
(ROI), and numbers of cortical locations per ROI modeled by Brainstorm (BT), Fieldtrip (FT), and the Berlin toolbox (BT).

3.6. Consistency across datasets

To obtain an estimate of between-study consis-
tency for each of the 14 different source recon-
struction pipelines in the spirit of Colclough et al.
(2016), we computed grand-average source localiza-
tion and connectivity vectors separately for the Fa-
sor and Würzburg data. For each pipeline, we then
computed the pairwise Pearson correlation between
Fasor and Würzburg results. Next, we split the
Würzburg data into pairs of datasets correspond-
ing to the first and second resting state sessions of
each participant. For each participant and process-
ing pipeline, we then computed the correlation be-
tween the results attained in the two sessions, and
averaged the obtained correlations across partici-
pants to obtain estimates of inter-session or within-
participant consistency. Finally, we computed cor-
relations between all datasets of distinct partici-
pants separately for the Fasor and Würzburg co-
horts (that is, comparisons of different session of
the same participant in the Würzburg cohort were
included). These correlations were averaged across
all pairs of subjects to yield an estimate of for
each processing pipeline and cohort. As in the con-
sistency analysis described above, participant-level
functional connectivity was thresholded using the
imaginary part of coherency before calculating cor-
relations.

Between-study, within-participant and between-
participant consistencies were also computed on the
sensor-level. To this end, ROI-based localization
and ROI-to-ROI connectivity vectors were replaced
by their 49- and 49 ·(49−1)/2 = 1, 176-dimensional
sensor-space counterparts.

4. Results

4.1. Sensor-space analysis

The results of the sensor-space analyses are
depicted in Figure 2 as 2D scalp maps for SNR
and as head-in-head plots for PSI-based effective
connectivity. Note that SNR values are converted
to a dB scale for visualization. In each head-in-
head plot, each of the small scalp plots shows
the estimated interaction of the corresponding
electrode to the other 18 electrodes (see Nolte
et al., 2008), where red and yellow colors (z ≥ 2)
stand for information outflow and blue and cyan
colors (z ≤ −2) stand for information inflow.

Results obtained for the approximate linked-
mastoid reference are highly similar for Fasor and
Würzburg data, and moreover very accurately re-
produce the results reported for a exact physically-
linked mastoids reference on a third dataset in Nolte
et al. (2008) (Figure 4 therein). However, results
obtained using different references are highly dis-
similar, with nose- and linked-mastoid-referenced
data even indicating reversed front-to-back inter-
action patterns. It can also be observed that the
degree of dissimilarity is higher for effective con-
nectivity than for SNR-based localization of alpha
activity.

4.2. Source localization and connectivity

Figure 3 depicts grand-average localization and
connectivity results obtained for BT-eLORETA-
FEM, BT-WMNE-FEM, BT-LCMV-FEM, while
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Figure 2: Grand-average alpha-band SNR maps calculated for 49 channels (upper panel) and effective connectivity (lower
panel) computed between 19 channels according to the phase-slope index (PSI) for three different choices of the reference
electrodes (nose, common average, linked-mastoids), as well as for two different datasets (FD/WD). SNR was computed per
channel as the ratio of alpha-peak power and the average power in the sidebands. Effective connectivity is visualized as head-
in-head plots, where red and yellow colors (z ≥ 2) stand for information outflow and blue and cyan colors (z ≤ −2) stand for
information inflow. Note the similarity of the two rightmost panels with Figure 4 of Nolte et al. (2008).
The results indicate that, while sensor-space connectivity results are reproducible across datasets when the same reference
electrode is used, they are substantially different for different choices of reference electrodes. They can therefore not be used
to determine the locations of interaction brain sites.

results of all 14 pipelines are provided in the sup-
plement(Figures S1–3). As expected from the lit-
erature (Niedermeyer and Da Silva, 2005), alpha-
band sources predominantly localized in the occip-
ital lobes with significant activity spreading also
to temporal and parietal lobes depending on the
choice of the inverse method (see top panel of Fig-
ure 3). LCMV beamforming produced SNR maps
that are more focally concentrated in the occipi-
tal lobes than maps obtained using eLORETA or
WMNE source imaging. The latter methods pro-
duced more blurry but highly concordant SNR dis-
tributions. The maximal alpha-band SNR achieved
for WMNE and eLORETA is however higher than
for LCMV (14.64 dB and 14.78 dB compared to
11.81 dB for LCMV).

