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ABSTRACT 

The activity of sensory cortical neurons is not only driven by external stimuli, but is also 

shaped by other sources of input to the cortex. Unlike external stimuli these other sources 

of input are challenging to experimentally control or even observe, and as a result 

contribute to variability of neuronal responses to sensory stimuli. However, such sources 

of input are likely not “noise”, and likely play an integral role in sensory cortex function. 

Here, we introduce the rectified latent variable model (RLVM) in order to identify these 

sources of input using simultaneously recorded cortical neuron populations. The RLVM is 

novel in that it employs non-negative (rectified) latent variables, and is able to be much 

less restrictive in the mathematical constraints on solutions due to the use an autoencoder 

neural network to initialize model parameters. We show the RLVM outperforms principal 

component analysis, factor analysis and independent component analysis across a variety 

of measures using simulated data. We then apply this model to the 2-photon imaging of 

hundreds of simultaneously recorded neurons in mouse primary somatosensory cortex 

during a tactile discrimination task. Across many experiments, the RLVM identifies latent 

variables related to both the tactile stimulation as well as non-stimulus aspects of the 

behavioral task, with a majority of activity explained by the latter. These results suggest 

that properly identifying such latent variables is necessary for a full understanding of 

sensory cortical function, and demonstrates novel methods for leveraging large population 

recordings to this end.  
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INTRODUCTION 1 
The sensory cortex not only represents information from the sensory periphery, but also incorporates input from 2 
other sources throughout the brain. In fact, a large fraction of neural activity in the awake sensory cortex cannot 3 
be explained by the presented stimulus, and has been related to a diversity of other factors such as stimulation of 4 
other sensory modalities (Ghazanfar and Schroeder, 2006; De Meo et al., 2015), location within the environment 5 
(Haggerty and Ji, 2015), and numerous aspects associated with “cortical state” (Harris and Thiele, 2011; Marguet 6 
and Harris, 2011; Pachitariu et al., 2015) including attention (Harris and Thiele, 2011; Rabinowitz et al., 2015), 7 
reward (Shuler, 2006) and state of arousal (Otazu et al., 2009; Niell and Stryker, 2010). Activity in sensory cortex 8 
linked to such non-sensory inputs can result in variability in the responses of neurons to identical stimulus 9 
presentations, which has been a subject of much recent study (Goris et al., 2014; Amarasingham et al., 2015; 10 
Rabinowitz et al., 2015; Cui et al., 2016). This suggests that a full understanding of sensory cortical function will 11 
require the ability to characterize non-sensory inputs to sensory cortex and how they modulate cortical processing. 12 
 13 
However, such non-sensory inputs are typically not under direct experimental control nor directly observed, in 14 
which case their effects can only be inferred through their impact on observed neural activity. For example, shared 15 
but unobserved inputs can lead to noise correlations observable in simultaneously recorded neurons (Cohen and 16 
Kohn, 2011; Doiron et al., 2016), which can serve as a means to predict one neuron’s activity from that of other 17 
neurons (Schneidman et al., 2006; Pillow et al., 2008; Vidne et al., 2011). Noise correlations thus demonstrate 18 
one approach to understanding neural variability, and other recent extensions of this idea have used the summed 19 
activity of simultaneously recorded neurons (Okun et al., 2015; Schölvinck et al., 2015)  and local field potentials 20 
(Rasch et al., 2008; Cui et al., 2016) to capture the effects of non-sensory inputs. Notably, these approaches all 21 
focus on the effects of shared variability on single neuron activity, and thus do not fully leverage the simultaneous 22 
recordings from multiple neurons to infer shared sources of input.  23 

 24 
An alternative is to jointly characterize the effects of unobserved, non-sensory inputs on a population of 25 
simultaneously recorded neurons. This approach is embodied in a class of methods known as latent variable 26 
models (Cunningham and Yu, 2014), which aim to explain neural activity over the population of observed neurons 27 
using a small number of factors, or “latent variables”. Latent variable models evolved from classic dimensionality 28 
reduction techniques like Principal Component Analysis (PCA) (Ahrens et al., 2012; Kato et al., 2015), and 29 
encompass a wide range of methods such as Factor Analysis (FA) (Churchland et al., 2010), Independent 30 
Component Analysis (ICA) (Freeman et al., 2014), Poisson Principal Component Analysis (Pfau et al., 2013), 31 
Locally Linear Embedding (Stopfer et al., 2003), Restricted Boltzmann Machines (Koster et al., 2014), state space 32 
models (Smith and Brown, 2003; Paninski et al., 2009; Macke et al., 2011; Archer et al., 2014; Kulkarni and 33 
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Paninski, 2015), and Gaussian Process Factor Analysis (Yu et al., 2009; Semedo et al., 2014; Lakshmanan et al., 34 
2015). 35 

 36 
Here, we propose a new latent variable approach called the Rectified Latent Variable Model (RLVM). This 37 
approach leverages two innovations over previous methods. First, it constrains the latent variables to be non-38 
negative (rectified), which is hypothesized to be a fundamental nonlinear property of neural activity (McFarland 39 
et al., 2013) that can lead to important differences in the resulting descriptions of population activity (Lee and 40 
Seung, 1999). Indeed, using simulations, we show that rectification is necessary for the RLVM to recover the true 41 
activity of non-negative latent variables underlying population activity. The second innovation is that the RLVM 42 
avoids several statistical constraints on the latent variables that are necessary in other methods; for example, it 43 
does not require them to be uncorrelated (like PCA), independent (like ICA) or follow Gaussian distributions (like 44 
FA). To enable such unconstrained estimation of model parameters, we base solutions of the RLVM on an 45 
autoencoder (Bengio et al., 2013), which allows the RLVM to efficiently scale up to large datasets from both 46 
electrophysiological and optical recordings. 47 
 48 
We first describe the RLVM and demonstrate its application it to a synthetic dataset generated to resemble typical 49 
large-scale recordings produced by 2-photon experiments. This synthetic dataset gives us “ground truth” with 50 
which to compare RLVM performance with a range of other latent variable approaches. We demonstrate that the 51 
RLVM outperforms these alternatives due to the innovations described above. We then apply the RLVM to a large 52 
2-photon dataset recorded in mouse barrel cortex during a decision-making task (Peron et al., 2015). The 53 
relationship between the latent variables inferred by the RLVM and the behavioral observations related to the task 54 
revealed that a large proportion of cortical activity is related to non-vibrissal aspects of the behavioral task. 55 
Furthermore, consistent with the results on the synthetic dataset, the RLVM had the ability to match or outperform 56 
the other tested latent variable approaches, and also identified latent variables most correlated with individual 57 
observed aspects of the experiment. These results were consistent across many neural populations and animals 58 
sampled from this dataset, and thus identify consistent types of latent variables governing the diverse set of 59 
neurons recorded over many experiments. In total, this demonstrates that the RLVM is a useful tool for inferring 60 
latent variables in population recordings, and how it might be used in order to gain significant insights into how 61 
and why sensory cortex integrates sensory processing with non-sensory variables.  62 
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METHODS 63 
 64 
Fitting the RLVM 65 
The goal of the Rectified Latent Variable Model (RLVM) is to accurately predict observed neural activity  𝐲" 	
   ∈66 
	
  ℝ& using a smaller set of latent variables  𝐳" 	
   ∈ 	
  ℝ()* . Here, 𝐲" and 𝐳" are vectors describing the activity at each 67 

time point t, and the matrices 𝐘 = 𝐲" "-.
/  and 𝐙 = 𝐳" "-.

/  are all the observed data and latent variables, 68 
respectively, across time. The RLVM then tries to predict the observed activity yt with the zt as follows: 69 
 70 

 𝐲" = 𝑓(W𝐳" + 	
  𝐛) (1) 

 71 
where f(.) is a parametric nonlinearity, and the model parameters are the coupling matrix W ∈ 	
  ℝ*×& and the bias 72 

vector 𝐛	
   ∈ 	
  ℝ*, collectively referred to as q	
  =	
  {W,	
  b}.  73 
 74 
Estimation of model components. We estimate the model parameters q and infer the latent variables Z using the 75 
maximum marginal likelihood (MML) algorithm, which is closely related to the Expectation-Maximization (EM) 76 
algorithm (Paninski et al., 2009; Vidne et al., 2011). The MML algorithm first infers the latent variables using 77 

initial model parameters 𝜃()), then updates the model parameters using the newly inferred latent variables. The 78 
algorithm continues to alternate between these two steps until a convergence criterion is met. Mathematically, 79 
each of these steps is defined as an optimization problem: 80 
 81 

 𝐙(@A.) = 	
   arg	
  max	
  
𝐙	
  (𝟎

log 𝑝 𝐘	
  |	
  𝐙, 𝜃(@) + log 𝑝(𝐙)	
  	
  	
  	
   (1) 

 𝜃(@A.) = 	
   arg	
  max	
  
𝜽

log 𝑝 𝐘	
  |	
  𝐙(@A.), 𝜃 + log 𝑝(𝜃) (3) 

