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Abstract

In storing and transmitting epigenetic information, organisms must balance the need to
maintain information about past conditions with the capacity to respond to information in their
current and future environments. Some of this information is encoded by DNA methylation,
which can be transmitted with variable fidelity from parent to daughter strand. High fidelity
confers strong pattern matching between the strands of individual DNA molecules and thus
pattern stability over rounds of DNA replication; lower fidelity confers reduced pattern
matching, and thus greater flexibility. • Here, we present a new conceptual framework, Ratio of
Concordance Preference (RCP), that uses double-stranded methylation data to quantify the
flexibility and stability of the system that gave rise to a given set of patterns. •We find that
differentiated mammalian cells operate with high DNA methylation stability, consistent with
earlier reports. Stem cells in culture and in embryos, in contrast, operate with reduced, albeit
significant, methylation stability. We conclude that preference for concordant DNA methylation
is a consistent mode of information transfer, and thus provides epigenetic stability across cell
divisions, even in stem cells and those undergoing developmental transitions. Broader
application of our RCP framework will permit comparison of epigenetic-information systems
across cells, developmental stages, and organisms whose methylation machineries differ
substantially or are not yet well understood.
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Introduction 1

Organismal development is characterized by a shift from the phenotypic flexibility of 2

embryonic cells to the canalized identities of differentiated cells. To achieve stable 3

gene-regulatory states in terminally differentiated cells, organisms ranging from Archaea to 4

humans use a variety of epigenetic mechanisms, including DNA methylation. Perturbation of the 5

state of DNA methylation at various loci in differentiated cells is associated with several human 6

cancers [1–3]. In turn, restoring epigenetic flexibility of some loci has proven challenging in 7

efforts to create induced pluripotent stem (iPS) cells [4]. Together, these findings highlight the 8

importance of shifting ratios of epigenetic flexibility and stability in establishing cellular 9

identity. 10

There exists an extensive literature documenting changes in single-locus and genome-wide 11

methylation frequencies at various stages of development [5, 6]. Most genomic regions in 12

primordial germ cells (PGCs), for example, are known to undergo dramatic and rapid shifts in 13

DNA methylation frequency [7]. It is now clear that mammalian stem cells can utilize active 14

demethylation [8], highlighting the potential for both gain and loss of cytosine methylation to 15

impact the overall methylation frequency and, perhaps, stability of a given genomic region 16

during development. 17

High concordance of methylation in differentiated cells, with matching states for parent and 18

daughter DNA strands at individual CpG/CpG dyads, is considered to be a hallmark of 19

conservative epigenetic processes [9–13]. For earlier stages of development, the extent of 20

concordance is far less clear. For example, do methylation patterns in dividing embryonic stem 21

cells arise entirely by random placement of methyl groups, or is concordance favored to some 22

degree? 23

Recent work has begun to address these issues [7, 14–18]. Shipony et al. [16] analyzed 24

single-stranded DNA methylation patterns in populations of cultured cells established from 25

single founder cells. Under this approach, the degree of stability was inferred from the extent of 26

congruence among patterns collected from cultured descendant cells. The observation of 27

substantial pattern diversity among cells separated by many rounds of division led Shipony et 28

al. [16] to conclude that the bulk of methylation in human embryonic stem (ES) and induced 29

pluripotent stem (iPS) cells arises through “dynamic” – that is, non-conservative – DNA 30

methylation processes rather than through the “static” – that is, conservative – processes that 31

were emphasized in earlier studies [10, 11, 19]. Using data collected using hairpin-bisulfite 32

PCR [13], which yields double-stranded DNA methylation patterns, other studies suggested that 33

dynamic processes contribute substantially to DNA methylation in cultured mouse ES cells, but 34

perhaps not to the exclusion of the conservative processes that dominate at many loci in adult 35

differentiated cells [7, 14, 15, 17, 18]. 36

To fully characterize the balance between conservative and non-conservative methylation 37

processes, it is necessary to quantify the extent to which the arrangement of methylation in a 38

given set of patterns deviates from the null assumption of random placement. To assess and 39

visualize such deviations, we here introduce a new metric, Ratio of Concordance Preference 40

(RCP), which utilizes double-stranded methylation data. Here, as previously, we use the term 41

double-stranded DNA methylation pattern to refer to the overall pattern of methylation on both 42

top and bottom strands of an individual double-stranded DNA molecule. Double-stranded 43

patterns provide information on the extent of matching between methylation states on parent and 44

daughter strands, which are separated by exactly one round of DNA replication. RCP requires 45

no assumptions about the enzymatic mechanisms of methylation and demethylation, and so 46

enables comparison across diverse species and developmental stages. 47
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Jeltsch and Jurkowska [20] have emphasized the balance of methylating and demethylating 48

processes — rather than the propagation of specific methylation patterns — as the primary 49

determinant of the overall set of patterns present in a given cellular population at a given time. In 50

this framework, RCP can be thought of as a metric for quantifying the extent to which the set of 51

patterns produced by a given system of methylating and demethylating processes deviates from 52

the set of patterns expected if methyl groups are placed entirely at random. 53

In parameterizing RCP, we use the term “conservative”, in lieu of “static” as used 54

previously [16], to describe processes that preferentially establish concordant as opposed to 55

discordant methylation states. We consider non-conservative processes, described previously as 56

“dynamic” [16], as having one of two forms: “random” processes, which add or remove methyl 57

groups with equal preference for concordance and for discordance, and “dispersive” processes, 58

which preferentially establish discordant methylation states. 59

We validate our RCP framework by confirming its ability to identify systems in which 60

contributions from conservative processes are nearly complete or nearly absent, as well as 61

systems on the continuum between these extremes. We apply this new framework to our 62

authenticated, double-stranded DNA methylation patterns, both published and previously 63

unpublished, collected by dideoxy sequencing from DNA of human and murine cells. To expand 64

the data available for this initial RCP analysis, we also examine double-stranded methylation 65

patterns from three recent publications that used pyrosequencing. [14, 15, 17] Compared to 66

dideoxy sequencing, pyrosequencing can provide greater sequencing depth, but yields 67

considerably shorter reads. To improve our understanding of transitions between stem and 68

differentiated cells, we ask: (i) how strong are preferences for concordant DNA methylation 69

states in cultured stem cells?; (ii) do concordance preferences change as cultured cells shift 70

between stem and differentiated states?; and (iii) in the developing embryo, do stem cells of 71

various potencies have preferences that mirror those in cultured stem cells? 72
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Results and Discussion 73