Functional and effective connectivity analysis be-
tween ROIs led to more variable results than source
localization, although similarities between connec-
tivity matrices obtained on WMNE and eLORETA
source estimates can be observed (lower panel of
Figure 3). Connectivity analysis based on LCMV
source estimates suggests left occipital as well as
left and right parietal regions to be the strongest
hubs of functional connectivity, while the same

analysis conducted on eLORETA and WMNE esti-
mates also designates frontal, central and temporal
regions to strongly engage in FC. Left and right
frontal regions are designated as net receivers of in-
formation from all other parts of the brain when
working on LCMV source estimates. The picture is
different when working on eLORETA and WMNE
estimates, where left frontal and left and right tem-
poral regions are determined as global senders of
information.

4.3. Consistency across source reconstruction
pipelines

Figure 4 depicts grand-average correlations
between source localization (LOC) and func-
tional/effective connectivity (FC/EC) results
obtained using different source reconstruction
pipelines on the same data. These pipelines
differ w.r.t. electrical forward models (BEM,
SHE, FEM), inverse models (LCMV, WMNE,
eLORETA) and implementations thereof (in the
BS, FT and BT packages), the latter factor also
determining the template anatomy in which the
source reconstruction is carried out (Colin 27 for
FT, ICBM 152 for BS/BT). Source localization is
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Figure 3: Grand-average source localization (LOC), functional (FC) and effective connectivity (EC) results obtained using finite
element forward modeling and inverse source reconstruction according to linearly-constrained minimum-variance beamforming
(LCMV), the weighted minimum-norm estimate (WMNE) and eLORETA as implemented within the Berlin toolbox. Upper
panel: Voxel-wise relative strength (SNR) of alpha-band sources. Results are mapped onto the smoothed cortical surface of
the ‘New York Head’. Center panel: Source space functional connectivity (FC) between ten ROIs as measured by the absolute
value of coherency under the constraint that the corresponding imaginary part of coherency is significant. White color stands
for insignificant, while red and yellow colors stand for significant FC. Bottom panel: Source space effective connectivity (EC)
between ROIs as measured by the phase-slope index. White color stands for insignificant EC, while red and yellow colors
stand for significant EC from rows to columns, and blue and cyan colors stand for significant EC from columns to rows. FDR
correction at significance level α = 0.05 was applied for all FC and EC tests.
The results indicate that, while sources reconstructed using different inverse methods may localize to similar brain structures,
the brain interactions estimated from the reconstructed sources may differ substantially.
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found to be more consistent than source functional
or effective connectivity estimation regardless of
what source reconstruction parameter is varied.
The average correlation across different combina-
tions of forward models is r = 0.99, while values of
r = 0.75 and r = 0.77 are obtained when varying
inverse method and software package. Functional
and effective connectivity results are similarly
consistent across variations of the software pack-
age/implementation with correlations of r = 0.34
and 0.33. Effective connectivity is more consistent
than functional connectivity across variations of
forward models and inverse methods. The average
correlation observed for EC across different forward
models is r = 0.93 compared to r = 0.69 for FC.
For variations of the inverse method, it is r = 0.35
compared to r = 0.26 for FC.

The discrepancy between eLORETA and WMNE
source estimates on one hand, and LCMV estimates
on the other hand observed in the grand-averages is
also clearly visible in the consistency results. Cor-
relations between eLORETA and WMNE localiza-
tions (marked by green colors in the bottom panel
of Figure 4) exceed correlations between LCMV
and eLORETA (blue colors) as well as LCMV
and WMNE (red colors) localizations on average
by 0.20 points. For FC and EC, correlations be-
tween eLORETA and WMNE based estimates are
on average 0.24 and 0.42 points higher than cor-
relations between LCMV and eLORETA/WMNE.
Note that despite this difference to WMNE and
eLORETA, LCMV based estimates were highly
consistent across implementations. WMNE based
estimates were the least consistent across toolboxes.
This result may be explained by the fact that the
concept of weighted minimum-norm imaging is to
reduce the influence of deep sources in the cost func-
tion, but does not precisely specify the choice of a
particular weight matrix. Different implementation
may therefore choose different weights (see Haufe
et al., 2008, for a comparison) leading to solutions
with different spatial profiles.

