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Horizontal transfer, gene loss, and duplication result in dynamic bacterial genomes shaped by a complex
mixture of different modes of evolution. Closely related strains can differ in the presence or absence of many
genes, and the total number of distinct genes found in a set of related isolates — the pan-genome — is often many
times larger than the genome of individual isolates. We have developed a pipeline that efficiently identifies
orthologous gene clusters in the pan-genome. This pipeline is coupled to a powerful yet easy-to-use web-based
visualization software for interactive exploration of the pan-genome. The visualization consists of connected
components that allow rapid filtering and searching of genes and inspection of their evolutionary history. For
each gene cluster, panX displays an alignment, a phylogenetic tree, maps mutations within that cluster to the
branches of the tree and infers gain and loss of genes on the core-genome phylogeny. PanX is available at
pangenome.de. Custom pan-genomes can be visualized either using a webserver or by serving panX locally as

a browser-based application.

Introduction

In addition to vertically passing down their genome to off-
spring, bacteria have the capability to acquire genetic material
from the environment via horizontal transfer [[1]]. Genes are
transferred among bacteria by a variety of mechanisms includ-
ing active uptake, mobile genetic elements, and gene transfer
by viruses [2]. In addition to gene gain, genes are frequently
duplicated or lost. The mix of vertical transmission and hor-
izontal transfer complicates the phylogenetic analysis of bac-
terial genomes and results in patterns of genetic diversity that
are difficult to interpret [3].

A common approach when analyzing collections of bacte-
rial genomes is categorizing genes into the core or accessory
genome [4-6]. Core genes are shared by all strains in a group
of isolates, accessory genes shared by two or more but not all
strains, and unique genes are specific to a single strain. The
union of all genes found in a group of strains (e.g. strains from
one species) is called the pan-genome, which is typically sev-
eral times larger than the core genome. The core genome is
often used to assess the relatedness among the genomes in the
sample and to approximate the species tree, but extensive hor-
izontal transfer has been documented in the core genome as
well [7]] such a tree reconstructed from core genome diversity
does not necessarily reflect the phylogeny. Different software
tools try to infer or remove the impact of recombination on the
species level phylogeny [} 9]

By providing a repertoire of functional genes, gene gain
from the pan-genome can facilitate the acquisition of new
metabolic pathways [[10], the adaptation to new habitats, or
the emergence of drug resistant variants [[11]]. With the rapidly
increasing number of sequenced bacterial genomes, it is now
possible to detect associations between metadata such as habi-
tats, phenotypes, clinical manifestations and the presence or
absence of particular genes [12} |13]].

Pan-genome construction from a group of related bacte-
rial genomes typically involves the identification of homolo-
gous regions by all-against-all comparisons followed by clus-
tering orthologous genes [4]. Several software packages and

pipelines have been developed to construct such pan-genomes
that differ in the heuristics used to compare strains and gener-
ate clusters [[14-17]).

One fundamental limitation, however, is the difficulty to
interrogate, explore, and visualize the pan-genome and the
evolutionary relationships between strains. In absence of
recombination, the purely vertical evolutionary history of
strains would be represented by a single phylogenetic tree,
the species tree. With horizontal transfer, the history of dif-
ferent loci in the genome is described by different trees re-
sulting in a phylogenetic forest or network [18| [19]. While
phylogenetic networks can be visualized using consensus rep-
resentations such as split networks [20], the history and dis-
tribution of individual proteins are often critical, for example
when searching for associations with phenotypes like drug re-
sistance. Individual clusters of orthologous sequences, how-
ever, can again be represented by a tree if genes are short
enough that recombination within the gene can be ignored.
Some gene trees might be similar to the species tree, while
others might deviate dramatically from the species tree. The
degree of incongruence of the gene tree with the species tree
contains important information about the dynamics of gene
gain and loss.

Here, we present panX, a web-based environment for mi-
crobial pan-genome data visualization and exploration based
on an automated pan-genome identification pipeline. The
pipeline breaks the genomes of a large number of annotated
genomes (e.g. NCBI reference sequences) into genes and then
clusters genes into orthologous groups. From these clusters,
panX identifies the core genome, builds a strain-level phy-
logeny using SNPs in the core genome, constructs multiple
alignments of sequences in gene clusters, builds trees for in-
dividual genes and maps the gene presence/absence pattern
onto the core genome tree. The interactive browser-based ap-
plication then allows the exploration of the above features and
provides flexible filter, sort, and search functionalities. This
application is available at pangenome.de with a collection of
pan-genomes prepared by us, but can also be deployed on
other servers with custom pan-genomes, or can be run locally
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FIG. 1: panX analysis pipeline: panX uses DIAMOND [21]] and
MCL [22}123] to identify clusters of homologous genes from a collec-
tion of annotated genomes. These clusters are then analyzed phylo-
genetically and split into orthologous groups based on the tree struc-
ture. The graph on the right show the time required to identify or-
thologous clusters in pan-genomes of different size on a compute
node with 64 cores. The naive all-against-all comparison with DIA-
MOND scales quadratically with the number of genomes (blue line,
‘DIAMOND & MCL [all-against-all]). The “divide and conquer”
strategy where clustering is first applied to batches of sequences and
batches are subsequently clustered (see text) reduces this scaling to
approximately linear (green line). Tree building and post-processing
take about as long as the clustering itself for pan-genomes of 500
genomes.

as a browser-based desktop application.