Ratio of Concordance Preference is Defined for All Possible Configurations 74

of Methylation at Symmetric Nucleotide Motifs 75

We have developed Ratio of Concordance Preference (RCP) to assess the strategy of binary 76

information transfer, with focus on the degree to which exact information is conserved. We apply 77

our RCP framework to DNA methylation in mammalian cells. Our goal is to infer whether and 78

how much the system of processes that established a given set of methylation patterns prefers 79

concordant to discordant methylation states. This general formulation is free of assumptions 80

about the molecular mechanisms whereby methylation is added to and removed from DNA. 81

In our data from double-stranded DNA molecules from human and mouse, methylation 82

occurs principally at the CpG motif. This symmetric motif may be written as CpG/CpG, here 83

termed “CpG dyad”. CpG dyads have opportunities for methylation on both strands. The 84

methylation state of a dyad thus takes one of three forms: fully methylated, at frequency M , 85

with methylated cytosines on both strands; hemimethylated, at frequency H , with a methylated 86

cytosine on only one strand; and unmethylated, at frequency U , with neither cytosine 87

methylated. The RCP framework can also be extended to non-CpG methylation at symmetric 88

nucleotide motifs. 89

To infer concordance preference for sets of double-stranded methylation patterns, we use the
overall frequency of methylation, m, and the frequency of unmethylated dyads, U , of each data
set. Because m is derived from the three dyad frequencies, the pair (m, U ) encompasses the full
information available from the implicit dyad frequencies, M and H . We evaluate the extent of
deviation from expectations under a random model in which the system has no preference for
either concordant or discordant placement of methyl groups, using RCP, defined as:

RCP =

√
U(U + 2m− 1)

1− U −m
(1)

RCP can also be expressed in a form more familiar in biology if dyad frequencies are 90

considered as genotype frequencies for a gene with two alleles. RCP2 is 4MU/H2, which is 91

expected to equal 1 under the Hardy-Weinberg equilibrium [21, 22]. Thus, RCP can be 92

considered as a measure of deviation from random expectations. 93

The random expectations, for which RCP = 1, are met both with truly random placement of 94

methyl groups, and with equal contributions from processes operating with strong preference for 95

concordance and processes operating with strong preference for discordance. Under this random 96

model, the frequency of unmethylated dyads is given by U = (1−m)2, leading to dyad 97

frequencies as expected under the binomial distribution (Fig 1a,b dashed curve; Fig 1c). A 98

system in which methyl groups are added de novo without regard to the methylation state of the 99

other strand [23], such as one dominated by the activity of mammalian Dnmt3s, is expected to 100

behave largely in accordance with random expectations. 101

One set of deviations from the random expectation is characterized by preference for 102

concordant placement of methyl groups, such that the two classes of concordant dyads — fully 103

methylated and fully unmethylated — are more frequent than expected under the random model. 104

This situation occurs under conservative systems of methylation where strong contributions from 105

maintenance-like processes, such as the activity of Dnmt1 in mammals [11, 13, 24], lead to high 106

frequencies of concordant dyads. In the extreme form of this deviation from random, methyl 107
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Figure 1. Characterizing Methylation Systems Using Double-Stranded DNA Methylation Patterns. (a) Frequencies of methylated cytosines (m)
and unmethylated dyads (U ) locate each data set on the continuum from complete preference for concordance to complete preference for discordance.
Ratio of Concordance Preference (RCP) is indicated for each contour line. (b) Expanded view. For this schematic, individual double-stranded
methylation patterns (c-f) are used to illustrate different methylation configurations that lie along this continuum. Individual patterns, with methylated
and unmethylated cytosines indicated in red and blue, respectively, can reflect (c) a random methylation system; (d) a fully conservative system, with
complete preference for generating concordant dyads; (e) a fully dispersive system, with complete preference for generating discordant dyads (partial
preference for dispersive placement is also possible); or (f) a partially conservative system, with more concordant dyads than expected under random
processes, but fewer than expected under fully conservative processes. (g) A representative partial double-stranded DNA methylation pattern collected
using hairpin-bisulfite PCR. The experiment-specific batchstamp is shown in green, and can be used to monitor for PCR contamination; the
molecule-specific barcode shown in gray, generalized as “DDDDDDD”, can be used to identify redundant sequences. The batchstamp and barcode are
encoded by the hairpin oligonucleotide used to join the top and bottom strands. Primer-binding sites are underlined at the left end of the molecule.

groups are observed only in fully methylated dyads (Fig 1d), such that unmethylated dyads 108

occur at frequency U = 1−m (upper diagonal line in Fig 1a-b). 109

The other set of possible deviations from random is characterized by preference for 110

discordant placement of methyl groups, leading to an overabundance of hemimethylated dyads. 111

This situation occurs under dispersive systems of methylation such as those that yield transient 112

hemimethylation following DNA replication and prior to daughter-strand methylation, and 113

perhaps in genomic regions undergoing demethylation during periods of epigenetic transition. 114

When methylation is maximally dispersive and methylation frequency m is less than 0.5, all 115

dyads with methylation will be hemimethylated (Fig 1e), such that U = 1− 2m (lower diagonal 116

line in Fig 1a,b); when m is greater than 0.5, not all methyl groups can be accommodated in 117

hemimethylated dyads, and so a combination of hemimethylated and fully methylated dyads — 118

but no unmethylated dyads — is expected (lower horizontal line in Fig 1a). 119

The two extreme deviations from random form the boundaries of the comprehensive space of 120

possible configurations of methylation at symmetric motifs (Fig 1a). Sets of double-stranded 121

methylation patterns fall on the continuum between the extreme expectations (Fig 1b), and can 122
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be located within this space to characterize the strategy of information transfer employed to give 123

rise to a given data set, ranging from conservative to dispersive. 124

As noted above, a system with an RCP value of 1 has no preference for either concordance 125

or discordance of methylation, and is analogous to the distribution of genotype frequencies at a 126

two-allele locus in a population that is at Hardy-Weinberg equilibrium [21,22]. An RCP value of 127