4.4. Consistency across datasets

The consistency of source localization, functional
and effective connectivity estimates across studies
and participants, as well as within participants is
depicted in Figure 5. Highest correlations (aver-
aged over 14 source reconstruction pipelines) are
observed between grand-average results of the Fa-
sor and Würzburg cohorts (r = 0.99 for LOC,

r = 0.75 for FC and r = 0.48 for EC). Correla-
tions drop when calculated on the single partici-
pant level within participants (r = 0.77 for LOC,
r = 0.48 for FC and r = 0.30 for EC) or even across
participants (WD: r = 0.61 for LOC, r = 0.39 for
FC and r = 0.15 for EC, FD: r = 0.70 for LOC,
r = 0.46 for FC and r = 0.15 for EC). Source local-
ization results are most consistent between studies,
within participants and between participants, fol-
lowed by functional and effective connectivity esti-
mates. Thus, while effective connectivity is more
consistent across source estimation pipelines than
functional connectivity, the reverse relation is ob-
served regarding the consistency of these measures
across different data.

Sensor-space results were in general similarly
consistent than average source-space results. Sen-
sor maps of alpha-band activity were however less
consistent between studies and participants than
source localizations (r = 0.87 for between-study
and r = 0.49 for between-participant consistency).
Another exception was that sensor-space EC was
more consistent than source-space EC between
studies and within participants (r = 0.76 between-
study and r = 0.48 for within-participant).

5. Discussion

5.1. Sensor-space analysis

Our results obtained in EEG sensor space demon-
strate that sensor data should not be interpreted
in terms of the anatomical locations of interacting
EEG sources even if robust connectivity measures
are used, and motivate the use of source reconstruc-
tion techniques to address brain connectivity ques-
tions.

5.2. Consistency between source reconstruction pa-
rameters

The main purpose of our study was to quantify
the variability of source space results that arises
from the fact that EEG source reconstructions are
ambiguous. To narrow down the space of possi-
ble inverse solutions, we only considered those ap-
proaches that are well established, advocated as
broadly applicable, and widely used. In practice,
the choice of a particular source reconstruction
pipeline from this pool may often just be driven by
personal preference, or be based on practical con-
cerns regarding computational complexity, avail-
ability within a certain software framework, and
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Figure 4: Consistency of source localization (LOC), functional connectivity (FC) and effective connectivity (EC) across source
reconstruction pipelines using different forward models (FM), inverse methods (IM) and analysis toolboxes (TB). Top panel:
correlation between results obtained with different software packages. BT: Berlin Toolbox, FT: FieldTrip, BS: BrainStorm.
Center panel: correlation between results obtained with different electrical forward models. FEM: finite element method,
BEM: boundary element method, SHE: spherical harmonics expansion. Bottom panel: correlation between results obtained
with different inverse methods. WMNE: weighted minimum-norm estimate, LCMV: linearly-constrained minimum-variance
beamformer. Colored bars represent the average correlation between pairs of source reconstruction pipelines. Wide grey bars
indicate averages of all correlation values within each comparison subgroup.
The results indicate substantial variability of source functional and effective connectivity metrics, and to a lesser degree source
localizations, when applied to sources reconstructed from the same data using different inverse methods or even different
implementations of the same method.
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Figure 5: Consistency of source localization (LOC), functional connectivity (FC) and effective connectivity (EC) across 14
source reconstruction pipelines employing different forward models, inverse methods and analysis toolboxes. Top left panel:
between-study (inter-dataset) consistency as measured by the correlation between grand-average results obtained for the Fasor
(FD) and Würzburg (WD) cohorts. Top right panel: within-participant (inter-session) consistency as measured by the average
correlation between results obtained from the first and second measurement session of each participant of the Würzburg cohort.
Bottom panels: between-participant consistency as measured by the average correlation between results obtained from data of
different participants within the Fasor and Würzburg cohorts. Colored bars represent correlations obtained for specific source
reconstruction pipelines, while black bars represent analogous correlations obtained directly on sensor-space data. Wide grey
bars indicate averages across all source reconstruction pipelines.
The results demonstrate that source connectivity metrics are less reproducible across participants, experimental sessions and
datasets than source localizations. The lower consistency of effective compared to functional connectivity metrics suggests that
resting state phenotypes are represented in different patterns of directed brain communication.
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ease of use (e.g., automatic selection of parame-
ters). It therefore becomes a factor that is essen-
tially not consistent across studies and independent
of the analysis goal (assuming that the choice is not
based on the desired outcome). In this light, the
variability of source localization, functional connec-
tivity and effective connectivity estimates observed
here across source reconstruction pipelines may be
interpreted as an estimate of the uncertainty that
is inherent to such estimates.
The degree of variability found in our data de-