 82 
Both eqs. (2) and (3) correspond to a maximum a posteriori (MAP) estimate of the latent variables and model 83 
parameters, respectively, in which we maximize the sum of the data log-likelihood and a log-prior distribution. 84 
Although eq. (2) is a constrained optimization problem, it can be transformed into an unconstrained optimization 85 
problem as described below, and thus we solve both eqs. (2) and (3) using an unconstrained L-BFGS method. 86 
 87 
The MML algorithm presented in eqs. (2) and (3) is a general procedure that can be specifically implemented for 88 
different types of data by properly defining the probability distribution in the data log-likelihood term 89 
log 𝑝 𝐘	
  |	
  𝐙, 𝜃 , which describes the probability of the observations given the current estimates of the latent 90 
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variables and the model parameters. For example, in what follows we will use a Gaussian distribution for 2-photon 91 
data, but could instead use a Poisson distribution for spiking data. The forms of the log-prior terms log 𝑝(𝐙) and 92 
log 𝑝(𝜃) are in general independent of the form of the data log-likelihood term. Because this work is focused on 93 
the analysis of 2-photon data we’ll discuss the implementation of the MML algorithm that is specific to modeling 94 
2-photon data, including a discussion of our treatment of the log-prior terms. 95 
 96 
We first address the data log-likelihood terms of the form log 𝑝 𝐘	
  |	
  𝐙, 𝜃 . For 2-photon data, we model the 97 
observed fluorescence traces as a linear combination of the latent variables plus a bias term, 𝐲" = W𝐳" + 𝐛 (eq. 98 
1, with linear f(.)). Furthermore, we assume a Gaussian noise model so that 𝑝(𝐲"	
  |	
  𝐳",W, 𝐛)	
  ~	
  𝒩(𝐲", Σ) and 99 
 100 

 

log 𝑝 𝐲"	
   	
  	
  𝐳",W, 𝐛) = −
𝑁
2
log 2𝜋 −

1
2
log det Σ

−
𝐲𝒕 − (W𝐳" + 𝐛) /ΣX. 𝐲𝒕 − (W𝐳" + 𝐛)

2
 

 

(4) 

for a given time point t. For computational convenience we do not try to fit the noise covariance matrix S, but 101 
rather model it as a constant times the identity matrix. This constant can be incorporated into the log-prior terms, 102 
and hence does not show up in the final MML equations (eqs. 8 and 9 below). By modeling the noise covariance 103 
matrix as a multiple of the identity matrix we are making the assumption that the Gaussian noise has the same 104 
variance for each neuron (isotropic noise). Although not true in general, the advantage of this simplification is 105 
that we do not need to estimate the variance parameter, and (2) becomes a penalized least squares problem, which 106 
can be solved analytically. Constraining the noise covariance matrix to be diagonal (anisotropic noise) leads to 107 
solving a penalized weighted least squares problem, which must be solved iteratively. 108 
 109 
We also make the assumption that data at different time points are conditionally independent, so that the full log-110 
likelihood term can be written as 111 
 112 

 

log 𝑝 𝐘	
  |	
  𝐙, 𝜃 = log 𝑝 𝐲"	
   	
  𝐳",W, 𝐛)
"

= log 𝑝 𝐲"	
   	
  𝐳",W, 𝐛)
"

= −
1
2

𝐲𝒕 − W𝐳" + 𝐛 Y
Y

"
+ 𝑐𝑜𝑛𝑠𝑡 

(5) 

 113 
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where 𝐱 Y
Y = 𝑥aY is the squared L2	
  norm of a vector x. The assumption of conditional independence is common 114 

practice when dealing with data log-likelihood terms (Bishop, 2006), and allows us to factorize the full conditional 115 
distribution log 𝑝 𝐘	
  |	
  𝐙, 𝜃 ; without this assumption the resulting data log-likelihood term would be intractable.  116 
 117 
To further constrain the types of solutions found by the model, we choose a particular form of the log-prior term 118 
log 𝑝(𝐙) (eq. 2). The are many different priors used for Z in the neuroscience literature on latent variable models, 119 
including latent dynamical systems priors (Paninski et al., 2009) and Gaussian Process priors (Yu et al., 2009). 120 
Here we use a simple smoothing prior that penalizes the second derivative of the time course of each latent variable 121 
zi, which can be written as 122 
 123 

 log 𝑝 𝐳a ∝ 	
   𝐷𝐳a Y
Y
 (6) 

 124 
where D is the discrete Laplace operator. The full log-prior term log 𝑝(𝐙) is the sum of these terms for each 125 
individual latent variable. 126 
 127 
The log-prior term log 𝑝(𝜃) in eq. (3) likewise allows for the  incorporation of additional constraints on model 128 
parameters. We use a standard Gaussian prior on both the coupling matrix W and the biases b, so that  129 
 130 

 log 𝑝 𝜃 ∝ 	
  𝛼 W g
Y + 𝛽 𝐛 Y

Y (7) 

 131 
where W g

Y = 	
   𝑤ajYa,j  is the Frobenius norm of a matrix W and 𝛼	
  and	
  β are constants which scale the relative 132 

weight of each term. This prior has the effect of preventing the model parameters from growing too large, which 133 
can hurt model performance (Fig. A1). 134 
 135 
Using the expressions in eqs. (5), (6) and (7), the 2-photon implementation of the general MML algorithm in 136 
eqs. (2) and (3) becomes 137 
  138 

 	
  	
  𝐙(@A.) = argmin
𝐙(𝟎

1
2

𝐲𝒕 − 	
  (W @ 𝐳" + 𝐛 @ ) Y
Y

"
+
𝜆n
2

𝐷𝐳a Y
Y

a
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   (8) 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 29, 2016. ; https://doi.org/10.1101/072173doi: bioRxiv preprint 

https://doi.org/10.1101/072173
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

7	
  
 
 
 
 

 𝜃(@A.) = argmin
𝜽

1
2

𝐲𝒕 − (W𝐳"
@A. + 𝐛)

Y

Y

"
+
𝜆o
2
	
   W g

Y + 	
  
𝜆p
2
	
   𝐛 Y

Y (9) 

 139 
The 𝜆 values in front of the log-prior terms are hyperparameters that are chosen by hand (see the Model fitting 140 
section). 141 
 142 
The non-negativity constraint on the latent variables Z is an important feature of the RLVM. Although it is 143 
possible to use explicitly constrained optimization techniques, we take a different approach that is more in line 144 
with the autoencoder optimization we use to obtain initial values for the MML algorithm (see below). Instead of 145 
optimizing non-negative latent variables zi, we substitute them with unconstrained latent variables xi that are 146 
passed through a rectified linear (ReLU) function g(.): 147 
 148 

 𝑧"a = 	
  𝑔 𝑥"a = 	
  
0	
  	
  	
  if	
  𝑥"a 	
  ≤ 0
𝑥"a	
  if	
  𝑥"a > 0

 (10) 

 149 
The model of neural activity (eq. 1) then becomes 150 
  151 

 𝐲" = 𝑓 W𝑔 𝐱" + 	
  𝐛  (11) 

 152 
and unconstrained optimization techniques can be used in eq. (8) to solve for X instead of Z. Although the ReLU 153 
function is not differentiable at zero, we use the subdifferential approach common in the neural networks literature 154 
and define the derivative to be zero at zero (Hara et al., 2015). 155 
 156 
Initialization of latent variables using an autoencoder. In the inference of Z (eq. 8), there are T*M parameters 157 
to estimate, which is a very high-dimensional space to search. The prior distribution we place on the latent 158 
variables is not a strong one, and as a result this optimization step tends to get stuck in poor local minima. In order 159 
to avoid these poor local minima, we start the MML optimization algorithm using initial estimates of both the 160 
model parameters and the latent variables from the solution of an autoencoder (Boulard and Kamp, 1989; 161 
Japkowicz et al., 2000; Bengio et al., 2013). An autoencoder is a neural network model that attempts to reconstruct 162 
its input using a smaller number of dimensions, and its mathematical formulation is similar to the RLVM; so 163 
similar, in fact, that the model parameters in the RLVM have direct analogues in the autoencoder, as shown below. 164 
Furthermore, the optimization routine for the autoencoder is faster and better-behaved than the MML algorithm, 165 
which makes it an attractive model for finding initial RLVM values. 166 
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 167 
The autoencoder takes the vector of neural activities 𝐲" 	
   ∈ 	
  ℝ& and projects it down onto a lower dimensional 168 
space ℝ* using an encoding matrix W. ∈ 	
  ℝ*×&. A bias term 𝐛. 	
  ∈ 	
  ℝ* is added to this projected vector, so that 169 
the resulting vector 𝐱" 	
   ∈ 	
  ℝ*	
  is given by xt	
  =	
  W1yt	
  +	
  b1. W1 is said to encode the original vector yt in the lower 170 
dimensional space with the vector xt, and this vector is analogous to the unconstrained latent variables in the 171 
RLVM. As with the RLVM, we enforce the non-negativity constraint on xt by applying the ReLU function: 172 
 173 

 zt	
  =	
  g(xt)	
  =	
  g(W1yt	
  +	
  b1)	
   (12) 

 174 
The autoencoder (again like the RLVM) then reconstructs the original activity	
  yt by applying a decoding matrix 175 
WY ∈ 	
  ℝ&×* to zt and adding a bias term 𝐛Y 	
  ∈ 	
  ℝ&. The result is passed through a parametric nonlinearity f(.) so 176 
that the reconstructed activity 𝐲" 	
   ∈ 	
  ℝ& is given by  177 
 178 

 𝐲" = 𝑓(WY𝐳" + 	
  𝐛Y) (13) 