Materials and Methods
Identification of orthologous gene clusters

The initial steps in the computational pipeline underlying
panX (illustrated in Fig. [1}) is broadly similar to other tools
used to construct pan-genomes [14H17, 24)]. PanX algorithm
identifies groups of homologous genes by similarity search
using DIAMOND and clustering by MCL. In a second step,
panX builds phylogenies of these groups of genes and splits
them into approximately orthologous clusters by examining
the structure of the trees. PanX thus combines the speed of
graph methods to identify groups of similar sequences with
tree based methods applied to individual clusters to accurately
split homologous sequences into orthologous groups.

Identification of groups of homologous sequences

As input, panX uses annotated genome sequences in Gen-
Bank format. To identify homologous proteins, panX per-
forms an all-against-all similarity search using DIAMOND
[21] with default e-value cut-off of 0.001. From the diamond
output, panX constructs a file listing pairs of genes and their
bitscore. Using bitscore instead of e-value avoids underflow
problems and combines similarity and length of the homol-
ogous region [25]]. The table of similarity scores serves as
input for the Markov Clustering Algorithm (MCL) [22, 23] to
create the clusters of putatively orthologous genes. The DIA-

2

MOND similarity search can be multi-threaded and panX uses
64 CPUs by default if run on a compute cluster. Since DIA-
MOND aligns proteins, ribosomal RNAs rRNAs have to be
handled separately. PanX extracts rRNAs from GenBank files
and compares sequences to each other via blastn. The output
of blastn is then processed in the same way as the protein com-
parison by DIAMOND, that is hits are clustered by MCL and
clustered refined using the phylogeny based post-processing
(see below). If desired, DIAMOND similarity search can be
replaced completely by other sequence similarity search tools
such as blastx or blastn.

Divide-and-conquer strategy for large data set: The all-
against-all similarity search scales quadratically with the num-
ber of genomes making the naive implementation infeasible
for thousands of genomes, see Fig. However, the major-
ity of these comparisons are redundant and can be avoided
by first clustering small batches of genomes and subsequently
combining different batches. Specifically, we apply the DI-
AMOND and MCL steps to subsets of 50 genomes (large
enough to benefit from DIAMONDS double indexing strat-
egy, small enough such that the all-against-all is not yet pro-
hibitive) and derive gene clusters of this “sub-pan-genome”.
Each gene cluster is then reduced to a representative sequence
and the representative sequences of all gene clusters are used
as a “pseudo genome” representing the entire batch. The
pseudo genomes representing the different batches are then
again clustered using the DIAMOND+MCL steps. Even-
tually, complete clusters are constructed by combining se-
quences represented by the pseudo genomes. This “divide-
and-conquer” strategy can be applied repeatedly for very large
pan-genomes and keeps scaling of clustering approximately
linear, see Fig.[I]

Splitting into orthologous clusters

In our experience, it is advisable to cluster proteins ag-
gressively and split clusters with paralogous sequences in a
post-processing step. The groups of paralogs are often read-
ily apparent in a phylogenetic tree. PanX reconstructs trees
from sequences in each cluster by first aligning the protein se-
quences using MAFFT [26]. The protein alignment is then
used to construct a codon-alignment of the corresponding nu-
cleotide sequences by inserting a gap of length three for every
gap in the amino acid alignment. From nucleotide sequence
alignment panX then reconstructs a tree using FastTree [27].
The runtime of FastTree scales approximately as 3/ with the
number of sequences. While superlinear, this scaling still al-
lows the analysis of thousands of genomes. For 600 genomes,
tree building and post-processing takes about twice as long as
the initial clustering (see Fig. [I). Once the tree of a cluster
is available, panX employs a three-step procedure to decide
whether and where a cluster should be split into sub-clusters.

Splitting  distantly related homologs: Since branch
lengths reflect evolutionary distances among genes within
one cluster, groups of distantly related genes, for example
resulting from an ancient duplication, are connected by long
branches and can be easily spotted in a gene tree — at least for
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pan-genome of low or moderate diversity. PanX splits trees
into subtrees at branches whose length exceeds an adaptive
threshold. This threshold is determined from the average
diversity d. of single copy core genes via

) 0.1+ 2d,
°T 14 2d.

This cut-off increases as 0.1 4 2d,. for very similar strains and
eventually saturates at 1. The genetic diversity of the core
genes will be of the same order of magnitude as mutational
distance to the most recent common ancestor (MRCA) of the
collection of genomes. Branches much longer than this diver-
sity will typically correspond to duplications long before the
MRCA. Hence, the cluster should be cut along these branches.
For very diverse pan-genome with d. > 0.25, however, this
simple threshold splitting will result in under-clustering and
should be switched off.