2 indicates two-fold preference for concordance, while an RCP of 1
2 indicates two-fold 128

preference for discordance. RCP approaches infinity for systems that have complete preference 129

for concordant dyads. At the other extreme, RCP approaches 0 (i.e., 1
∞ ) for systems that have 130

complete preference for discordant dyads. 131

For the examples analyzed here, data for different loci and cells range from complete 132

concordance to near-random, along the RCP spectrum. Complete discordance is found as a 133

transient condition of adenine methylation at the ori locus in Escherichia coli, and serves to 134

regulate the timing of reinitiation of DNA synthesis [25, 26]. Adenine methylation in E. coli 135

generally occurs at symmetric sites, such as the GATC motif within the ori locus, and can be 136

assessed by PacBio sequencing [27]. Thus, a broad spectrum of concordance preference can 137

exist in organisms, and can be quantified and evaluated by RCP. 138

For large and intermediate-size data sets, the resolution of RCP is high across the range of 139

possible methylation frequencies, although the resolution declines as m approaches 0 or 1, such 140

that RCP cannot be inferred for completely methylated or unmethylated genomic regions. 141

Nonetheless, RCP can usually be inferred with high confidence using data from only a few 142

hundred dyads. Our new approach therefore requires far fewer sequences to estimate 143

concordance preference than do methods that focus on inferring rates for specific enzyme 144

activities [24, 28]. 145

We apply RCP to investigate further the conclusion of Shipony et al. [16] that methylation in 146

cultured stem cells is dominated by non-conservative processes, with little or no preference for 147

concordance. Using double-stranded methylation patterns collected by our group, by Arand et 148

al. [14, 17], and by Zhao et al. [15], we assess and compare methylation concordance in cultured 149

human and murine stem cells, as well as in murine cells undergoing early developmental 150

transitions that give rise to totipotent embryonic cells. 151

Differentiated Cells Strongly Prefer Concordant DNA Methylation 152

Our previous work with human single-copy loci in uncultured, differentiated cells revealed a 153

substantial role for maintenance methylation, a conservative process, with a comparatively 154

minor role for non-conservative de novo processes [24, 28]. We therefore anticipated that RCP 155

analysis of double-stranded methylation patterns from such cells would indicate substantial 156

preference for concordant methylation states. Data published previously for G6PD, FMR1, and 157

LEP, in uncultured differentiated cells and new data presented here for FMR1 in cultured, 158

human differentiated cells represent blood, connective, and adipose tissues. We applied RCP 159

analysis to these data sets and found 13.2- to 85.7-fold preferences for concordant methylation. 160

This confirms, as anticipated, that methylation is predominantly conservative in these 161

differentiated cells (Fig 2a; see table accompanying Fig 2 for approximate 95 %CIs). We note 162

that there is a good correspondence between RCP and hemi-preference ratio, a statistic we 163

computed for the same data sets in the previous study [24] (further discussion in S2 Text). 164

We also found a substantial role for conservative methylation processes at single-copy loci in 165

both cultured and uncultured murine differentiated cells. Data sets from Arand et al. [14] for 166

Afp, Igf2, Snrpn, and Tex13 from murine embryonic fibroblasts (MEFs), and from Stöger [29] 167
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(a) (b)

(a)

Human Locus G6PD FMR1 LEP L1

Sample Lymphocyte Lymphocyte Lymphocyte Fibroblast Fibroblast Leukocyte Adipose FX IMR90
Normal FX patient Normal FX patient IMR90 Fibroblast Fibroblast

RCP 13.2 45.2 57.2 63.9 27.2 85.7 33.8 25.3 12.8
(8.47-23.2) (18.1-8.1e7) (27.5-404) (14.6-3.9e7) (8.37-585) (25.0-4.0e7) (21.3-60.2) (14.3-54.8) (9.15-18.5)

(b)

Mouse Locus Afp Igf2 Snrpn Tex13 B1 IAP L1 mSat Lep L1

Sample Murine embryonic fibroblasts Somatic Sperm Oocytestissues

RCP 43.0 4.3e7 65.3 18.2 18.3 13.3 14.4 7.33 25.9 13.4 17.6
(16.4-6.2e7) (42.7-5.3e7) (35.1-193) (10.0-60.0) (11.5-36.2) (7.34-32.7) (10.8-20.3) (5.23-10.9) (11.0-257) (8.38-25.5) (15.6-20.0)

Figure 2. Inferring RCP for loci in differentiated human and murine cells. Methylation in human and murine differentiated cells was consistently
inferred to have strong contributions from conservative processes, using data sets that span a wide range of methylation frequencies. For each locus or
multi-copy family, we inferred the RCP point estimate of the m, U pair and the two-dimensional confidence region, determined by the uncertainty in the
two variables (S7 Text). The intensity of coloration at a given point in a confidence region reflects the confidence level at that point. The m, U point
estimates for most data sets are indicated with white asterisks, and the corresponding RCP values are given in the associated table. A larger, colored
asterisk is used when the confidence interval of a data set is too small to be readily visible. RCP point estimates and bias-corrected bootstrap confidence
intervals are shown in figure-associated tables. (a) Three single-copy human loci — G6PD, FMR1, and LEP — and one human repeat family, L1, all
from various tissues as indicated. (b) Four single-copy loci and four repeat families – Afp, Igf2, Snrpn, Tex13, B1, IAP, L1, and mSat – from murine
embryonic fibroblasts, one single-copy murine locus – Lep – from somatic tissue, and one repeat family – L1 – from murine gametes. Data in (a) were
collected using hairpin-bisulfite PCR and dideoxy sequencing, and taken from published [24, 28–30] and previously unpublished work (Table S3). Data
in (b) were collected by Arand et al. [14] using hairpin-bisulfite PCR and pyrosequencing, with the exception of murine Lep for which data from somatic
tissues were collected by Stoger [29], using dideoxy sequencing. Our analyses of these data sets applied bootstrapping approaches and accounted for
inappropriate and failed conversion of methylcytosine using methods described in Supporting Information (S4 Text). Dyad counts, conversion-error rates,
and inferences for methylation frequencies and RCPs are summarized in Tables S3, S4.