 179 
which matches the RLVM model structure in eq. (1). The weight matrices and bias terms, grouped as Θ	
  =	
  180 
{W1,W2,b1,b2}, are simultaneously fit by minimizing the reconstruction error 𝐿(𝐲", 𝐲") between the observed 181 
activity yt and the predicted activity 𝐲":  182 
 183 

 Θ = 	
   argmin
y

𝐿(𝐲", 𝐲") (14) 

 184 
Once this optimization problem has been solved using standard gradient descent methods, we initialize the RLVM 185 

model parameters in eq. (2) with 𝜃()) = {WY, 𝐛Y}. A notable feature of the autoencoder is that there is no need to 186 
alternate between inferring latent variables and estimating model parameters, as in eqs. (2) and (3); once the model 187 
parameters have been estimated using eq. (14), the latent variables can be explicitly calculated using eq. (12). 188 
 189 
For modeling 2-photon data (as above), the noise distribution is Gaussian and the nonlinearity f(.) in eq. (13) is 190 
assumed to be linear. The reconstruction error 𝐿(𝐲", 𝐲") for Gaussian noise is the mean square error (again 191 
assuming equal noise variances across neurons), so in this special case of eq. (14) the autoencoder estimates for 192 
the weights and biases are given by: 193 
 194 
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Θ = argmin
y

1
2

𝐲" − 	
  𝐲" Y
Y

"
	
  

= argmin
y

1
2

𝐲" − (WY𝐳" + 𝐛Y) Y
Y

"
	
  

= 	
   argmin
y

1
2

𝐲" − (WY𝑔(W.𝐲" + 	
  𝐛.) + 𝐛Y) Y
Y

"
 

(15) 

 195 
and we perform this optimization using an L-BFGS routine to obtain the weights and biases.  196 
 197 
We also include regularization terms for the model parameters, which prevent over-fitting to the training data and 198 
can improve the model’s ability to generalize to new data (Bishop, 2006). As we saw previously, these 199 
regularization terms can also be interpreted as log-prior distributions on the model parameters in the probabilistic 200 
setting. A more general optimization problem for the autoencoder that includes both the reconstruction error and 201 
these regularization terms is 202 
 203 

 Θ = 	
   argmin
y

𝐿(𝐲", 𝐲") +
𝜆.
2

W. g
Y +

𝜆Y
2

WY g
Y +

𝜆z
2

𝐛. Y
Y +

𝜆{
2

𝐛Y Y
Y (16) 

 204 
Large values of 𝜆a will encourage small values in the corresponding set of parameters. Furthermore, the use of 205 
regularization on the weight matrices helps to break a degeneracy in the autoencoder: because the reconstructed 206 
activity 𝐲" involves the product between the weights W2 and the latent variables zt (eq. 13), an equivalent solution 207 
is given by the product of c*W2 and (1/c)*zt for any positive constant c. Applying a regularization penalty to the 208 
weights W2 limits the range of values W2 can take and thus helps to set a scale for both the weights and the latent 209 
variables. 210 
 211 
We also use “weight-tying” (Bengio et al., 2013), where the encoding and decoding weight matrices are 212 

constrained to be transposes of each other, i.e. WY = (W.)�. This has the effect of nearly halving the number of 213 
model parameters that need to be estimated, which speeds up the model fitting procedure (Fig. A2). Not enforcing 214 
this constraint commonly results in qualitatively similar solutions (Fig. A3), and as a result, all models in this 215 
paper initialized with the autoencoder employ weight-tying. 216 
 217 
Model fitting 218 
Model fitting using the MML algorithm requires alternating between inferring latent variables and estimating 219 
model parameters. We monitored the log-likelihood values throughout this procedure and ensured that the 220 
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algorithm stopped only after additional iterations brought no further improvement. We compared the fitting 221 
behavior of the MML using random initializations versus autoencoder initializations (see Results). For these tests, 222 
we used the same regularization values for the latent variables (𝜆n = 1) and for the model parameters (see below) 223 
to facilitate model comparisons. 224 
 225 
The latent variable models we used to analyze the simulated and experimental data were the RLVM (regularization 226 
parameters set as λ1	
  =	
  λ2	
  = 1000/(number of latent variables), λ3	
  =	
  λ4	
  = 100, lambdas numbered as in eq. 16; code 227 
available for download at www.neurotheory.umd.edu/code), PCA (using MATLAB’s built-in function pca), FA 228 

(using MATLAB’s built-in function factoran; default settings), and ICA (using FastICA, available for 229 

download at http://research.ics.aalto.fi/ica/fastica/; default settings). The FA results reported using the dataset 230 
from Peron et al. (2015) used a PCA-based algorithm (available for download at 231 
http://www.mathworks.com/matlabcentral/fileexchange/14115-fa) rather than the maximum likelihood-based 232 
algorithm factoran, which proved prohibitively inefficient on such a large dataset. Autoencoder fitting was 233 

performed using a MATLAB implementation of the L-BFGS routine by Mark Schmidt, available for download 234 
at www.cs.ubc.ca/~schmidtm/Software/minFunc.html. 235 
 236 
Model fitting was performed using 5-fold cross-validation (data is divided into five equally-sized blocks, with 237 
four used for training and one for testing, with five distinct testing blocks) unless otherwise noted. To assess the 238 
quality of model fits, we employed a procedure that is similar to the leave-one-out prediction error introduced in 239 
Byron et al. (2009). For all models (RLVM, PCA, FA, ICA), model parameters were fit using the training data 240 
for all neurons. Then, to determine how well each model was able to capture the activity of a single neuron using 241 
the testing data, we used the activity of all other neurons to calculate the activity of the latent variables (by setting 242 
the encoding weights of the left-out neuron to zero). We then performed a simple linear regression using the 243 
activity of the latent variables to predict the activity of the left out neuron. The R2 values reported are those 244 

obtained by comparing the true activity 𝑦"a of neuron i at time t with the activity predicted by the various methods 245 

𝑦"a in this leave-one-out fashion, and averaging over neurons: 246 
 247 

 𝑅Y = 	
  
1
𝑁

1 −	
  
(y"a − 	
  𝑦"a)Y"

(y"a − 	
  𝑦a)Y"

&

a-.

 (17) 

  248 
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where 𝑦a is the average activity of neuron i. Note that for this leave-one-out procedure, if just a single neuron is 249 
contributing to the activity of a latent variable, this procedure will result in a small R2 value for that neuron during 250 
cross-validation. 251 
 252 
For simulated data, we can compare the true and inferred latent variables to ensure that an inferred latent variable 253 
isn’t driven by just a single neuron. Therefore, the R2 values reported for the simulated data are not calculated in 254 
this computationally-intensive leave-one-out manner, but rather use encoding and decoding matrices learned from 255 
the training data to compute the latent variables and the predicted activity. The resulting predicted activity is then 256 
compared to the true activity using eq. (17). 257 
 258 
Simulated data generation 259 
We evaluated the performance of the RLVM using simulated datasets, which were generated using five non-260 
negative latent variables that gave rise to the observed activity of 100 neurons. Note that these choices reflect our 261 
core hypotheses of the properties of latent variables in the cortex, and also match the assumptions underlying the 262 
RLVM model structure. Latent variables were generated by creating vectors of random Gaussian noise at 100 ms 263 
time resolution and then smoothing these signals with a Gaussian kernel. To enforce the non-negativity constraint 264 
on the latent variables, a positive threshold value was subtracted from each latent variable, and all resulting 265 
negative values were set to zero. Correlations between different latent variables were established by multiplying 266 
the original random vectors (before smoothing) by a mixing matrix that defined the correlation structure. Although 267 
smoothing and thresholding the correlated latent variables changed the correlation structure originally induced by 268 
the mixing matrix, the new correlation structures obtained by this procedure were qualitatively similar to those 269 
seen in experimental data. 270 

 271 
The latent variables thus obtained acted as inputs to a population of neurons (Fig. 1). To calculate the coupling 272 
weights between the latent variables and the neurons in the population, a coupling matrix was created to 273 
qualitatively match the coupling matrices found in experimental data (compare Figs. 3B and 1C). Since the 274 
experimental data used later in the paper comes from a 2-photon imaging experiment, we chose to simulate data 275 
resembling 2-photon fluorescence traces. To compute simulated fluorescence traces for each neuron, first the 276 
firing rate of the neuron was computed as the weighted sum of the latent variables, with the weights defined in 277 
the coupling matrix. The resulting firing rate was used to produce a spike train using a Poisson spike generator. 278 
The spike train was then convolved with a kernel to create the calcium signal and finally Gaussian random noise 279 
was added to generate a simulated fluorescence signal. 280 
 281 
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Experimental data 282 
Experimental protocol and data preprocessing. We evaluated the RLVM on data from the Svoboda lab (Peron 283 
et al., 2015), which has been made publicly available at http://dx.doi.org/10.6080/K0TB14TN. In this experiment 284 
mice performed a tactile discrimination task with a single whisker. During a given trial, neural activity was 285 
recorded from layers 2/3 of barrel cortex using 2-photon imaging with three imaging planes set 15 µm apart. These 286 
imaging planes constituted a subvolume, and eight subvolumes were imaged during a given session. Furthermore, 287 
those same subvolumes were imaged across multiple experimental sessions, and the resulting images were later 288 
registered so that activity of individual regions of interest (ROIs) could be tracked across the multiple sessions. 289 
Raw fluorescence traces were extracted from each ROI and neuropil corrected. For each ROI a baseline 290 
fluorescence F0 was determined using a 3-minute sliding window and used to compute ΔF/F = (F-F0)/F0. 291 
 292 
Data selection. The publicly available dataset contains the ΔF/F fluorescence traces of tens of thousands of 293 
neurons imaged over multiple sessions for eight different mice. In order to select subsets of this data for analysis 294 
with the latent variable models, we restricted our search to volume imaging experiments where somatic activity 295 
was imaged in trained mice. We then looked for subsets of simultaneously imaged neurons that maximized the 296 
number of neurons times the number of trials imaged, selecting nine different sets of imaged neurons, three sets 297 
from each of three different mice. Within each set, neurons were removed from this selection if they met one or 298 
both of the following criteria: (1) more than 50% of the fluorescence values were missing (indicated by NaNs); 299 
(2) the fluorescence trace had a signal-to-noise ratio (SNR) less than one. To estimate the SNR, a smoothed version 300 
of the fluorescence trace was estimated with a Savitzky-Golay filter (using MATLAB’s built-in function 301 
sgolayfilt). The noise was estimated using the residual between the original trace and the smoothed trace. 302 