The newly formed clusters are then re-aligned, a new tree
is built, and further split using above-mentioned method until
no long branches can be detected.

Splitting closely related paralogs: Splitting branches
longer than b, will miss recent gene duplication events. To
detect paralogous clusters more sensitively, panX calculates
a paralogy score for each branch in each tree. The paralogy
score of a branch is the number of strains represented on both
sides of the branch in the phylogeny. This score can be cal-
culated in linear time for all branches simultaneously in two
tree traversals. Clusters are then split into two sub-clusters if
the highest paralogy score ¢, and the length ¢ of the corre-
sponding branch fulfill the following criteria:

Pmaz > 0 2)
E o+ ke > 10

X #strains

(D

Here b, refers to the cut-off defined in Eq. (I). The criterion
®maz > 0 prevents splitting irrespective of paralogy. Other
criteria could be used but in our experience, this linear dis-
criminator works well for many different applications.

This paralog splitting is iterated until no gene cluster is
split. Some heavily duplicated genes require more than five
rounds of splitting. The parameters of this splitting step can
be set by the user.

Merging fragmented clusters A small number of genes
are not properly clustered either because no homology was
detected initially or the clustering by MCL failed. Such
unclustered sequences manifest themselves as many single-
ton clusters of identical length. To detect those sequences,
panX calculates the average length of sequences in each clus-
ter and searches for peaks in the distribution of gene cluster
length. Unclustered genes show as spikes in this empirical
gene length distribution, which panX can identify by detecting
peaks in this distribution relative to a smoothed background
distribution. For each detected peak, all involved genes are
gathered in one pre-cluster, their sequences are aligned and
the corresponding phylogeny is inferred. Sub-clusters are then
split following the same long branch splitting principle as de-
scribed above. Currently, only sequences of identical length
are combined into tentative clusters. This condition could be
relaxed but this has not been necessary in our experience.
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The number of clusters that require post-processing de-
pends on the diversity of the data set. On simulated data,
roughly 40% of initial clusters need splitting for the least di-
verse sets, while only a small fraction of clusters required
post-processing for the more diverse data sets.

Phylogenetic analysis of gene clusters

To reduce the computational burden of the subsequent vi-
sualization of the pan-genome, alignments, trees, and other
properties of the gene clusters are precomputed. The input
for this phylogenetic analysis is either the output of the panX
pipeline presented above, or the output of Roary. Other pan-
genome tools could be used when a script parsing the cluster-
ing output is supplied.

Tree building and ancestral reconstruction. PanX extracts
all variable positions from the nucleotide alignments of all sin-
gle copy core genes (those gene clusters in which all strains
are represented exactly once) to construct a core-genome SNP
matrix. This SNP matrix is used to build a core genome phy-
logenetic tree using FastTree [27]], which is further refined by
RaxML [28] following a similar strategy as implemented in
nextflu [29]. Due to homologous recombination, this core
genome tree may not reflect the true history for each of the
genes in the core genomes [7] and branch lengths do not re-
flect sequence similarity since only variable sites are used
[30]. Nevertheless, this core genome SNP phylogeny is still
a useful approximation of the relationships of the different
strains that can be used as a scaffold to investigate the evolu-
tion of the mobile genome and the distribution of phenotypes.

Phylogenetic trees for a gene cluster have already been in-
ferred in the cluster post-processing step. PanX uses these
trees to infer ancestral sequences of internal nodes using
a joint maximum likelihood approach [31] as implemented
in TreeTime [? ]. Likely mutations are mapped onto the
branches of the tree using this ancestral reconstruction.

Then, we infer the presence or absence of each gene cluster
on internal nodes of the core genome SNP tree using an anal-
ogous ancestral inference procedure. Individual gain and loss
events are associated with branches based on this ancestral re-
construction. The gain and loss rates are optimized such that
the likelihood for the observed presence/absence pattern of
genes is maximized [32][33]]. We found that optimal loss rates
are always larger than the gain rates but their ratio is variable
among species with a median ratio of 22 (inter-quartile range
9 to 35).

Gene clusters, trees, mutations, and metadata are stored as
JSON files for the web visualization.

Associations

If informative numerical meta data are attached to the
genomes, panX can quantify the association genetic signa-
tures with meta data. PanX considers associations of two
types: Either particular variants of a gene are associated with a
phenotype or the presence or absence of a gene can be linked


https://doi.org/10.1101/072082
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/072082; this version posted July 18, 2017. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

to a phenotype. PanX can calculate an association score for
both types of association for each gene cluster.

To quantify how well a phenotype is associated with partic-
ular variants of a gene, panX computes a normalized differ-
ence of phenotypes of strains on either side of a branch in the
tree as follows

N @
oy + 03
where 111/ and a% /o are the mean and variance of the pheno-
types of either side of the branch, respectively. This score is
calculated for every branch of the tree and the maximum score
is reported.