for Lep from somatic tissues, gave RCP point estimates indicating a greater than 18-fold 168

preferences for concordant methylation (Fig 2b). 169

Do multi-copy sequence families also have high preference for concordant methylation in 170

differentiated cells? We inferred RCP for four repeat families – B1, IAP, L1, and mSat – using 171

murine data collected by Arand et al. [14]. Three of these families were found to have preference 172
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for concordant methylation in the same range inferred for single-copy loci (RCP point estimates 173

between 14.4 and 19.3; Fig 2b). The fourth – mSat – had an RCP estimate of 7.33, lower than 174

other families and single-copy loci examined in MEFs, but still indicative of strong preference 175

for concordant methylation. For human cells, data from two independent lines of cultured 176

embryonic fibroblasts were available for the repeat family L1. Inferred RCP values were within 177

the range found for single-copy loci in both human and murine differentiated cells (Fig 2a). 178

Overall, we find appreciable preference for concordance across a diverse group of data sets 179

from differentiated cells. These sets span a more than five-fold range in methylation frequency, 180

underscoring the independence of RCP from m, and, more generally, highlighting the capacity 181

of methylation systems to propagate specific epigenetic states, even when methylation is sparse. 182

We conclude that preference for concordant methylation, albeit to variable degrees, is present in 183

differentiated cells across broad classes of genomic elements, cell and tissue types, and culture 184

states. 185

Concordance Preference is Reduced but still Substantial in Cultured Stem 186

Relative to Differentiated Cells 187

We next ask whether substantial preference for concordance, as we infer above for 188

differentiated cells, is also evident in data from cultured stem cells. In doing so, we compare our 189

findings using RCP to the expectation from Shipony et al. [16] that methylation in such stem 190

cells occurs primarily through non-conservative, random processes. 191

The broadest data set available for our analysis comes from the near-genome-wide 192

double-stranded methylation data presented by Zhao et al. [15]. These data give an inferred RCP 193

of 5.22 for “all CpGs” in DNA from undifferentiated, cultured murine ES cells (Fig 3a; 194

Table S5). For other classes of genomic elements in these near-genome-wide data [15], we infer 195

RCP values of 4.31 or greater (Table S5). These RCP values are significantly higher than 1, the 196

value predicted under Shipony et al.’s proposal of dynamic methylation (p < 10−16, maximum 197

likelihood comparispon tests (MLCTs)). 198

We next ask whether our inference of appreciable concordance preference in the murine ES 199

cell line used by Zhao et al. [15] reflects a general property of cultured lines of undifferentiated 200

stem cells, both murine and human. For the murine ES line, J1, double-stranded methylation 201

data collected by Arand et al. [14] were available for four single-copy loci and four repeat 202

families. Seven of the eight genomic regions – Igf2, Snrpn, Tex13, B1, IAP, L1, and mSat – had 203

RCP values greater than 3.69 (with minimum 95%-CI lower bound of 2.31), still indicative of 204

substantial preference for concordant methylation (Fig 3a). One single-copy locus, Afp, had a 205

methylation level too high, 0.99, to permit reliable inference of RCP. Murine double-stranded 206

methylation patterns for the four repeat families were available for two more stem cell lines, E14 207

and WT26 [14]. These additional repeat-family data sets, too, had RCP values significantly 208

greater than 1, although one data set, that for mSat in WT26, had an RCP value closer to 1 than 209

did others (p = 0.045, one-tailed BT). Data were available for a single-copy locus, Lep, for a 210

fourth murine ES line, CGR8. Here, too, RCP was significantly greater than 1 (p < 10−16, 211

one-tailed BT). 212

Human stem cell lines also followed the pattern of preference for concordant methylation. 213

All six of the human stem and iPS cell lines that we examined, when grown under 214

non-differentiating conditions, gave RCP point estimates for the repeat family L1 that are 215

between 3.41 and 5.20. For all of these cell lines, outer bounds of the approximate 95% 216

confidence intervals fall between 2.34 and 12.53 (Fig 3b; Table S3). Together, these values 217
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(a) (b)

(a)

Type Murine Single-Copy Murine Multi-Copy Murine Near Genome-Wide
Locus Igf2 Snrpn Tex13 B1 IAP L1 mSat All CpGs

RCP 6.72 3.0e8 3.5e8 3.70 3.69 3.88 6.88 5.22
(5.85-7.77) (2.9e8-3.1e8) (3.0e8-4.1e8) (2.72-5.13) (2.31-5.81) (3.65-4.14) (5.53-8.79) (5.21-5.22)

(b)

Type Murine Single-Copy Human Multi-Copy
Locus Lep L1

Cell Line CGR8 Murine ES H9p37 ES,U H9p81 ES,U IMR90,U FSH iPS,U FX iPS1,U FX iPS2,U

RCP 4.25 4.41 5.20 3.41 3.41 4.14 3.83
(2.82-6.51) (2.93-6.76) (2.35-12.5) (2.65-4.40) (2.34-5.04) (3.14-5.51) (3.00-4.92)

Figure 3. Inferring RCP in undifferentiated human and murine stem cells. Methylation patterns in undifferentiated, cultured human and murine
stem cells were consistently inferred to have substantial contributions from conservative processes, with concordance greater than the random
expectation. RCP point estimates and biased-corrected bootstrap confidence intervals are shown for individual loci and “All CpGs”. (a) Three
single-copy loci – Igf2, Snrpn, and Tex13 – as well as four multi-copy loci – B1, IAP, L1, and mSat – from murine ES J1 cells were assayed by Arand et
al. [14]. “All CpGs” data, collected by Zhao et al. [15]), reflect methylation at 17.3% of CpG dyads in the murine genome (Table S5). Data from both
Arand et al. [14] and Zhao et al. [15] were collected using hairpin-bisulfite PCR and pyrosequencing. (b) Human L1 and LEP data were collected using
hairpin-bisulfite PCR and dideoxy sequencing (data from published [29] and previously unpublished work (Table S3)). Our analyses of these data sets
applied bootstrapping approaches and accounted for inappropriate and failed conversion of methylcytosine using methods described in Supporting
Information (S4 Text). Dyad counts, conversion-error rates, and inferences for methylation frequencies are given in Tables S3, S4, and S5.

reveal concordance preference that is reduced relative to differentiated cells, but still greatly 218

exceeds expectations under random placement of methyl groups (p < 10−16, one-tailed BT). 219