The SNR was then calculated as the variance of the smoothed trace divided by the variance of the noise. 303 
Furthermore, we removed trials from the data selection if NaN values existed in the whisker measurements or in 304 
one or more of the remaining fluorescence traces. See Table A1 in the Appendix for more information about the 305 
specific subpopulations of neurons analyzed. 306 
 307 
Alignment of fluorescence traces across sessions. As described above, data from each experiment we used 308 
consisted of imaging the population activity over several recording sessions. Although fluorescence traces for 309 
each neuron were corrected for different baseline fluorescence levels in the online dataset, we found it necessary 310 
to recalculate session-specific baseline fluorescence levels in order to concatenate traces across different sessions. 311 
[Unlike the analyses in the original work (Peron et al., 2015), the models considered here were particularly 312 
sensitive to this baseline level because all fluorescence traces were analyzed jointly.] In the original work, baseline 313 
fluorescence level was calculated using the skew of the distribution of raw fluorescence values, under the 314 
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assumption that more active neurons will have more highly skewed distributions. However, this monotonic 315 
relationship breaks down for very active neurons, whose distributions are not as skewed since there are very few 316 
values near the baseline level. Because we found many neurons in the dataset that fell into this last category, we 317 
recalculated baseline fluorescence levels on a session-by-session basis.  318 
 319 
Using basic simulations of how the distribution of fluorescence values of a Poisson neuron depends upon its mean 320 
firing rate and SNR, we could match this with the data from each neuron to unambiguously infer its baseline 321 
fluorescence level. Specifically, for each neuron and each session, we measured both the SNR of its fluorescence 322 
(described above) and also measured the skewness of its distribution of fluorescence (using MATLAB’s built-in 323 
function skewness). We simulated neural activity with the same SNR while varying the mean firing rate until 324 

the resulting distribution of values matched the measured skewness. Once the optimal mean firing rate was 325 
determined, we could then use the simulation to determine the best estimate of the baseline fluorescence level on 326 
a session-by-session basis. This procedure led to improved model estimation for all latent variable methods.  327 
 328 
Sorting of coupling matrices. The ordering of simultaneously recorded neurons is arbitrary, so we chose the 329 
ordering for the display of the coupling matrices W to highlight groups of neurons that share similar coupling 330 
patterns. We first sorted the rows using the coupling weights to the first latent variable (first column) for all 331 
neurons with a weight higher than a predefined threshold value. We then sorted all remaining neurons with 332 
coupling weights to the second latent variable (second column) above the same threshold. This procedure is 333 
repeated for each column of W, and produces a block diagonal structure (e.g., Fig. 3B). The last column is sorted 334 
without using the threshold so that it contains all remaining neurons. 335 
 336 
RESULTS 337 
Model formulation 338 
The goal of latent variable modeling is to describe the activity of many simultaneously recorded neurons using a 339 
small number of latent variables. Consider a population of N neurons, with the ensemble of observed activity at 340 
time t represented by a vector yt – this observed activity could, for example, be spike counts from multielectrode 341 
recordings or fluorescence values from 2-photon microscopy. The M latent variables will also have a vector of 342 
activity zt at each time point, where M is a free parameter of the model (Fig. 1). The RLVM then attempts to 343 
predict the population activity yt as a function f(.) of a linear combination of the latent variables zt  344 
 345 

 𝐲" = 𝑓(W𝐳" + 	
  𝐛)  