To quantify associations of a phenotype with the presence
and absence of a gene, panX uses the average phenotype (i, of
strains carrying the gene and the average p,, of strains without
the gene, the overall variance of the phenotype o2, and the
number of gain/loss events n to calculate the score

pa =Vt —te (4)
o

A simple score like the above won’t reliably separate true
associations from all false positives but these scores can be
very useful to prioritize gene cluster for detailed follow-up in-
vestigation. The web application allows to sort genes by their
association scores such that strongly associated genes can be

rapidly detected and inspected.

Simulation of pan-genomes

To assess the accuracy of clustering methods we simu-
lated 120 pan-genomes with 30 artificial genomes each. The
simulation evolves ancestral sequences along coalescent trees
generated by the software ms [34] and allows for horizontal
transfer as well as gene loss and gain. To get realistic an-
cestral sequences we used one representative gene from each
KEGG ortholog group [35] present in the E. coli strain K-
12 (NC_000913) as a starting point for the simulation. This
yielded 2803 different genes.

Using these as ancestral sequences, we simulated pan-
genomes by the following procedure: For each of the 2803
genes we generated correlated trees using the software ms [34]
with different rates of horizontal transfer. If the gene transfer
rate is zero, all 2803 genes evolve according to the same clonal
genealogy of the population, i.e., one common species tree. In
contrast, the individual gene trees may differ if some genes are
effected by gene transfer. Nonetheless, the gene trees are still
strongly dependent on each other due to the common link to
the clonal genealogy. To investigate the effect of transfer on
the accuracy of reconstruction, we used three different rates
of gene conversion for the simulation of gene trees with ms
(option —c with values 0, 2000, and 4000 with 6000 potential
sites for gene conversion).

Among 2803 genes, 2100 are assigned to the most recent
common ancestor (MRCA) at the root of the simulated gene
tree while the remaining genes are gained at uniform dis-
tributed points at the branches after the MRCA on the gene
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tree. 300 of the 2100 ancestral genes are assigned to be present
at all times, the remaining 2503 genes are lost at rate 2.1 along
the branches of the corresponding gene tree as defined in [36]
and [37]. After a loss event, the corresponding gene will be
absent from all individuals descending from the branch of the
loss event.

Given the gene trees and the presence absence pattern for
each representative K-12 sequence, substitution can occur
along the branches of the corresponding gene tree. We used
seq-gen [38]] to simulate these mutations according to the
HKY model [39], setting the base frequencies to empirical
E. coli base frequencies and the transition-transversion bias
to 1.1. We simulated 5 sets of gene trees for no, occasional
and frequent gene conversion. For each set we used 8 differ-
ent substitution rate distributions to simulate pan-genomes: an
exponential distribution with mean 0.06, uniform distributions
between 0.05 and 0.1 and between 0.1 and 3, and constant
substitution rates of 0.3,0.2,0.1,0.05 and 0.01. The substi-
tution rate p of each gene was drawn from the corresponding
distribution. The mean number of substitutions per site be-
tween two strains is given by 1 —e T where T is the distance
between both strains in the gene tree.

Results
Benchmarking and comparison to other tools

To compare the clustering performance of different meth-
ods, one has to know which genes belong to the same cluster
of orthologs. However, the orthoBench collection of man-
ually curated groups of orthologous proteins [40] has been
used to compare very diverged proteins across different do-
mains of life and is far too diverse to benchmark a tool meant
for pan-genomes of closely related bacteria. The orthologous
groups in pan-genome datasets inferred using software tools
depend on the methods used to generate these data sets and
there is no ground truth. While pan-genomes based on real
genomes can be used to compare clustering methods against
each other, they are not immediately useful to assess accuracy.

To evaluate the performance of panX in an absolute sense
and in comparison to state-of-the-art tools Roary [14], Or-
thoMCL [41], PanOCT [24], and OrthoFinder [42]], we gen-
erated simulated pan-genomes for which the ground truth is
known. In addition, we investigated the consistency of the or-
thologous clusters between tools in pan-genomes constructed
from real bacterial genome sequences.

OrthoMCl and OrthoFinder were designed to identify or-
thologous groups across different domains of life, not for bac-
terial pan-genome inference. Nonetheless, they are often used
in this context and we therefore included them here. In con-
trast, Roary was designed to cluster very large number of
rather similar genomes. These tools are therefore expected
to work well in different parameter ranges.

As a unique feature among all tools, panX relies on phy-
logeny based post-processing of the initial MCL clustering.
This post-processing step is adaptive in that thresholds are
scaled relative to the core genome diversity. As a result, panX
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works well across a large range of diversities.

Comparison of clustering accuracy on simulated datasets

We constructed pan-genomes by evolving 2803 genes from
the E.coli genome along gene trees generated by the software
ms [34]]. Gene sequences evolve along the gene trees with
different mutation rate distribution across the genome, can be
gained or lost, and undergo horizontal transfer, see materials
and methods for details.