We now consider the possibility that spontaneous differentiation had produced 220

subpopulations of cultured stem cells that might account for the inference of RCP values 221

substantially greater than 1 at the seven different loci and genomic elements examined. Our 222

calculations revealed that a possible subpopulation of differentiated cells operating at much 223

higher RCP than that of undifferentiated cells would need to comprise more than 50% of the 224

population to account for our finding (S9 Text). Morphological inspection of the cultured human 225

stem cells under non-differentiating conditions did not suggest the presence of a substantial 226

subpopulation of differentiated cells in any of these lines. 227
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We conclude that RCP values significantly greater than 1 are a consistent feature of cultured 228

embryonic stem cells, and hold across a broad set of stem cell lines, genomic locations and 229

element categories. 230

Preference for Concordance is Minimal or Absent in ES Cells Deficient in 231

Maintenance Methylation Activity 232

Our finding of substantial preference for methylation concordance in data from cultured, 233

undifferentiated stem cells contrasts with the inference of Shipony et al. [16] that DNA 234

methylation in such cells is dominated by non-conservative, random processes. This disparity 235

(a) (b)

(a)
Locus Afp Igf2 Lep Tex13 B1 IAP L1 mSat

RCP 1.16 1.83 1.90 1.77 1.14 2.35 2.22 1.62
(0.92-1.46) (1.48-2.24) (1.08-3.06) (1.58-1.97) (0.87-1.46) (2.12-2.60) (2.00-2.46) (1.50-1.76)

(b)
Locus B1 IAP L1 mSat

RCP 1.02 1.93 1.77 1.11
(0.88-1.20) (1.65-2.25) (1.54-2.03) (0.98-1.25)

Figure 4. Inferring RCP in Dnmt1 knockout and Np95 knockout ES cells. (a) In the absence of Dnmt1, the primary maintenance
methyltransferase, RCPs inferred for cultured murine ES cells were close to 1, the random expectation, at some loci. Data from Lep, collected using
hairpin-bisulfite PCR and dideoxy sequencing, are from Al-Alzzawi et al. [31]. Data from seven additional loci are from Arand et al. [14], who used
hairpin-bisulfite PCR and pyrosequencing. Our analysis of these published data revealed two of the eight loci analyzed — Afp and B1 — to have very
low RCP values not significantly different from 1. (b) In the absence of Np95, a protein critical for recruiting Dnmt1 to hemimethylated regions in newly
replicated DNA, one of the four loci analyzed — B1 — was inferred to have a very low RCP value, not significantly different from 1. Our analyses of
these data sets from Arand et al. [31] applied bootstrapping approaches and accounted for inappropriate and failed conversion of methylcytosines using
methods described in S4 Text. Point estimates and approximate 95% confidence intervals on RCP are given above, and also along with
conversion-error-rate estimates in Tables S3 and S4.
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led us to ask whether our approach here for data acquisition and analysis is indeed capable of 236

identifying sets of methylation patterns established under exclusively random processes, which 237

are expected to yield RCP values of 1 (see “Ratio of Concordance Preference is Defined ...”, 238

above). 239

To assess this capacity, we consider methylation patterns from two murine embryonic stem 240

cell lines that have impaired maintenance methylation: a Dnmt1 knockout (KO) line and an 241

Np95 KO line. The Dnmt1 enzyme is principally responsible for addition of methyl groups to 242

daughter-strand CpGs complementary to CpGs methylated on the parent strand [11, 24, 32]; 243

Np95 facilitates interaction of Dnmt1 with these hemimethylated sites [33]. Absence of either 244

protein is therefore predicted to markedly diminish maintenance activity. If our approach is able 245

to detect essentially random placement of methyl groups, RCP values in these knockout lines 246

should be ∼1 for loci for which Dnmt1, its actions facilitated by Np95, is principally responsible 247

for conservative methylation. 248

Significant reductions in RCP were inferred for all single-copy loci and repeat families 249

examined in Dnmt1 and Np95 KO lines [14, 31], compared to the parent stem-cell lines. Some 250

reductions were sufficient to bring RCP values in the knockout lines to that expected for random 251

placement of methyl groups: one single-copy locus – Afp – in the Dnmt1 KO line and one repeat 252

family – B1 – in both knockout lines had RCP values not significantly different from 1 (Afp in 253

Dnmt1 KO: 1.16, p = 0.10; B1 in Dnmt1 KO: 1.14, p = 0.17; B1 in Np95 KO: 1.02, p = 0.38; 254

one-tailed BTs; Fig 4). These findings in the two mutant cell lines thus reveal that RCP analysis 255

is, indeed, able to detect methylation established with random placement of methyl groups, and 256

thus with little or no preference for concordance or discordance. 257

The ability of RCP to detect random methylation has important implications for our work. 258

First, we can conclude that our inference of persistent preference for concordant methylation in 259

cultured stem cells reflects a bona fide property of those cells, rather than an artifact of our 260

approach. Second, we can infer from our finding of RCP > 1 for nine of the twelve data sets 261

examined in the Dnmt1 and Np95 KO lines that methyltransferases other than Dnmt1 can 262

contribute to conservative methylation. This inference is consistent with earlier conclusions that 263

contributions of Dnmt3s can include low levels of maintenance activity [19, 24, 34]. 264

Concordance Preference Increases upon Differentiation of ES Cells, and 265

Decreases upon Dedifferentiation 266

Our initial examination of RCP values in differentiated cells as compared to cultured stem 267

cells suggests that RCP is altered through the differentiation process (Fig 2 and Fig 3). Would 268

significant RCP increases be observed for individual cell lines transitioning between 269

differentiation states? We first asked whether RCP values change when undifferentiated human 270

ES and iPS cells are grown under differentiating conditions (see Materials and Methods). We 271

inferred RCP at the promoter of L1 elements of cultured human iPS and ES cells, inferring 272

values for two different passages of the latter cell line. Upon differentiation, RCP values for all 273

three of these cell lines increased significantly (p = 0.004, H9p37; p = 0.025, H9p81; 274

p = 0.0005, FSH iPS; two-tailed PTs), and approached the lower boundary of the confidence 275

region inferred for single-copy loci in differentiated somatic cells (Fig 2 and Fig 5a). Using 276

near-genome-wide data for cultured murine cells [15], we inferred significant RCP increases 277

upon cell differentiation for most genomic elements (p < 10−16, MLCTs), with the exception of 278

low-complexity and satellite DNAs (Table S5). These RCP increases were greatest at promoters, 279