 346 
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where W is a matrix of weights that describes how each neuron is coupled to each latent variable, and b is a vector 347 
of bias terms that account for baseline activity. For 2-photon data, it is appropriate to use a linear function for f(.), 348 
while for spiking data one can use a function that results in non-negative predicted values to match the non-349 
negative spike count values (Paninski, 2004). 350 
 351 
The vector of latent variables zt will in principle represent all factors that drive neural activity, including both 352 
stimulus- and non-stimulus-locked signals. These factors may or may not be related to observable quantities in 353 
the experiment. For example, they could be related to “external” observables like motor output (Churchland et al., 354 
2012) and pupil dilation (Vinck et al., 2015), or “internal” observables like the LFP (Cui et al., 2016), population 355 
rate (Schölvinck et al., 2015) or dopamine release (Schultz et al., 2015). However, while latent variables might be 356 
related to experimental observables, here we make no assumptions on such relationships in determining them.  357 
 358 
The non-negative assumption on these latent variables is a key distinction between the RLVM and other latent 359 
variable models. It is motivated by the observation that any neural process, whether excitatory or inhibitory, must 360 
be realized using the action potentials or firing rates of neurons, neither of which can take on negative values. As 361 
a result, each latent variable is either inactive (zero) or active to varying degrees, which furthermore allows us to 362 
interpret the influence of a latent variable on a neuron as either excitatory (positive coupling weight) or suppressive 363 
(negative coupling weight).  Additionally, such an assumption on the model structure breaks the rotational 364 
degeneracy characteristic of most linear models. This degeneracy arises in these models because the two solutions 365 
Wzt and (WUT)(Uzt) are equivalent for any orthogonal matrix U, since UTU	
  =	
  I, the identity matrix. The RLVM 366 
will thus be constrained to find the best solution composed of non-negative latent variables. Notably, this 367 
assumption would hurt the ability of the model to describe population activity generated by unconstrained 368 
variables; however, if the population activity is truly generated by non-negative variables, this assumption should 369 
not impact model performance, and will likely contribute to an increased resemblance of the latent variables 370 
identified by the RLVM to underlying unobserved factors contributing to cortical activity. 371 
 372 
A second key innovation of the RLVM is how it is fit to datasets. Inferring the time course of latent variables is 373 
challenging because of their high dimensionality, which has a different value for each time point in the experiment. 374 
Fitting the model using random initializations for both the latent variables zt and model parameters {W,	
  b}	
  does 375 
not achieve good results because the optimization becomes stuck in poor local minima given such a high 376 
dimensional space. As a result, we used an autoencoder framework (Bengio et al., 2013) to fit all model 377 
components simultaneously, which provided reasonable initializations for the full fitting algorithm. The 378 
autoencoder optimizes both zt and {W,	
  b} by minimizing the mean square error (or any appropriate cost function) 379 
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between the true activity and the activity predicted by eq. (13). By using these values to initialize the MML 380 
algorithm we were able to achieve much more accurate solutions, detailed below. 381 
 382 
Validation of the RLVM using simulated data 383 
In order to understand the fitting behavior of the RLVM and ensure that it performs as expected, as well as to 384 
compare the RLVM with other latent variable models, we generated simulated data with five latent variables and 385 
100 neurons. This data was generated under the assumption that the input to each neuron comes from a weighted 386 
combination of a small number of correlated, non-negative latent variables. The resulting input to each neuron 387 
was then passed through a spiking nonlinearity to produce its firing rate, which was then used to randomly generate 388 
spike counts using a Poisson process. Since the experimental data used later in the paper comes from a 2-photon 389 
imaging experiment, simulated data was further processed by convolving the generated spike trains with a kernel 390 
to simulate calcium dynamics, and finally adding Gaussian noise.  391 
 392 
Evaluation of RLVM fitting methods. We first demonstrate the importance of the autoencoder stage of our 393 
optimization procedure, the results of which are used as to initialize the MML algorithm, which is then used to 394 
optimize the model parameters and latent variables (see Methods). To quantify the goodness of fit for each model 395 
type (random initialization vs. autoencoder initialization) we calculated the Pearson correlation coefficients (r) 396 
between the true and inferred latent variables. Using random initializations for this procedure led to poor solutions 397 
for the latent variables (𝑟 = 0.781	
   ± 0.020; mean r ± SEM over 20 initializations), whereas first fitting the 398 
autoencoder (itself initialized randomly) and using the resulting parameters to initialize the MML algorithm led 399 
to far more accurate solutions (𝑟 = 0.971	
   ± 0.001). The superior results achieved by initializing with the 400 
autoencoder solution are due to the high dimensionality of the problem – in the MML algorithm employed here 401 
there are relatively few constraints imposed on the latent variables (non-negativity and some degree of 402 
smoothness, see Methods), which results in many local minima. In contrast, the latent variables of the autoencoder 403 
are constrained to be a linear combination of the recorded population activity, and this constraint results in a much 404 
smaller space of model solutions.  405 
 406 
In fact, we found that the latent variables resulting from the autoencoder-initialized MML optimization were 407 
extremely similar to the initial values found by the autoencoder itself (𝑟 = 0.994	
   ± 0.000). The main difference 408 
between these solutions is that the additional optimization step following the autoencoder smooths the time course 409 
of the latent variables, whereas the autoencoder latent variables are not generally smooth. Due to the fact that the 410 
latent variables from the autoencoder do not have to be separately inferred for cross-validation data, it is often 411 
convenient to use the autoencoder solutions themselves, forgoing the MML optimization altogether. This has the 412 
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added advantage here in making model performance more straightforward to compare against the other latent 413 
variable models. 414 
 415 
Because there are many factors that can affect the performance of the autoencoder network used to fit the RLVM, 416 
we also looked at the effects of varying parameters governing both the simulated data generation and the fitting 417 
procedure to better understand the autoencoder’s sensitivity to these variables. We found that the autoencoder can 418 
accurately recover the latent variables and coupling matrix even with small amounts of data (Fig. A1A) and low 419 
SNR (Fig. A1B). We explored the sensitivity of the autoencoder to different values of the regularization parameter 420 
on the encoding and decoding weights (λ1 and λ2, respectively, in eq. 16), and found that the results obtained by 421 
the autoencoder are constant across several orders of magnitude (Fig. A1C). In practice, we also found that the 422 
autoencoder solutions were not prone to getting stuck in different local minima given random initializations of the 423 
autoencoder parameters. These experiments suggest that the autoencoder is a robust fitting method for the RLVM 424 
that does not need large amounts of data or precise tuning of optimization parameters in order to produce accurate 425 
results. 426 
 427 
We also tested whether the RLVM’s non-negativity constraint is essential for recovering the correct latent 428 
variables from the simulated data. Again using r as a goodness-of-fit measure for the inferred latent variables, we 429 
fit the RLVM to the simulated data (using the autoencoder) with different functions for g(.) in eq. (12). We found 430 
that using the rectified nonlinearity (ReLU function) led to much more accurate solutions (𝑟 = 0.963	
   ± 0.002; 431 
mean r ± SEM over 20 initializations) than when using a non-rectified (linear) version of the RLVM (𝑟 =432 
0.573	
   ± 0.021). This illustrates the importance of using the nonlinearity to enforce the non-negativity of latent 433 
variables, in order for the RLVM to recover the latent variables generated with such a non-negative constraint. 434 
 435 
Comparison of RLVM with other latent variable methods. To understand how the RLVM compares with other 436 
latent variable methods, we also fit PCA, FA and ICA models to the simulated data (Fig. 2). Such simulations are 437 
useful for putting in context results from real data, where the ground truth is not known. We first compared the 438 
latent variables inferred by the different models (Fig. 2A), again using r as a goodness-of-fit measure. The RLVM 439 
and FA perform extremely well, while PCA and ICA perform rather poorly (Fig. 2B). The good performance of 440 
the RLVM should be unsurprising, given that the data was generated according to the assumptions of the RLVM. 441 
The fact that FA performs so well is perhaps more surprising given that it assumes independent Gaussian variables, 442 
but these assumptions are only used for determining the initial coupling matrix; the final coupling matrix is 443 
determined using varimax rotation (MATLAB default), and the resulting latent variables are determined using 444 
linear regression (MATLAB default), which makes no assumptions about their distribution. PCA and ICA do not 445 
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infer the correct latent variables because they make assumptions about the latent variables being uncorrelated 446 
(PCA) or independent (ICA), neither of which is true of the simulated data (Fig. 2B). 447 
 448 
Given the inferred latent variables, we were also interested in how well each method captured the coupling weights 449 
between these latent variables and each neuron. Visual inspection of the coupling matrices (Fig. 2C) shows that 450 
the RLVM and FA performed much better than PCA or ICA, due to the accuracy of their inferred latent variables. 451 
Again, the strong assumptions that PCA and ICA place on the latent variables prohibits their accurate estimation 452 
of the coupling matrices. 453 
 454 
For all four models considered here, the predicted activity of an individual neuron is given by the sum of the latent 455 
variables (Fig. 2A, B), weighted by the values in the proper row of the coupling matrix (Fig. 2C). To quantify this 456 
prediction accuracy, we used the coefficient of determination (R2; see Methods) between the true and predicted 457 
activity (Fig. 2D, E). Interestingly, even though the RLVM and FA produced similar latent variables and coupling 458 
matrices, FA did not predict the population activity as well as the RLVM. This was mostly due to many large 459 
weights in the FA coupling matrix (compare the red diagonal blocks in Fig. 2C to the true coupling matrix), which 460 
is an artifact of the varimax rotation step common in many FA algorithms.  461 
 462 
Perhaps surprisingly, PCA performed just as well as the RLVM, even though PCA does not infer the correct latent 463 
variables or estimate the correct coupling weights. The reason for this is that the RLVM and PCA both minimize 464 
the reconstruction error in their cost function (explicitly and implicitly, respectively); however, because PCA does 465 
not constrain the latent variables to be positive, it reconstructs the population activity using both positive and 466 
negative values. This leads to differences in the latent variables (Fig. 2A) and coupling matrices (Fig. 2C), but can 467 
result in an equivalent prediction of activity (Fig. 2D). This difference between the RLVM and PCA in their 468 
descriptions of the population activity is a crucial point that we will return to when evaluating the PCA solutions 469 
on real data. 470 
 471 
Finally, we evaluate each method on its ability to account for observed correlations between neurons. Many 472 
previous approaches have focused on explaining pairwise correlations directly (Schneidman et al., 2006; Pillow 473 
et al., 2008; Ohiorhenuan et al., 2010), which requires parameters for each pair of neurons. However, as we see 474 
from our simulation, even just five latent variables can produce a complex pattern of pairwise interactions (Fig. 475 
2F). Thus, latent variable methods offer the ability to explain such correlations using many fewer parameters. To 476 
quantify each model’s ability to capture these correlations, we compare the cross-correlogram at the zero-time-477 
lag point between data and prediction from each neuron pair (which forms the correlation matrix). This agreement 478 
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was measured using the overlap between the true correlation matrix and the predicted correlation matrix (Fig. 2G). 479 
The results mostly mirror the ability of each method to predict the population activity (Fig. 2E), with the RLVM 480 
and PCA capturing more of the correlation structure than FA and ICA. 481 
 482 
 483 
Application of the RLVM to 2-photon experiments in primary somatosensory cortex 484 
With the RLVM validated for simulated data, we next apply the RLVM to the experimental dataset from Peron et 485 
al. (2015). We selected this dataset because it involves a complex task with many “observables” related to behavior 486 
and task context, many of which are outside of direct experimental control, but likely related to cortical activity. 487 
Additionally, there were a large number of neurons recorded over long periods of time, which allowed us to test 488 
the RLVM on a dataset of appreciable size. In this experiment, mice performed a pole-localization task, in which 489 
a pole was lowered at a distal or proximal location next to the animal’s snout. The animal could touch the pole 490 
with a single whisker, and then had to signal its decision after a delay period by licking one of two lick-ports 491 
following the onset of a brief auditory cue. For the analyses in this work, we used a particular subset of this data 492 
(see Appendix, Table A1) selected based on the size of the neural population imaged, the length of time imaged, 493 
and its signal-to-noise ratio (see Methods). 494 
 495 
We first determined how well the different latent variable models predicted the observed population activity (Fig. 496 
3A) (see Methods for model-fitting procedures). The relative performance of the methods is similar to their 497 
performance on the simulated data (Fig. 2E). For the RLVM, PCA and FA, there was at first a rapid increase in 498 
prediction performance as the number of latent variables increases, and then the performance began to plateau 499 
between five and ten latent variables. While this plot does not directly indicate how many “true” latent variables 500 
generate the data, it is important to note that relatively few are needed before the performance plateaus. Because 501 
there is no explicit point where this occurs, we selected a point where there was only a marginal increase in 502 
performance (six latent variables) for all subsequent analyses. 503 
 504 
Once the latent variables are determined, the coupling matrix of the RLVM allows us to understand how each 505 
neuron combines these variables to produce its predicted activity (Fig. 3B). One of the advantages of using 2-506 
photon data is that it provides the spatial locations of the neurons, and we can use that information to determine if 507 
there is any spatial structure in the coupling weights to the latent variables. We plotted a subset of the weights 508 
(any with an absolute magnitude greater than 15% of the maximum absolute magnitude for each latent variable) 509 
according to each neuron’s spatial location (Fig. 3C). The positive and negative weights are intermingled in these 510 
plots, and no discernible spatial structure exists. This is expected in part because these neurons are imaged within 511 
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a single barrel, and thus all belong to a single cortical column. Nevertheless, this illustrates how latent variables 512 
can provide a new way to investigate the functional organization of cortex. 513 
 514 
With simulated data we were able to directly compare the latent variables inferred by each method with the ground 515 
truth, but with experimental data we have no direct way to validate the latent variables that each method detected. 516 
Instead, we hypothesized that latent variables will be related to factors that might be directly observed in the 517 
experiment. We thus begin by comparing the time course of latent variables discovered by the RLVM to different 518 
elements of the experiment. In this case, there were four “trial variables” measured in this dataset: the timing of 519 
whisker touches against the pole, the onset of the auditory cue that signals the animal to make its choice, the onset 520 
of reward delivery when the animal makes the correct choice, and the timing of licks. Clearly, the time courses of 521 
different latent variables had some relationship with some of the trial variables (Fig. 4A).  522 
 523 
To quantify these observations, we used linear regression in order to predict the activity of each latent variable 524 
using the four observed trial variables. We performed a separate linear regression for each trial variable, which 525 
did not take into account the correlations that exist among the trial variables, like reward delivery and licks. This 526 
leaves open the possibility that a latent variable is actually driven by reward delivery, but is equally well-predicted 527 
by licks because of the tight correlation between these two variables. There is also the possibility, however, that 528 
the animal licks many times when the reward is not delivered (such as on error trials) and so we considered all 529 
trial variables independently. Furthermore, coefficients for the linear regression include lagged time points, which 530 
allowed the regression model to capture the extended temporal response of fluorescence transients (Fig. 4B). We 531 
found that latent variables #1, #2 and #4 are well-predicted by the reward portion of the trial, latent variable #3 is 532 
well-predicted by whisker touches, and latent variables #5 and #6, which don’t have any discernible trial-locked 533 
patterns, are not well-predicted by any of these four trial variables. 534 
 535 
With these quantitative measures, we can label each latent variable with the set of trial variables that best predict 536 
it. To do so, we required that (1) the R2 value using that trial variable was greater than 0.10, and (2) the R2 value 537 
was greater than one-half the largest R2 value among all trial variables. If both these conditions were met, we 538 
considered the latent variable to be driven (though perhaps not exclusively) by that trial variable (Fig. 4C, lower 539 
panel). We found that, even though this population of neurons is located in the primary somatosensory cortex, 540 
only one of the latent variables is identified with whisker touches, while three of the latent variables are identified 541 
with the reward portion of the trial.  542 
 543 
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Besides just knowing which trial variables are correlated with each latent variable, we were interested in 544 
quantifying how strongly each latent variable influences the population response. First, we looked at how each 545 
latent variable contributes to the overall proportion of predicted activity. To do this for a given latent variable, for 546 
each neuron we calculated the variance of the latent variable, weighted by the neuron’s coupling strength to that 547 
latent variable (from the matrix in Fig. 3B). This value was divided by the variance of the neuron’s total predicted 548 
activity, and the resulting value is a measure of how much that latent variable contributes to that neuron’s predicted 549 
activity. [Note that, because latent variables can be correlated, these proportions will not add to one since we 550 
ignored cross-covariances.] These values were then averaged over all neurons to obtain a measure of the 551 
proportion of predicted activity driven by the given latent variable (Fig. 4C, upper panel, blue bars). Latent 552 
variable #1, which is driven by the reward portion of the trial, contains the largest proportion of predicted 553 
population activity. Latent variable #3, which is the only latent variable identified with the stimulus, contains the 554 
third largest proportion, while latent variables #5 and #6, which are not identified with any trial variables, contain 555 
the lowest proportion of predicted activity.  556 
 557 
We also quantified how strongly a latent variable influences the population by measuring the proportion of neurons 558 
driven by that latent variable. To quantify this for a given latent variable, for each neuron we divided the variance 559 
of the weighted activity of the latent variable by the variance of the neuron’s measured activity, smoothed using 560 
a Savitzky-Golay filter to remove noise variance (implemented with the MATLAB function sgolayfilt) (Fig. 561 