We subjected 40 simulated pan-genomes of size 30 to anal-
ysis by Roary, PanOCT, OrthoFinder, OrthoMCL and panX
and scored the resulting orthologous clusters. For each clus-
ter, there are four possible outcomes: (i) A cluster is correct
if it contains all and only genes from one true cluster, (ii) a
cluster is incomplete but contains only genes from one true
cluster, (iii) a cluster contains all genes from one true cluster
but also genes from other clusters, or (iv) a cluster could fail
on both counts. Fig. [2| shows how different tools perform at
different levels of diversity of the pan-genome.

OrthoMCL and OrthoFinder are designed for cross-species
comparisons at large evolutionary distances. It is hence
not surprising that these two tools merge many clusters that
should be kept separate in low diversity pan-genomes. This
effect is most pronounced for rare clusters, predominantly sin-
gletons, that get combined with other clusters, see Fig.[3] Core
genes and other common gene clusters are typically correctly
reconstructed. At very large diversities, OrthoMCL and Or-
thoFinder have an accuracy similar to that of panX. Roary
and panX show similar behavior across a wide range of di-
versities from below 1% to 30% with panX typically making
a factor of two fewer mistakes. However, we were unable to
find a parameter set for Roary that worked well across the en-
tire range of diversities. Using an identity cutoff of 70% (-1
70) worked best at low diversity, while lower cutoffs were re-
quired at high diversity. PanOct didn’t perform very well on
our simulated data predominantly because it split too many
clusters, see Fig.

The different types of errors (erroneous merging/splitting)
are shown separately in Fig. S1. We repeated the analysis for
different gene conversion rates and found mainly compara-
ble results for no, occasional and frequent gene conversions
(Fig. S2 and S3).

Real pan-genomes

While the ground truth of simulated pan-genomes is known,
real pan-genomes lack an obvious point of comparison.
Nonetheless, a comparison of the constructed clustering be-
tween different approaches can highlight the similarity and
differences between them.

We used S. pneumoniae and Prochlorococcus pan-genomes
to compare the results of the panX pan-genome identifica-
tion pipeline to that of Roary, OrthoMCL, PanOCT, and Or-
thoFinder. We computed the size distribution of clusters, the
size of the core genomes, and the total number of clusters
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FIG. 2: Accuracy of clustering by different tools. The fraction of
misclustered genes increases with diversity of the pan-genome. We
ran Roary with options -1 70 and —-i 50. At low diversity, panX
and Roary (-1 70) perform with similar accuracy and miscluster
about 1 in 1000 genes. At high diversities, all tools have similar
accuracy and miscluster 1 in 10 genes. Results for tools designed for
high diversity data sets (OrthoMCL and OrthoFinder) are only shown
for diversities above 0.02. Similarly, results for Roary are suppressed
at high diversity to improve clarity of the graph.

from the pan-genomes estimated by different tools, see Fig.
For the low diversity collection of 33 S. pneumoniae genomes,
the cluster size distributions inferred by the different tools are
very similar (panel A) and the number inferred core genes dif-
fers by less than 10%. Between 78 and 86% of clusters in-
ferred by panX are found by other tools. The greatest overlap
is with Roary when run with identity threshold -1 70.

More variation is observed in inferred pan-genomes of 40
Prochlorococcus strains, see Fig. BIC&D. Roary [14] separates
nearly all Prochlorococcus genes and identifies only 10 core
genes when using standard parameters. After lowering the
minimum percentage identity for blastp in Roary to 30% (-1
0.3), Roary identified 1111 core genes vs 1214 identified by
panX. While Roary warns that it has not been designed to sup-
port such diverse datasets, the 60% of the resulting clusters
agree with those identified by panX. PanX and Roary iden-
tified 5,407 and 6,981 clusters of orthologous genes, respec-
tively — not too far from the estimated pan-genome size of
>8,500 genes present in more than one percent of the popula-
tion [43]. Although each tool constructs a number of unique
clusters, the results for OrthoFinder and OrthoMCL are com-
parable to those of Roary and panX. In contrast, the tool
PanOCT separates many more genes than panX or Roary with
parameter —i 30. PanOCT is designed for closely related
prokaryotic strains and therefore splits the diverse Prochloro-
coccus genomes into 16,820 clusters with mainly 1-3 genes.
Only 109 core clusters are identified. The tools OrthoMCl
and OrthoFinder, designed for more diverse data sets, gen-
erate cluster size distributions similar to those by panX and
between 71 and 87% of clusters found by one tool are also
found by another.

Testing this collections of pan-genome tools on larger data
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FIG. 3: Type of misclustering by tool and gene frequency. The fraction of wrongly merged (red) and wrongly split (blue) clusters by gene
frequency and clustering tool across 5 simulated datasets with exponentially distributed substitution rates with mean rate ;1 = 1/15.

sets proved prohibitive since only Roary and panX scale well
with number of genomes.

Web application for pan-genome exploration

To explore the pan-genome constructed by the pipeline de-
scribed above, we developed a browser based visualization.
The layout of the application is that of a large dashboard (see
Fig. [3), on which multiple aspects of the pan-genome can be
interrogated simultaneously.