CG islands, and CG shores, and are more modest at other regions. We conclude that the onset of 280

differentiation in cultured human and murine cells is associated with a shift towards a greater 281
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(a) (b)

U→D D → U
Cell line H9p37 H9p81 FSH iPS IMR90 FX

Undifferentiated 4.41 5.20 3.41 3.41 4.14 3.83
(2.93-6.76) (2.35-12.53) (2.34-5.04) (2.65-4.40) (3.14-5.51) (3.00-4.92)

Differentiated 12.3 23.2 12.3 12.8 25.3
(5.76-26.88) (8.76-1.4e7) (5.41-48.2) (9.15-18.5) (14.3-54.8)

Figure 5. Shifts in RCP of L1 elements upon differentiation of cultured human ES cells and dedifferentiation of cultured fibroblasts. RCP
values of L1 elements in cultured stem cells grown under non-differentiating conditions are compared to those for the same cells grown under
differentiating conditions. RCP values for progenitor fibroblast lines are compared with those for their descendent iPS cells. Blue arrows indicate
differentiation and pink arrows indicate dedifferentiation. (a) Undifferentiated cells from each of three human ES and iPS lines had only moderate
preference for concordance. Upon differentiation, their RCP values shifted in parallel toward stronger preference for concordance. (b) Differentiated
human fibroblast lines had substantial preference for concordance. Upon dedifferentiation to iPS cells, RCP values were reduced, indicating diminished
preference for concordance. We present data for two different iPS lines established independently from the fibroblast line, FX. These iPS lines differed in
their methylation frequency, m, at L1 elements, but had similar RCP values. Some data were previously shown in Fig 2 and Fig 3, and are included again
here to illustrate more directly the relationships of L1 methylation in the differentiated and undifferentiated cultured cells. We applied bootstrapping
approaches and accounted for inappropriate and failed conversion of methylcytosine using methods described in S4 Text. Point estimates of RCP, with
approximate 95% confidence intervals, are shown above, and also with dyad counts, conversion-error rates, and inferences for methylation frequencies in
Tables S3 and S4.

role for conservative processes. 282

Does the dedifferentiation that occurs in culture upon production of an iPS line from a 283

differentiated cell have an opposite effect on concordance preference? To address this question, 284

we compare methylation at L1 elements in three iPS lines to that in the two cultured human 285

fibroblast lines from which they were derived. As predicted, RCP values for all three iPS lines 286

were much reduced compared with values observed for the parent fibroblast lines (p < 10−16, 287

two-tailed PTs; Fig 5b). Dedifferentiation in tissue culture is thus associated with a shift in DNA 288

methylation toward a greater role for non-conservative processes. It will be useful to investigate 289

whether changes in methylation systems as measured by RCP drive or merely reflect the cellular 290
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differentiation process. 291

Murine Embryos Mirror the Transitions in Concordance Preference Ob- 292

served in Cultured Cells 293

The ∼3-fold-or-greater preference for concordant methylation we infer in many different 294

cultured ES and iPS cell lines (Fig 3a; Table S3) far exceeds the concordance expected under the 295

null hypothesis that methyl groups are placed at random. Here we ask whether this appreciable 296

preference for concordance is an artifact of growing stem cells in culture, or whether it is shared 297

by uncultured stem cells taken directly from an embryo. 298

We first consider whether totipotent cells from an embryo have evidence of conservative 299

processes. We applied RCP to double-stranded methylation patterns collected by Arand et 300

al. [17] for three multi-copy loci in mouse embryos: L1, mSat, and IAP. Our analyses revealed 301

that these totipotent embryonic cells, from post-replicative zygote to morula stage (through 3 302

days post conception, dpc), also exhibit moderate preference for concordance. Each of the 303

eighteen data sets we considered yielded RCP point estimates greater than 1, and confidence 304

intervals that exclude 1 (p < 0.005; Fig 6a; Table S4). 305

Pluripotent stem cells from mouse embryos (gastrula, 3.5 dpc) also exhibit moderate 306

preference for concordant methylation for all three of the multi-copy loci examined (p < 10−16; 307

Fig 6a; Table S4). Thus, we conclude that moderate preference for concordance is an epigenetic 308

feature of uncultured embryonic stem cells of disparate developmental potential, and is not an 309

artifact of the establishment of embryonic stem cells in culture. 310

Though RCP values for stem cells from embryos clearly indicate some preference for 311

concordance, the extent of this preference is lower than for differentiated cells at most of the loci 312

examined (Fig 2 and Fig 5). Does this lower preference for concordance originate in gametes, or 313

does it instead arise post-fertilization? To address this question, we expanded our inference of 314

RCP values for sperm and oocytes from just L1 (Fig 3) to all three loci analyzed by Arand et 315

al. [17]. At the three multi-copy loci, RCP values for gametes are within the range observed for 316

other differentiated cells, with average point estimates ranging from 13.4 to 45.0 (Fig 6b; 317

Table S4). This high preference for concordance in gametes implies that the lower RCP values 318

characteristic of zygotes and stem cells must arise post-fertilization rather than in gametes. 319

To pinpoint the timing of this transition to lower RCP values observed in stem cells, we 320

consider data from post-fertilization nuclei and cells [17]. Data available for pronuclear stages 1, 321

2, and 3 revealed high RCP values, similar to those observed in gametes. In pronuclear stages 322

4-5, however, there was an abrupt transition to lower RCP values in the range observed for 323

totipotent stem cells (Fig 6; Table S4). 324

Is this transition dependent on the DNA replication event that occurs from pronuclear stage 3 325

to stages 4-5? To address this question, we assess data from Arand et al. [17], in which 326

aphidicolin was used to block DNA replication in the fertilized egg. Our RCP analysis reveals 327

that methylation patterns at L1 and mSat in these treated cells, while having somewhat lower 328

RCP values relative to pronuclei at earlier stages, had not undergone the major reduction in RCP 329

that we infer for unmanipulated pronuclei at stages 4-5 (p < 10−16, two-tailed PTs; Table S4). 330