4D). We then considered a neuron to be driven by that latent variable if the proportion of total measured activity 562 
exceeds 0.10 (Fig. 4C, upper panel, red bars). Similar to previous observations, latent variable #1 affects the 563 
largest proportion of neurons, at about one-third, while latent variables #5 and #6 affect the smallest proportions 564 
of neurons. 565 
 566 
We performed the same analyses as in Fig. 4 using PCA to see if there were fundamental differences in its 567 
description of the population activity (Fig. 5). The latent variables inferred by PCA (Fig. 5A) do in fact contain 568 
features that are correlated with the trial variables, but these features tended to be more mixed than in the RLVM 569 
latent variables. To illustrate this, consider RLVM latent variables #1 and #2, which are associated with 570 
suppressive and excitatory activity during the reward phase, respectively (Fig. 4A). While the RLVM cleanly 571 
separates these two subpopulations, they are mixed together in the first principal component of PCA (Fig. 5B, 572 
middle; neurons ~0-50 and ~240-260, respectively). PCA mixes these two subpopulations because such a 573 
combination into a single principle component explains the greatest amount of variance in the data, and this 574 
combination is possible because PCA is not restricted to using non-negative latent variables. 575 
 576 
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To determine if the non-negativity constraint on the RLVM is responsible for the differences between the PCA 577 
and RLVM solutions, we fit the RLVM on the same data without constraining the latent variables to be non-578 
negative. The latent variables inferred by this non-rectified version of the RLVM were qualitatively similar to 579 
PCA’s latent variables (Fig. 5C), and indeed this model’s latent variables exhibit the same type of mixing as the 580 
PCA latent variables. This demonstrates that the RLVM’s ability to separate these subpopulations of neurons is 581 
mainly due to the rectified nonlinearity, rather than an artifact of PCA’s constraint that the latent variables must 582 
be uncorrelated. This result is similar to the earlier comparison between the RLVM and non-rectified version of 583 
the RLVM on simulated data, where we found that the rectified nonlinearity was crucial for inferring the correct 584 
latent variables. 585 
 586 
This example also illustrates that although the RLVM and PCA are able to explain the same amount of population 587 
activity (Fig. 3A), the underlying latent variables can differ dramatically due to rectification (similar results were 588 
seen with FA – data not shown). This same result was seen in the simulated data (Fig. 2A), and suggests that – if 589 
population activity is indeed composed of non-negative latent variables – the structure of the RLVM makes it a 590 
more appropriate method for studying neural population activity.  591 
 592 
To demonstrate that the above results from the RLVM (Figs. 3 and 4) are consistent across different populations 593 
of neurons and different animals, we repeated these analyses using three populations of neurons from each of three 594 
animals (see Table A1 in the Appendix for more detailed information). The nine populations contain anywhere 595 
from 106 to 896 neurons, and the prediction performance of the RLVM for each population is plotted in Fig. 6A. 596 
It is interesting to note that all of these curves mostly plateau before reaching 10 latent variables, despite the fact 597 
that the number of neurons in these populations spans almost an order of magnitude. To repeat the analyses in Fig. 598 
4 we used six latent variables for each population (Fig. 6B). Values were calculated as before, but averaged over 599 
latent variables. (Averaging over all neurons in each latent variable, which takes into account the relative sizes of 600 
the populations, did not qualitatively change these results).  601 
 602 
This meta-analysis shows that the results from Figs. 3 and 4 hold across different populations in different animals: 603 
the latent variables associated with the reward portion of the trial account for the largest proportion of the predicted 604 
activity in the populations; latent variables associated with the stimulus are found in the majority of populations, 605 
but drive a smaller proportion of neurons; and variables that are not identified with any trial variables are found 606 
in all populations, and tend to drive a smaller proportion of neurons. Together, these results (Figs. 3-6) demonstrate 607 
the usefulness of the RLVM as a tool for studying population responses in cortical areas, and suggest that latent 608 
variable models will be crucial to arriving at a deeper understanding of cortical function. 609 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 29, 2016. ; https://doi.org/10.1101/072173doi: bioRxiv preprint 

https://doi.org/10.1101/072173
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

22	
  
 
 
 
 