At the top, three graphs provide basic statistics on the abun-
dance and length distribution of all genes. In the middle row, a
searchable table contains summary statistics and annotations
for all gene clusters. The alignment viewer on the right shows
the nucleotide or amino acid alignment of gene cluster se-
lected in the table. Below the table, the core genome SNP
tree is shown, along with a phylogenetic tree of the currently
selected gene cluster. At the very bottom, a second search-
able table allows rapid access to meta information available
for different strains.

The hallmark of the panX web-application are the intercon-
nected components that illustrate different properties of the
gene clusters. The pan-genome statistic charts at the top allow
rapid sub-setting of gene clusters by gene length and abun-
dance. The left chart shows an inverse cumulative distribution
of clusters sizes, i.e., clusters are sorted by decreasing number
of strains represented in the cluster, such that all core genes
present in all strains are shown on the left. The size of the

core genes is then simply the length of the plateau of the curve
to the first drop. The core genome is followed by gradual de-
cline in gene number from common to rare accessory genes.
Lastly, a long tail contains the strain-specific singletons. Sub-
sets of genes can be easily defined by selecting a range of the
graph with the mouse. Similarly, the center chart shows the
distribution of gene length.

The pie chart on the right shows the proportion of core and
accessory genome, each of which can be selected by clicking
on the sectors in the chart. To allow for soft and strict def-
initions of the core genome, the cut-off delineating core and
accessory genome can be adjusted with a slider.

Rapid and searchable access to alignment and gene trees

The table of all gene clusters is dynamically restricted to the
range of gene abundances and gene lengths selected above.
The table can be searched by gene name and annotation or
sorted by gene count, diversity etc. Annotations of all in-
put sequences (also discordant annotations of genes belong-
ing to the same gene cluster) are accessible by expanding
the annotation field. Similarly, the column duplicated spec-
ifies whether the gene cluster contains more than one gene
per strain. The list of strains in which genes are duplicated
and copy number of this gene can be accessed by expand-
ing the row. Each row contains triggers to show the corre-
sponding nucleotide or amino acid sequence alignment in the
alignment viewer (MSA) from BioJs [44]]. In order to high-
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FIG. 4: Pan-genome statistics: Panels A & C show the distribution of the number of strains represented in pan-genomes of 33 S. pneumoniae
and 40 Prochlorococcus strains constructed by panX, Roary, OrthoFinder, OrthoMCL, and PanOCT (the last two tools are only available for
the smaller Prochlorococcus data set). To obtain these graphs, clusters are sorted by descending number of strains represented in the cluster.
This number is then plotted against the rank of the sorted clusters. The point where the lines drop below the number of strains marks the
size of the core genome. PanX, OrthoFinder, and OrthoMCL largely agree on the cluster size distribution, the number of core genes and
the total size of the pan-genome (with ~ 10% variation). Roary agrees with the latter tools if the identity cut-off is chosen appropriately,
while PanOCT estimates a very small core genome and an extremely large number gene clusters. Panels B & D show the degree to which
different pan-genome tools agree with each other. Each row shows the fraction of clusters identified by one tool, that exactly match the a
cluster identified by another tool. Analogous results for simulated data are given in Fig. S4.

light difference among sequences, only consensus sequence
and variable sites are shown by default, while the correspond-
ing original alignment can be downloaded. This trigger also
updates the phylogenetic tree viewers. Searching mcr-1, for
example, immediately highlights the 11 E. coli genomes in
the RefSeq database that have an annotated mobile colistin
resistance gene.

Interactive core genome tree and gene tree viewers

To facilitate the comparison between the core genome SNP
tree and the gene tree, the two trees have connected interac-
tive elements. When placing the mouse on a leaf node in one
tree, the corresponding nodes are highlighted in both trees.
Similarly, if the mouse is placed over an internal node, all

nodes in the corresponding clades are highlighted with differ-
ent colors for each strain. This gives a rapid impression of
whether the core genome tree and the gene tree are compati-
ble and whether the gene is duplicated in some of the strains,

see Fig.[6]

The most likely gene loss and gain events inferred by the
ancestral reconstruction algorithm are indicated on the tree by
dashed or thick lines, respectively. Mutations in the amino
acid or nucleotide sequence of the gene are mapped onto the
gene tree and can be inspected using the tooltips associated
with branches in the tree.

In addition to mutation and gain/loss events, the tree can be
colored with metadata associated with different strains. Such
metadata would typically include collection dates, sampling
location, host species or resistance phenotypes.
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FIG. 5: Interconnected components of the panX web application: The top panels provide a statistical characterization of the pan-genome
and allow filtering of gene clusters by abundance and gene length. The gene cluster table on the center left is searchable and sortable and
allows the user to select individual gene clusters for closer inspection. Upon selection in the table, the alignment of gene cluster is loaded into
the viewer on the center right, the gene tree is loaded into the tree viewer at the bottom right, and presence/absence patterns of this gene cluster
are mapped onto the core genome tree at the bottom left. The example shows the gene coding for the penicillin binding protein Pbp2x and the

color indicates the MIC against benzylpenicillin.