pends on the property of the underlying sources
(location, FC or EC) that is estimated and the fac-
tor of the source reconstruction pipeline (forward
model, inverse method or implementation) that is
varied. Localizations were more consistent than ef-
fective connectivity estimates, which were in turn
more consistent than functional connectivity esti-
mates. Moreover, all observed results were less sen-
sitive to variations of the electrical forward model
than to variations of the inverse source reconstruc-
tion technique and the software package (implemen-
tation) used. The most consistent results were ob-
tained when localizing sources under variation of
the electrical model (r = 0.99), while the least con-
sistent results were obtained when estimating func-
tional connectivity based on different inverse solu-
tions (r = 0.26). The variation of more than one of
the three variables studied here can however lead to
even lower consistency. The upper part of Table 2
ranks the types of analysis as well as the source re-
construction factors in terms of their observed con-
sistency across different methods.
A specific finding of our study is the dis-

crepancy between results obtained using beam-
former (LCMV) source reconstructions on one
hand and distributed inverse solutions (WMNE or
eLORETA) on the other hand. This discrepancy
is larger for source connectivity estimates than for
mere localizations of the sources. As the present
study is based on empirical data, further simula-
tions with known ground truth data are needed
to determine which of the two general paradigms
is better suited for source connectivity estimation
(rather than localization) purposes.

5.3. Consistency across different data sets

While our main results concern the variability
due to different analysis pipelines applied to the
same data, we also assessed the consistency of all
results across different data sets. Regarding func-
tional connectivity, we observed levels of between-

study and within-participant consistency that are
comparable1 to those reported recently in Col-
clough et al. (2016) for MEG data based on the
imaginary part of coherency. Effective connectiv-
ity estimates based on the phase-slope index ob-
tained by Colclough et al. (2016) were however sub-
stantially less reliable than analogous results ob-
tained here. While the reason for this discrepancy
is unclear, both studies observed lower consistency
of effective as compared to functional connectivity.
This is interesting considering that we found EC to
be more consistent across source reconstruction pa-
rameters than FC. A ranking of the data analysis
and source reconstruction methods in terms of their
consistency across different datasets is provided in
the lower part of Table 2.
One potential explanation for the low consistency

of EC across participants may be the use of resting
state data. The resting state, defined as the absence
of any task, leaves substantial room for participants
to engage in their own thoughts. A number of dis-
tinct ‘resting state phenotypes’ has consequently
been identified based on behavioral scales (Diaz
et al., 2013). Given this behavioral variability, a
high degree of consistency of neural metrics can not
necessarily be expected. The present evidence for
more consistent FC than EC may however justify
the hypothesis that the brain regions engaging in
information exchange during rest are relatively sta-
ble across the population, while the communication
patterns within these networks – potentially resem-
bling specific thought categories such as thoughts
related to theory of mind or somatic awareness –
are more participant-specific. We plan to investi-
gate the effect of resting state phenotype and other
factors such as gender, age, handedness and ocular
dominance on resting state FC and EC in future
studies.

5.4. Robust vs. non-robust connectivity measures

A crucial issue when estimating brain connec-
tivity from EEG or MEG measurements is the in-
evitable mixing of brain sources into the measured
data. The superposition of signals causes a number
of connectivity metrics to yield spurious results, em-
phasizing once more that sensor-space connectiv-
ity analysis is inappropriate (see also Van de Steen
et al., 2016). It is however worth noting that the

1Note that the quantities reported in Colclough et al.
(2016) are Fisher z-transformed correlations ρ = atanh(r).
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Consistency between pipelines

LOC > EC > FC
forward model > toolbox, inverse method

Consistency between datasets

study > session > participant
LOC > FC > EC

Table 2: Ranking of different analysis approaches and source
reconstruction factors in terms of their consistency between
methods and datasets.

problem of spurious connectivity also occurs at the
level of source estimates as a result of the source
mixing in EEG/MEG inverse solutions (e.g., Schof-
felen and Gross, 2009; Haufe et al., 2012a), as well
as in general for any data that are superimposed by
correlated noise (Vinck et al., 2015; Winkler et al.,
2016).