 610 
DISCUSSION 611 
Recordings of the activity from increasingly large numbers of cortical neurons provides opportunities to gain 612 
insight into the underlying factors driving cortical activity. Given that there are fewer variables underlying the 613 
activity than the number of neurons being recorded, latent variable approaches provide a way to infer the time 614 
course of these underlying factors and their relationship to neural activity. Here, we presented the Rectified Latent 615 
Variable Model (RLVM), which is unique in that it assumes a nonlinear structure on the network appropriate for 616 
neural activity – namely, that underlying factors are non-negative (rectified). The RLVM can be fit without 617 
needing to rely on a number of statistical assumptions characteristic of past latent variable models, such as the 618 
specification of particular distributions for the latent variables. The RLVM is robust to many aspects of data 619 
acquisition and model fitting (Fig. A1), and scales well with increasing numbers of neurons and recording length 620 
(Fig. A2). 621 
 622 
The results of the simulated data experiments demonstrate that the RLVM is able to outperform PCA, FA and 623 
ICA across a variety of measures. It is able to properly recover the latent variables that generated the simulated 624 
data (Fig. 2B), as well as each neuron’s coupling weights to those latent variables (Fig. 2C). This guarantees that 625 
the method is able to predict single neuron activity well (Fig. 2E), which thus implies the method is able to 626 
accurately capture the structure of the pairwise correlation matrix (Fig. 2G).  627 
 628 
Our results on experimental data demonstrate the utility of the RLVM as a tool for addressing questions about the 629 
structure of joint responses in large neural populations. Some of the latent variables inferred by the RLVM have 630 
clear relationships with measured trial variables, indicating that these latent variables have meaningful 631 
interpretations. We also demonstrated that the nonlinear nature of the RLVM leads to important distinctions in 632 
the description of the population activity when compared to a method like PCA, which has consequences for 633 
further understanding the role these latent variables play in cortical function. 634 
 635 
Relationships to other latent variable models 636 
Latent variable models can be classified into two broad classes: static models, which do not take temporal 637 
dynamics of the latent variables into account, and dynamic models, which do. The RLVM has elements of both, 638 
although is more directly comparable to static models like PCA, FA and ICA. These models are known as linear 639 
factor models, so termed because there is a linear transformation from latent variables to predicted activity. While 640 
this need not be the case in the general RLVM framework (eq. 1), the formulation of the RLVM for 2-photon data 641 
uses this assumption as well. One advantage of the RLVM over these other linear factor models is that it does not 642 
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specify any statistical constraints on the latent variables, which allows it to accurately capture correlated latent 643 
variables. Furthermore, due to the non-negativity constraint on the latent variables, the RLVM is able to identify 644 
latent variables that more closely resemble the form of expected inputs into the cortex, and does not have multiple 645 
equivalent solutions that arise from orthogonal transformations like some linear factor models.  646 
 647 
In the absence of such nonlinearities, there is a close relationship between the RLVM and PCA. If the 648 
nonlinearities f(.) and g(.) in eq. (11) of the RLVM are linear, and the mean square error cost function is used, 649 
then the autoencoder solution of the RLVM lies in the same subspace as the PCA solution (Boulard and Kamp, 650 
1989). The only difference is that the components of the RLVM can be correlated, whereas PCA requires them to 651 
be uncorrelated. However, using nonlinear functions for  f(.) and/or g(.) allows the RLVM to capture more 652 
complex structure in the data than a linear model like PCA (Japkowicz et al., 2000). 653 
 654 
The RLVM structure is also comparable to energy-based models, which is another class of static models that is 655 
exemplified by the Restricted Boltzmann Machine (RBM) (Koster et al., 2014).  In the case that both the 656 
nonlinearities f(.) and g(.) in eq. (11) are sigmoids, the RLVM has the exact same mathematical structure as the 657 
standard RBM. Despite this similarity, the energy-based cost function of the RBM results in a model fitting 658 
approach that is significantly different from that of the RLVM. While standard RBMs are used with binary data, 659 
they can be extended to work with Gaussian distributions, in which case they closely resemble FA (Hinton, 2012). 660 
 661 
The RLVM structure also contains elements of dynamic latent variable models, due to the log-prior term log 𝑝(𝐙) 662 
in eq. (2). The smoothing prior that we use here allows latent variable values at time points t-1 and t+1 to influence 663 
the value at time t. This is similar to the smoothing prior of Gaussian Process Factor Analysis (GPFA) (Yu et al., 664 
2009), which allows a latent variable value at time point t to have a more complex dependence on past and future 665 
time points. However, as the name implies, GPFA is based on FA, and imposes similar statistical constraints on 666 
the latent variables that we try to avoid with the RLVM for reasons mentioned above. The state space models 667 
(Paninski et al., 2009) are another class of dynamic latent variable models, and constrain each latent variable at 668 
time t to be a linear combination of all latent variables at time t-1. Unlike the RLVM, which specifies a fixed 669 
relationship between the time points in the dynamics model, state space models fit the dynamics model to the data. 670 
This allows one to model the causal relationship between latent variables, but comes at the expense of making a 671 
strong assumption about the form of that relationship (namely, that latent variables are only determined by their 672 
values at the previous time step). 673 
 674 
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We found that the solutions for both the static and dynamic versions of the RLVM were similar, due in part to the 675 
simple dynamics model we imposed. However, the nature of 2-photon data does not lend itself to more restrictive 676 
dynamics models (like the state space models) because of the slow time scales. The investigation of more complex 677 
dynamics models in the RLVM is a direction for future work. 678 
 679 
Model extensions 680 
The RLVM is a flexible model framework because there are many possible extensions that can be incorporated, 681 
depending on the desired application area. For example, additional regularization penalties can enforce desired 682 
properties on either the coupling weights or the latent variables. An L1-norm penalty on the coupling weights can 683 
enforce sparseness, so that each neuron only receives nonzero input from a small number of latent variables. An 684 
L1-norm penalty can likewise be applied to the activities of the latent variables, so that the activity of each latent 685 
variable is sparse. 686 
 687 
One limitation of the RLVM is that it is only able to model additive interactions between the latent variables. 688 
Although there is evidence to support the existence of additive interactions in cortex (Arieli et al., 1996), and 689 
although they are commonly used for modeling (Okun et al., 2015; Schölvinck et al., 2015; Cui et al., 2016), there 690 
has been recent interest in modeling multiplicative interactions (Lin et al., 2015; Rabinowitz et al., 2015). It is 691 
theoretically possible to extend the RLVM to model non-additive interactions by adding more hidden layers to 692 
the model. This approach effectively allows a neural network to transform the latent variables into the observed 693 
data in a nonlinear manner, and is the basis of “stacked” autoencoders (Bengio et al., 2013), which we leave as a 694 
direction for future work.  695 
 696 
For some analyses, it may not be desirable to have the effects of the stimulus represented in the activity of the 697 
latent variables. In this case it is possible to incorporate a stimulus model into the RLVM, such that the activity 698 
of each neuron is driven by the weighted sum of the latent variables plus terms that capture the stimulus response. 699 
These stimulus terms could be a simple, nonparametric PSTH-based model of the stimulus, or involve a more 700 
complicated parametric form (McFarland et al., 2013). Regardless of how the effects of the stimulus are captured, 701 
using the autoencoder variant the RLVM can still be fit using a standard gradient descent algorithm, and allows 702 
for the investigation of the relationship between stimulus processing and ongoing cortical activity. 703 
 704 
The recent development of new recording technologies like high-density multi-electrode arrays and 2-photon 705 
microscopy is leading to increasingly large and rich neural datasets. We’ve shown here that the RLVM can be 706 
used effectively to analyze 2-photon datasets, and it is also possible to apply this model to spiking data by using 707 
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a negative log-likelihood cost function that assumes Poisson noise (Fig. A4). The RLVM is thus a simple and 708 
extendable model that can be used to analyze both types of large population recordings, and in doing so can help 709 
uncover neural mechanisms that may not be obvious when studying the responses of single neurons. 710 
 711 
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Figure 1. RLVM structure. The RLVM predicts the observed population response 𝐲" = [𝑦"
(.)	
  𝑦"

(Y) ⋯ 𝑦"
(&)]� at a given time 

point t (dashed lines, right) using a smaller number of non-negative latent variables 𝐳" = [𝑧"
(.)	
  𝑧"