Pan-genomes of common bacterial groups

We ran the panX on collections of genomes of bacterial
groups for which more than 10 genomes were available in
RefSeq resulting in a total of 94 pan-genomes including many
human pathogens. Statistics of a subset are shown in Tab.[I|
the corresponding data for all species are given as supplemen-
tary material. The majority of these species exhibit low di-
versity in their core genomes with typically just a few percent
nucleotide differences, some times even less than 0.001. The
median number of core genes is 1800 while the median pan-
genome size is about 5000 genes. Diverse species tend to have
smaller core-genomes and larger pan-genomes, as expected.

Pan-genomes of diverse collections of genomes

Most of these collections are closely related genomes, but
we also included a diverse group of genomes of Prochlorococ-
cus and the pan-genomes of the bacterial orders Pseudomon-
adales, Enterobacteriales and Vibrionales.

Prochlorococcus is a marine cyanobacterium that is re-
sponsible for a significant fraction of the marine primary

production and serves as a model system in marine micro-
bial ecology [45]. While we relied on annotations avail-
able in NCBI for most species, we re-annotated the genomes
of 40 Prochlorococcus sequences [46] using Prokka [47].
The annotation was derived from a custom database based
on the 12 annotated Prochlorococcus strains CCMP1375,
MED4, MIT9313, NATL2A, MIT9312, AS9601, MIT9515,
NATL1A, MIT9303, MIT9301, MIT9215 and MIT9211.
Prochlorococcus is a much more diverse population than the
other species we investigated, see Tab. [l which makes it a
challenging case for pan-genome analysis.

While the 16S rRNA sequences of all 40 Prochlorococ-
cus strains do not differ by more than 3%, Prochlorococ-
cus can be divided into ecotypes that are remarkably different
in genome size and GC content [45]. These ecotypes corre-
spond to high and low light intensity adapted Prochlorococ-
cus populations and can be visualized along the species and
gene trees in panX. While the genomes of Prochlorococcus
have likely been streamlined by strong selective forces to lose
genes [48]], gene gains and duplications have frequently oc-
curred in all Prochlorococcus lineages. Two well-known ex-
amples for Prochlorococcus are the gain of nitrate assimila-
tion genes nirA [49] and gene duplication and phage mediated
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FIG. 6: Linked core genome and gene trees. The core genome tree shows the strains in which the current gene is present or absent. Placing
the mouse over an internal node in one of the trees (upper clade of the gene tree on the right in this example) highlights all strains in the
corresponding clade in both trees. This gives the user a rapid impression of phylogenetic incongruence and likely gene gain and loss events.

gene transfer of the photosynthesis gene psbA [50]. The an-
cestral insertions of these genes are placed on the species tree
by panX and can be investigated in the strain phylogeny if
one searches for the gene name and gene presence/absence is
chosen as metadata.

In addition to the diverse Prochlorococcus genomes, we an-
alyzed collections of genomes that encompass the entire bac-
terial orders Pseudomondales, Enterobacteriales, and Vibri-
onales. For each of these orders, we collected at most 10
genomes from each species (based on the species designa-
tion in the RefSeq files) to avoid over-representation of hu-
man pathogens. Running panX on these orders resulted in
about 1000 core genes for Pseudomondales and Vibrionales
and about 2000 core genes in case of the smaller collection of
Enterobacteriales. Core genes of Pseudomondales and Vib-
rionales were typically 20% diverged from each other, while
Enterobacteriales core genome was less diverse at 11%. The
core genome SNP tree of the Vibrionales clearly separates the
genomes by species, while the core genome trees of the other
orders show considerable mixing of species.

Large pan-genome of Streptococcus pneumoniae

The utility of the interactive web application is most evident
for collections of genomes with rich meta data. One such col-
lection is the S. pneumoniae data set generated by (author?)
[S1]. This data set consists of 616 whole genome sequences
and rich meta data including antibiotic susceptibility and host
characteristics. Even with 616 genomes, the web application
is fluid and responsive.

For S. pneumoniae, we calculated branch and pres-
ence/absence association scores for every gene cluster. All

scores are included in the gene cluster table, which can be
sorted by each score. While many strongly associated genes
are false positive, they are enriched for known genes. The
gene cluster with the largest branch association with ben-
zylpenicillin MIC is the penicillin binding protein pbp2x. The
coloring of the gene tree by the benzylpenicillin MIC con-
firms that the resistant and susceptible isolates form two dis-
tinct clades separated by a large number of amino acid substi-
tutions, see Fig.[5] While resistant strains are scattered across
the species tree, they form a single clade in the tree of pbp2x.

Similarly, the gene cluster table can be sorted by pres-
ence/absence association scores. The gene cluster that is most
associated with erythromycin resistance is mefE coding for an
efflux pump.