There is currently considerable confusion regard-
ing the question which connectivity measures can
be safely applied to EEG/MEG data. One im-
portant requirement for such an application is ro-
bustness, defined as the property of a measure
to yield asymptotically zero connectivity for lin-
ear mixtures of independent signals. Theoretical
robustness has been derived for methods based
on the imaginary part of coherence (Nolte et al.,
2004, 2008), and on time-reversal (see below). For
other approaches such as non-negative power cor-
relations (e.g., de Pasquale et al., 2010), coherence,
phase locking (Lachaux et al., 1999), and measures
based on the concept of Granger causality such as
the directed transfer function (Kamiński and Bli-
nowska, 1991), partial directed coherence (Baccalá
and Sameshima, 2001), spectral Wiener-Granger-
causality (Bressler and Seth, 2011), and trans-
fer entropy (Vicente et al., 2011), non-robustness
can be demonstrated in simulations or using sim-
ple theoretical counterexamples (e.g., Haufe et al.,
2012a; Haufe and Ewald, 2016; Van de Steen et al.,
2016). One such example is given by the pres-
ence of two independent non-white stationary sig-
nals (e.g., two distinct brain rhythms). Sensors or
estimated sources that capture both signals with
different mixing proportions will appear as interact-
ing according to the methods listed above. Some
of these approaches can however be made robust
using a statistical test against time-reversed surro-
gate data (Haufe et al., 2012a,b; Vinck et al., 2015;
Winkler et al., 2016). Another intuitive idea to

remove effects of source mixing is orthogonaliza-
tion (Brookes et al., 2012; Hipp et al., 2012; Col-
clough et al., 2015). While respective approaches
have shown encouraging results in simulations, ad-
ditional theoretical analyses would be needed to
rule out non-robust behavior. Simultaneously, fu-
ture work should be devoted not only to providing
robustness results, but also to deriving conditions
under which robust connectivity measures can de-
tect interactions in the presence of mixed and noisy
signals.

To avoid basing our results on spurious connec-
tivity, we limited our analyses to robust connectiv-
ity metrics and are thus unable to report on the
consistency of non-robust approaches. Yet, data
provided in Colclough et al. (2016) however show
that non-robust connectivity metrics are typically
more consistent across datasets than robust ones.
This result may seem paradoxical but is rather ex-
pected, as connections determined by non-robust
metrics often reflect rather simple properties of the
data, for instance the strength of the sources and
the corresponding mixing of the sources. Since non-
robust methods are sensitive to the effects of vol-
ume conduction (source mixing) they should also
reflect the spatial configuration of the sources, the
latter being in fact one of the most reproducible
measures in the present study. As such properties
are typically quite stable across participants and re-
peated measurements, a high degree of consistency
can be expected for non-robust connectivity mea-
sures. Robust measures, by contrast, rely on more
subtle properties of the data relating to actual in-
teractions between individual components of the su-
perimposed signals. Such properties are harder to
estimate and potentially more variable across par-
ticipants and source reconstruction parameters. It
is therefore important to use consistency not as the
sole criterion for judging the appropriateness of a
connectivity measure. Additional validation involv-
ing ground truth data (see below) is necessary to
rule out that stable results are rooted in trivial bi-
ases. The same holds for all other parts of a con-
nectivity estimation pipeline such as forward and
inverse models.

5.5. Validation strategies

The ill-posed nature of the EEG and MEG in-
verse problems entails substantial uncertainty not
only in the locations of underlying brain sources,
but also in the results of all analyses conducted on
reconstructed sources such as source connectivity
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analyses and the subsequent estimation of network
properties of connectivity graphs. The accumula-
tion of errors in such complex analysis chains calls
for thorough validation. We postulate that valida-
tion efforts should aim to estimate not only biases
but also variances contributing to the overall er-
ror. Here we contribute to these efforts by estimat-
ing the variance that is introduced by the choice of
source reconstruction parameters.
Our work complements studies in which the

known ground truth can be used to quantify esti-
mation biases. This is typically done using simula-
tions. Source reconstruction studies however often
focus on localization accuracy as the sole perfor-
mance criterion, and thus do not take into account
the correct recovery of time series dynamics that
would be required for subsequent connectivity anal-
ysis. Time series connectivity studies, on the other
hand, often neglect the residual source mixing that
is present in reconstructed brain sources. It has
therefore been suggested to jointly benchmark en-
tire source connectivity estimation pipelines (Haufe
and Ewald, 2016).