(Y) ⋯ 𝑧"
(*)]� (dashed lines, 

left). The latent variables are weighted by a matrix W such that wij is the weight between neuron i and latent variable j, and 
the resulting weighted inputs are summed and passed through a nonlinearity f(.). There are additional offset terms for each 
neuron, not pictured here. (B-D) The hypothesized structure of the cortical network motivating the RLVM formulation is 
used to generate synthetic data, using five latent variables. B. Factors underlying cortical activity will often be correlated with 
each other, and our simulation of cortical activity used the correlation matrix shown between latent variables in generating 
simulated activity. C. The weight matrix between latent variables and each neuron, generated to approximate the coupling 
matrices found with experimental data (compare to Fig. 3B). D. The measured pairwise correlation matrix between each 
neuron, computed from simulated data. The correlations predicted by the RLVM arise solely from shared latent variable input 
and their correlations with each other, rather than pairwise coupling.   
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Figure 2. Comparisons between latent variable methods applied to simulated data. Four different latent variable methods 
were fit to simulated data (see Fig. 1B-D), and cross-validated model performance measures were computed. A. The time 
course of a representative latent variable, compared to predictions inferred from each method. Note that the FA and RLVM 
methods are both highly overlapping with the true latent variables. B. Correlation coefficient between true latent variables 
and those inferred by each method, demonstrating the superior performance of the FA and RLVM methods. Boxplot shows 
the distribution of correlation coefficients over latent variables and cross-validation folds. C. The matrices of coupling 
weights between neurons and latent variables, inferred by each method. For comparison, the coupling matrix used to generate 
the simulation is shown (left, reproducing Fig. 1C). D. Representative fluorescence trace of one neuron from the simulated 
data compared to the predicted trace from each method. Despite their performance in predicting the latent variables (A), here 
FA does poorly, and PCA does well, as does the RLVM. E. Median R2 value across neurons between true fluorescence traces 
and those predicted by each method over the simulated neurons, plotted versus the number of latent variables specified during 
the fitting procedure. Error bars indicate the standard deviation of the mean of median R2 values over cross-validation folds. 
Model performance in each case plateaus for the true number of latent variables, but is limited in each method due to how 
the neural activity is generated. F. Two example cross-correlograms from simulated neuron pairs plotted with the 
corresponding cross-correlograms calculated from predicted traces for each method. G. The ability of each method to 
reproduce the pairwise cross-correlations between neurons, measured as the normalized inner product between the true 
correlation matrix and those calculated from predicted traces for each method. This is again plotted against number of latent 
variables specified for each method, and plateaus at the true number of latent variables. Error bars indicate standard deviation 
of the mean inner product over cross-validation folds.   
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Figure 3. Latent variable methods applied to two-photon imaging of mouse somatosensory cortex. A. The ability of the 
models to reproduce the observed data depends on the number of latent variables used, measured by R2 between the measured 
and predicted activity. The relative performance of the different methods is ordered like their applications to the simulated 
data (Fig. 2D). Because there was no clear saturation point of the R2 values, models with six latent variables (dashed line) 
were used for subsequent analyses. B. The coupling weights of the RLVM between each neuron and each latent variable, 
ordered to make visualization of neuron clusters in each latent variable easier (see Methods). C. The spatial patterning of 
coupling to each latent variable is pictured by displaying neurons whose coupling strength is greater than 15% of the 
maximum coupling strength for the latent variable, and color-coded to show the magnitude of this coupling. The imaged 
neurons were within a single barrel (of mouse primary somatosensory cortex), and the coupling to latent variables exhibited 
no clear spatial pattern.  
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Figure 4. Relationship of the latent variables inferred by the RLVM to experimentally observed trial variables. A. An 
80-second sample of the predicted activity of six latent variables (extending over eight task repetitions), demonstrating the 
relationship of some of these latent variables to trial variables observed during the experiment: the auditory cue that signals 
the animal to make its choice (blue vertical), the onset of reward delivery when the animal makes the correct choice (red 
vertical), the timing of whisker touches against the pole (bottom, green), and the timing of licks (bottom, purple). Latent 
variables are ordered (bottom to top) based on the magnitude of their variance. B. Quantification of the relationship between 
the latent variables and trial variables, where the values of each trial variable at different time lags were used to predict the 
activity of each latent variable using linear regression. The ability of the trial variables to predict the latent variable time 
course (measured by R2) was used to assess the relationship between the two.  The trial variable with the largest R2 value is 
marked with an asterisk, and the corresponding R2 value is displayed above the coefficients. C. Top: The shaded boxes 
indicate which trial variables are capable of predicting each latent variable. Middle: The fraction of measured activity of each 
neuron accounted for by each latent variable. The resulting matrix is related to a weighted version of the coupling matrix 
(Fig. 3B), and demonstrates the relative contribution of each latent variable to the observed population activity. Bottom: The 
fraction of observed neurons driven by each latent variable (red), and the relative fraction of predicted neural activity 
explained by each latent variable (blue).   
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Figure 5. Latent variables inferred by PCA and a linear RLVM show a weaker relationship to individual experimental 
trial variables. PCA (A, B) and a linear RLVM (where latent variables were not constrained to be non-negative) (C, D) were 
fit to the same experimental data as in Fig. 4. A. Latent variable time courses inferred by PCA over the same interval as in 
Fig. 4A, ordered from bottom to top by variance explained. There is a clear mixing of information relative to the RLVM 
latent variable time courses (Fig. 4A). Latent variable #3, for example, has positive deflections aligned with whisker touches 
(similar to RLVM latent variable #3) combined with negative deflections aligned with the onset of the reward period (opposite 
sign relative to RLVM latent variable #4). B. Top: Shaded boxes indicate which trial variables are related to the latent 
variables. Middle: Coupling matrix between latent variables and each neuron (neurons are ordered the same as those in Fig. 
4C). This illustrates how the first few principal components mix inputs from several sources, likely because PCA is based on 
explaining the greatest fraction of variance with each principal component rather than separating the underlying causes. 
Bottom: The summed influence of each latent variable on the population activity (matching measures in Fig. 4C, bottom). C. 
Latent variables inferred by a linear RLVM. D. Same measures as those calculated in B. Both the PCA and linear RLVM 
latent variables mix features from the RLVM latent variables, which is apparent in their coupling matrices (B, D, middle). 
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Figure 6. Consistent types of latent variables detected across experiments. A. R2 between the measured activity and the 
activity predicted by the RLVM for different imaged populations of neurons. The highlighted plot corresponds to the 
population of neurons analyzed in Figs. 3 and 4, and reproduces the RLVM values in Fig. 3A. Across experiments there is a 
similar dependence of R2 on the number of latent variables, although the overall magnitude of R2 values depends on the 
number of neurons and the level of noise in each experiment.  B. Top: The amount of variability accounted for by each “type” 
of latent variable across all nine populations, using six latent variables per population (same measures as those calculated in 
Fig. 4C, averaged across the number of latent variables of each type). Even though all imaged populations were located in 
primary somatosensory cortex, across experiments much of the population activity was related to non-tactile sources. Middle: 
Latent variables are identified by the combination of trial variables each is related to (same criteria as those used in Fig. 4C). 
Bottom: Red bars indicate the total number of populations that contain at least one example of the latent variable type (out of 
nine total populations) and the blue bars indicate the total number of latent variables of each type (out of 54 total latent 
variables). Latent variable types identified with whisker touches (#1, #5 and #8) comprise only a small proportion of the 
latent variables, while latent variable types identified with the reward portion of the trial (#2-#4, #6 and #7) are much more 
prominent. Latent variables that were not identified with any trial variables (#9) were present in every population, and 
influenced the population activity to a similar degree as the others.   
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Figure A1. Sensitivity analysis of the autoencoder using simulated data. Datasets are generated as in Fig. 2 using varying 
numbers of latent variables. (A-C) An autoencoder is fit to each dataset using the correct number of latent variables. Plotted 
points represent the mean R2 value between the true and predicted population activity averaged over 20 such datasets; error 
bars are omitted for ease of interpretation. Plots show the result of varying: A. The amount of data used for fitting (using 10 
Hz sampling rate); B. The signal-to-noise ratio of the data used for fitting (using 30 minutes of simulated data); C. The 
regularization parameter on the encoding and decoding weight matrices, which were constrained to be equal through weight-
tying (again using 30 minutes of simulated data). 
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Figure A2. Linear scaling properties of the autoencoder. Plotted values are mean fitting times +/- standard error over 20 
datasets. (A-B) Data is generated as in Fig. 2 with 100 neurons and varying recording lengths (with a 10 Hz sampling rate). 
Autoencoders are fit with and without weight-tying (A and B, respectively). The fitting time scales roughly linearly with the 
experiment time. (C-D) Data is generated as in Fig. 2 with a 30-minute experiment time and varying the number of neurons. 
Autoencoders are fit with and without weight-tying (C and D, respectively). The fitting time scales roughly linearly with the 
number of neurons. Comparing plots A and C (weight-tying) with plots B and D (no weight-tying) shows that while weight-
tying approximately halves the number of estimated parameters, it leads to more than a two-fold speedup in fitting time with 
a small number of latent variables. As the number of latent variables increases this speedup advantage from weight-tying is 
lost. These results were obtained on a desktop machine running Ubuntu 14.04 LTS with 16 Intel® Xeon® E5-2670 processors 
and 126 GB of RAM; the MATLAB implementation of the autoencoder has not been optimized for this particular architecture. 
  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 29, 2016. ; https://doi.org/10.1101/072173doi: bioRxiv preprint 

https://doi.org/10.1101/072173
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

38	
  
 
 
 
 

 

Figure A3. Effect of weight-tying using simulated data. We compared the effects of weight-tying the autoencoder on the 
resulting weight matrix by fitting models with and without weight-tying to the simulated data (Fig. 2). A. Weights learned by 
the autoencoder when encoding and decoding matrices are constrained to be the same. B. Encoding (left) and decoding (right) 
weights learned by the autoencoder without the weight-tying constraint, demonstrating a very similar pattern as the weight-
tied solution in (A). 
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Figure A4. Using the RLVM for spiking data. Right: Coupling matrix used to generate synthetic data, as described in 
methods. Middle: The estimated coupling matrix when the autoencoder variant of the RLVM is fit to the simulated 2-photon 
data using a Gaussian noise loss function (mean square error). Right: The estimated coupling matrix when the autoencoder 
variant of the RLVM is fit to the simulated spiking data using a Poisson noise loss function (negative log-likelihood). The 
simulated data contained spikes binned at 100 ms resolution. The good agreement of both estimated coupling matrices with 
the true coupling matrix demonstrates that the RLVM can recover the same model parameters when fit using two different 
types of data. This result indicates that analyses similar to those presented in this paper can be used to equal effect on 
multielectrode data, without the need for data smoothing or averaging across trials (which are common preprocessing steps 
used with spiking data when attempting to use latent variable models not suited for discrete count data, such as PCA). 
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Original Data 

 
Analyzed Data 

Animal ID Cell ID range ROI count Trial count ROI count Trial count 
 
an229716 

21000-23464 1395 157 116 135 
15000-17352 1073 165 428 109 
9000-11363 1006 160 176 135 

 
an229717 

45000-47679 1695 173 698 146 
21000-23694 1572 117 526 80 
39000-41437 1313 136 496 93 

 
an229719 

6000-8518 1496 161 106 115 
9000-11423 1358 162 896 98 
15000-17478 1332 158 484 113 

 
Table A1. Experimental selection. All experimental data used in Figs. 3-6 is from Peron et al. (2015) and is publicly 
available at http://dx.doi.org/10.6080/K0TB14TN. Data analysis was performed on subsets of the data that contained a large 
number of neurons simultaneously imaged over many trials (see Methods). The Analyzed Data column shows the amount of 
data retained from the Original Data column after removing neurons that had >50% missing values in their fluorescence 
traces or had an estimated SNR < 1, as well as removing trials that had missing values for any of the remaining fluorescence 
traces. The highlighted row corresponds to the dataset used for the analyses shown in Figs. 3-5. 
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