Availability

The computational pipeline to identify the pan-genome
consists of a collection of python scripts and a master script
that runs desired analysis steps in series. The visualization is
build on node.js server and makes extensive use of BioJS [44],
D3.js [52]], dc.js [53], and other javascript libraries. The anal-
ysis pipeline and the code for the web application is made
available under the GPL3 license on |github as repositories
pan-genome-analysis and pan-genome-visualization.

The web application can either be hosted on a web server or
can be used locally to inspect and explore pan-genomes pro-
duced by the panX pipeline. We computed a large number of
pan-genomes and made those available at pangenome.de. The
website currently hosts 93 bacterial species including those
listed in Tab. [l Several downloading options are available:
core gene alignments and all gene alignments can be down-
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TABLE I: Summary statistics of pan-genomes available at pangenome.de,
* Average number of pairwise differences per nucleotide in core gene alignments.

Species genomes | core genes all genes singletons |diversity™
Acinetobacter baumannii 71 1701 8334 15580.010
Bacillus anthracis 43 4156 5980 62|1.0e-04
Bacillus cereus 36 2979 13364 3486|0.048
Bordetella pertussis 291 2437 3743 158|4.1e-06
Burkholderia pseudomallei 59 4098 11580 1966|0.003
Campylobacter jejuni 113 935 3166 526(0.014
Chlamydia trachomatis 68 809 978 1210.005
Clostridium botulinum 23 795 9083 229410.147
Corynebacterium pseudotuberculosis 59 1133 2316 65]0.005
Enterobacter cloacae 22 2971 10783 3211(0.087
Escherichia coli 307 778 23107 6339]0.015
Francisella tularensis 35 838 2339 302(0.007
Helicobacter pylori 85 694 2371 32810.042
Klebsiella pneumoniae 109 2545 15978 4004 (0.007
Listeria monocytogenes 95 1907 4947 485(0.031
Mycobacterium tuberculosis 51 2665 4350 93|2.0e-04
Neisseria meningitidis 78 1071 3375 426(0.015
Prochlorococcus marinus 40 1047 5407 1262|0.291
Pseudomonas aeruginosa 70 3264 12768 3195|0.006
Salmonella enterica 260 1327 15521 3996(0.009
Staphylococcus aureus 146 1229 5206 731{0.008
Streptococcus pneumoniae 33 1188 3361 540/0.010
Streptococcus pyogenes 50 970 2856 341/0.008
Vibrio cholerae 28 2412 5156 771|0.005
Xanthomonas citri 26 3385 5261 291]0.001
Yersinia pestis 33 2557 4587 172|1.0e-04
Pseudomonadales 119 966 42520 20577|0.194
Enterobacteriales 33 1998 16413 698810.112
Vibrionales 66 716 30461 15643(0.193

loaded via the down-arrow button next to the gene cluster ta-
ble. Alignments and gene trees for individual clusters and the
strain tree can be downloaded via buttons next to the align-
ment viewer and tree viewers, respectively. All buttons are
associated with tooltips explaining the action of the buttons.

Conclusions

Being able to visualize and explore high dimensional data is
often the key to developing insight into the mechanisms driv-
ing complex dynamics. PanX is meant to enable such explo-
ration of large sets of bacterial genomes, which are character-
ized by the evolution of individual genes as well as the gain
and loss of genes. The design of panX focused on combined
breadth and depth: Besides summary statistics and species
trees, panX allows to select interesting sets of genes or search
for individual genes. Alignments and phylogenetic trees of
genes can then be analyzed in detail with individual mutations
and gain/loss events mapped to the gene tree and the core tree,

respectively. The evolutionary patterns of genes can then be
compared to meta-information such as resistance phenotypes
associated with the individual strains.

By integrating meta-information with the molecular evolu-
tion of genes and genomes in one visualization, panX can as-
sist investigations of the dynamics of pan-genomes and adap-
tation of bacteria to new habitats and environmental chal-
lenges. Horizontal transfer is pivotal for many aspects of bac-
terial adaptation [[L1], but at the same time, it remains much
more difficult to analyze than evolution by vertical descent [3]].
The ability to interactively explore such pan-genomes might
help to grasp the complexity of this dynamics.

On the other hand, a web-based tool that can be readily
kept up-to-date by addition of newly sequenced isolates would
be useful in pathogen surveillance. When paired with meta-
information such as resistance, pathogenicity, sampling date,
location and comorbidities, panX can help to study adapta-
tion, spread, and transmission chains of pathogens. Similar
approaches have proved useful at tracking spread and evolu-
tion of seasonal influenza virus or Ebola virus during the re-
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cent outbreak in West Africa [29] 54]]. Currently, phenotype
data are available for a minority of the whole genomes se-
quences and data sets like the S. pneumoniae by (author?)
[51] are an exception. With increasing availability and timely
publication of such data from routine surveillance, panX or
derivatives could be used to track foodborne outbreaks, moni-
tor the global spread of drug resistance bacteria [55]], or assist
infection control in individual hospitals. The time required to
build a pan-genome of 1000 strains is less than a day on a 64
core node such that frequent updates of such a tracking tool
are possible.
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