Simulations often rely on model parameters that
cannot easily be verified. Thus it is important to
also analyze real-world data with known ground
truth. Such data may be obtained from studies
using artificial ‘phantom’ heads built to possess es-
sential physical properties of real heads. Recent ad-
vances in concurrent imaging of non-invasive EEG
and invasive electrophysiological recording and/or
stimulation however also allow one to obtain similar
data in vivo from primates and human patients, and
use it for validation purposes (e.g., Papadopoulou
et al., 2015).
Finally, while a few theoretical results are avail-

able for certain connectivity measures, this is to an
even lesser degree the case for source imaging pro-
cedures. It is therefore important to intensify the
theoretical study of both types of algorithms as well
as their interplay within integrated data analysis
pipelines.
As a preliminary conclusion of the present study

we advise to use at least two approaches for the
inverse modeling and the estimation of the connec-
tivity patterns. Ideally these approaches should not
be based on the same mathematical framework in
order to avoid consistency of the results due to the
possible common algorithmic assumptions. A con-
vergence of the results from the alternative meth-
ods (of course the results should not necessarily be
identical) is a promising sign and a basis for further

functional interpretation of the findings. However,
if the algorithms give very different results, e.g.:
opposite flow of information or missing/present in-
teractions between the structures of interest – a fur-
ther analysis and validation of the data is strongly
encouraged.

6. Conclusion

Our data show that EEG-based source localiza-
tions as well as source-leakage-corrected functional
and effective source connectivity estimates display
a considerable dependency on the choice of source
reconstruction parameters among common options.
This variability reflects uncertainty in the results,
and should be discussed when reporting findings
based on source reconstructions in future studies.
As a further practical guideline, to avoid that re-
sults are biased by using a particular methodology,
researchers may want to report source space analy-
ses based on more than one source reconstructions
pipeline.
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Kamiński, M. J., Blinowska, K. J., 1991. A new method
of the description of the information flow in the brain
structures. Biol Cybern 65, 203–210.

Klimesch, W., 1999. EEG alpha and theta oscillations re-
flect cognitive and memory performance: a review and
analysis. Brain research reviews 29 (2), 169–195.

Lachaux, J. P., Rodriguez, E., Martinerie, J., Varela, F. J.,
1999. Measuring phase synchrony in brain signals. Hum
Brain Mapp 8 (4), 194–208.

Matsuura, K., Okabe, Y., 1995. Selective minimum-norm
solution of the biomagnetic inverse problem. IEEE Trans
Biomed Eng 42, 608–615.

Mazziotta, J. C., Toga, A. W., Evans, A., Fox, P., Lancaster,
J., 1995. A probabilistic atlas of the human brain: theory
and rationale for its development the international con-
sortium for brain mapping (ICBM). Neuroimage 2 (2PA),
89–101.

Mosher, J. C., Leahy, R. M., Lewis, P. S., 1999. EEG and
MEG: forward solutions for inverse methods. Biomedical
Engineering, IEEE Transactions on 46 (3), 245–259.

Niedermeyer, E., Da Silva, F., 2005. Electroencephalogra-
phy: Basic Principles, Clinical Applications, and Re-
lated Fields. Doody’s all reviewed collection. Lippincott
Williams & Wilkins.

Nikulin, V. V., Nolte, G., Curio, G., 2011. A novel method
for reliable and fast extraction of neuronal EEG/MEG
oscillations on the basis of spatio-spectral decomposition.
NeuroImage 55 (4), 1528–1535.

Nolte, G., Bai, O., Wheaton, L., Mari, Z., Vorbach, S., Hal-
lett, M., 2004. Identifying true brain interaction from eeg
data using the imaginary part of coherency. Clinical neu-
rophysiology 115 (10), 2292–2307.

Nolte, G., Dassios, G., 2005. Analytic expansion of the
EEG lead field for realistic volume conductors. Physics
in medicine and biology 50 (16), 3807.

Nolte, G., Ziehe, A., Nikulin, V. V., Schlögl, A., Krämer, N.,
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