Thus, the shift to lower RCP in stem cells following fertilization appears to require either DNA 331

replication or some later event that is itself replication-dependent. This conclusion is consistent 332

with the inference of Arand et al., using a different metric [17], that DNA replication in the 333

zygote plays a pivotal role in methylation dynamics. 334
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(a) (b)

(a)
Stage PN 1 Early PN 3 PN 4-5 2 cells prerep 2 cells postrep 2 dpc 2.5 dpc 3 dpc 3.5 dpc

RCP 30.6 26.6 3.09 4.61 5.95 7.64 8.20 3.71 3.80
(24.6-39.1) (20.7-35.2) (2.96-3.22) (3.72-5.74) (5.01-7.10) (6.26-9.41) (7.37-9.14) (3.43-4.03) (3.39-4.25)

(b)
Cell Type Non-PGC PGC Germ cells

Stage (dpc) 9.5 9.5 10.5 11.5 12.5 13.5 (M) 13.5 (F) Sperm Oocytes

RCP 26.0 1.40 2.08 3.57 4.27 9.77 6.17 13.4 17.6
(12.5-326) (1.29-1.51) (1.91-2.27) (3.17-4.02) (3.76-4.87) (8.38-11.48) (5.49-6.94) (8.38-25.5) (15.6-20.0)

(c)

Figure 6. Shifts in RCP during murine embryonic and germ-cell development. Major transitions in RCP values occur during early embryonic and primordial germ
cell (PGC) development. RCP point estimates and approximate 95% bias-corrected bootstrap confidence intervals are given in the associated tables and in (c). (a)
Transitions from early pronuclear stages (1 and 3) to late stages (4-5) were accompanied by a sharp decrease in RCP at L1 elements, to a level similar to that observed in
cultured stem cells (Fig 3). Further embryonic development was accompanied by minor increases and subsequent decreases in methylation and RCP values. (b) In PGCs at
the earliest stage for which data are available, 9.5 days post conception (dpc), L1 elements had RCP values that were unusually low but still significantly greater than 1
(p < 10−16). RCP values increased during PGC maturation to stage 13.5 dpc even as methylation frequencies decreased by more than 50%. RCP values for eggs and
sperm, shown previously in Fig 3, are included here to highlight the transition from early primordial germ cells to terminally differentiated gametes. (c) Tracking RCP at
repeat families during development. We inferred RCP for the embryonic and differentiated stages for which data were published by Arand et al. [17]. The topology of our
longitudinal RCP plot highlights the transitions also evident in Arand et al.’s plot of the percentage of hemimethylated CpG dyads relative to all methylated CpG dyads
(Figure 6b in [17]). Their metric captures relative shifts in concordance, but, in contrast to RCP, does not include a null model enabling quantitative comparison of inferred
concordance across data sets with disparate methylation frequencies [17]. Point estimates and approximate 95% confidence intervals for all but one data set were estimated
by bootstrapping and applying the BCa correction (S7 Text). Dyad counts, methylation frequencies, and conversion error rates are in Table S3. In cases where data were
available for multiple replicates, dyad frequencies were pooled. For one data set, 3 dpc at mSat, double-stranded sequences and methylation patterns were not available to us
for bootstrap analysis; we therefore used a likelihood-based method for the estimation of confidence intervals (S8 Text).
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This change from high RCP values in gametes and early pronuclei to lower values in 335

post-replicative zygotes and descendant stem cells was markedly abrupt. Are other major 336

transitions in RCP similarly abrupt, or do some occur gradually, perhaps over many cell 337

divisions? Murine primordial germ cells (PGCs), in their maturation to differentiated gametes, 338

offer an opportunity to approach this question [35, 36]. Using data from Arand et al. [17], we 339

infer that RCP values for PGCs increased by factors ranging from 2.5 to 5 during their 340

progression from 9.5 dpc to 13.5 dpc. This increase was not sudden, but occurred over the 341

four-day period, and so spanned an interval of substantial cell proliferation [35] (Fig 6b). The 342

murine embryo data thus provide examples of both abrupt and gradual transitions in RCP 343

through development (Fig 6c). 344

The RCP values for PGCs at 9.5 dpc, the earliest stage for which data were reported by 345

Arand et al. [17], were strikingly low: 1.40 for L1, 1.57 for mSat, and 2.38 for IAP. Nonetheless, 346

confidence intervals for all three loci indicated RCP values greater than 1 (p < 2× 10−5), the 347

value expected expected under wholly random placement of methyl groups, indicating persistent, 348

low-level preference for concordance. This low, residual preference for concordance in maturing 349

PGCs perhaps reflects both the epigenetic memory needed to maintain the poised state of stem 350

cells, and the epigenetic flexibility required for the production of differentiated gametes. 351

The first few rounds of PGC division involve developmental reprogramming and 352

commitment [36], and establishment of lineage-specific gene expression patterns. The 3.5-fold 353

average increase of RCP across these divisions (Fig 6; Table S4) mirrors the 3.6-fold average 354

increase in RCP values that occur when cultured ES cells are subjected to differentiating 355

conditions (Fig 5; Table S3). 356

There is, however, a critical difference between the trajectories for proliferating PGCs and 357

differentiating ES and iPS cells in culture. When cultured cells were differentiated, their 358

methylation frequencies increased. By contrast, methylation frequencies for PGCs declined 359

across early rounds of division [37]. Seisenberger et al. [7], Arand et al. [17], and von Meyenn 360

et al. [18] concluded that this reduction in methylation frequency is driven by partial impairment 361

of maintenance methylation. 362

Our RCP framework permits a closer look at the likely extent of this proposed maintenance 363

impairment. If maintenance methylation were completely absent and no other methylation 364

processes were active, passive, fully dispersive demethylation would occur. This would halve 365

methylation frequencies and leave methyl groups only in hemimethylated dyads, yielding an 366

RCP value of 0. By contrast, data from PGCs yielded RCP values significantly greater than 0, 367

and even 1. Indeed, only cells treated with S-Adenosylmethionine-ase (RCP point estimate: 368

0.20, approximate 95% confidence interval: 0.15 - 0.26; Table S4) yielded values close to 0. 369

This is not surprising, as S-Adenosylmethionine-ase either impairs or eliminates a cell’s ability 370

to methylate DNA, and so reveals RCP trajectories that would be observed with complete or 371

nearly complete suspension of all methylation processes. Together these findings confirm that, 372

while the RCP framework can detect very low RCP values, maturing PGCs retain conservative 373

methylation processes, and that these processes occur at levels sufficient to outweigh any 374

dispersive effects of passive demethylation. 375

Concluding Remarks 376

Because RCP makes no explicit enzymatic or mechanistic assumptions about the methylation 377

machinery, it permits quantification and comparison of strategies for symmetric methylation 378

across cell types, developmental periods, and organisms, despite potential and likely differences 379

in exact mechanisms. Application of RCP to double-stranded DNA methylation patterns reveals 380
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that preference for concordance in DNA methylation is a persistent though quantitatively 381

variable feature of mammalian cells of disparate developmental potential. Specifically, we find 382

that: (i) in cultured human and murine ES and iPS cells, preference for concordance is lower 383

than in differentiated cells, but not absent; (ii) for cultured human stem cells, cellular 384

differentiation is characterized by increasing preference for concordance, whereas, for cultured 385

differentiated cells, dedifferentiation is characterized by declining preference for concordance; 386

and (iii) during early murine development, transitions in RCP mirror those found in cultured 387

cells, with pluripotent and totipotent stem cells showing appreciable concordance preference 388

throughout. We also observe that substantial changes in RCP can be either abrupt, requiring only 389

one DNA replication event, or gradual, occurring over multiple rounds of replication. 390

Although preference for concordance is substantial throughout early murine development, 391

there is an instance of concordance preference near the expectation under entirely random 392

processes. We infer RCP values close to, albeit significantly different from, 1 in the early 393

primordial germ cell stage at the three repetitive element families examined by Arand et al. [17] 394

(Fig 6). The instance of low, yet present, concordance preference may reflect both the epigenetic 395

stability required to maintain the poised state of the stem cells and the epigenetic flexibility 396

needed en route to production of functional gametes. Flexibility, indicated by RCP values near 1, 397

may result from near-random processes or instead from a balance of conservative and dispersive 398

methylation. Existing data and conclusions of Seisenberger et al. [7], Arand et al. [17] and von 399

Meyenn et al. [18] are more consistent with the latter interpretation. 400

Our finding of moderate contributions from conservative DNA methylation processes in 401

human and murine stem cells is seemingly contrary to the conclusion of Shipony et al. [16] that 402

“dynamic” processes are dominant in cultured stem cells, even in regions where dense 403

methylation is maintained. This apparent disparity may have arisen from differences between 404

the temporal scales assayed by Shipony et al.’s approach and our own. The method of single-cell 405

isolation and clonal expansion used by Shipony et al. estimates epigenetic memory from 406

single-stranded data collected after 15 to 21 rounds of cell division. In contrast, our approach 407

utilizes double-stranded DNA data to examine epigenetic memory over a single round of DNA 408

replication. Evidence of preference for concordance, apparent in our comparison of DNA 409

strands separated by one replication event, will be muted in comparisons of more distantly 410

related molecules. 411

Short-term epigenetic memory, perhaps important for guiding cell-fate trajectories at early 412

developmental stages, is at least partially achieved through preference for concordant DNA 413

methylation. By contrast, over larger numbers of cell divisions, as sampled by Shipony et 414

al. [16], such as for stem cells dividing in culture, preference for concordant methylation may be 415

less important than other mechanisms of epigenetic memory. For example, regulation of 416

promoter activity by DNA methylation can occur via an ensemble effect rather than by 417

methylation of specific CG dyads within a promoter [38]. In such cases, propagation of exact 418

methylation patterns may be less important than the density of methylation that influences gain 419

or loss of methylation and states of transcriptional activity over many cell divisions [39]. 420

Epigenetic mechanisms other than DNA methylation also contribute to epigenetic memory at 421

various timescales. RCP analysis in combination with histone-modification data from 422

ENCODE [40] and Roadmap [41] will provide unprecedented opportunities to infer interactions 423

between DNA-methylation machinery and histone modification, the developmental timing of 424

epigenetic stability, and its variation across the genome. 425

The value of RCP analysis will be enhanced and broadened by emerging DNA sequencing 426

technologies that yield longer, more informative double-stranded methylation patterns. Longer 427

sequence reads will enable inference of RCP for single cells, permitting study of cell-cell 428

epimosaicism, such as arises in cancer [2] and other syndromes characterized by epigenetic 429
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heterogeneity and change [30, 42]. Some of these methods also reduce data corruption arising 430

through errors in bisulfite conversion and amplification, and can distinguish between methyl- 431

and hydroxy-methyl cytosine [43, 44]. High-resolution RCP estimates available through these 432

advances will provide new insight into the flexibility and potential sensitivity of individual loci 433

and cell types to environmental conditions encountered during embryogenesis and beyond. 434

Materials and Methods 435

Mathematical Foundations of the RCP framework 436

Overview of the mathematical foundation is given in Results and Discussion, and developed 437

further in S1 Text. 438

Human Cells and Culture Conditions 439

The six human ES and iPS cell lines for which we collected methylation patterns were 440

derived from either embryos or fibroblasts described as normal [45] or from fibroblasts of 441

individuals with disorders not known to affect the basic biochemistry of DNA methylation. 442

Many of the sets of human DNA methylation patterns analyzed here were presented in 443

previous publications, which include information on University of Washington Human Subjects 444

approval for collection and use. These data include G6PD and FMR1 from leukocytes of normal 445

individuals [24,28]; FMR1 from males with fragile X syndrome [30]; LEP from male leukocytes 446

and from female lymphocytes and adipose tissue [24, 29]. 447

Human methylation patterns presented here for the first time were collected from: (i) FX iPS 448

cell lines 1 and 2, which were developed at the University of Washington ISCRM facility from 449

fibroblasts (line GM07730, Coriell Cell Repositories, Camden, NJ) of a male with a fragile X 450

“full mutation”, using published methods [46] ; (ii) iPS cell line IMR90, which was developed at 451

the University of Washington ISCRM facility from the IMR90 somatic line established from 452

fibroblasts (obtained from ATCC) of a normal female, using published methods [46]; (iii) FSH 453

iPS cell line, which was developed at the University of Washington ISCRM facility from 454

fibroblasts of an individual with Facioscapulohumeral dystrophy (FSHD), using published 455

methods [47]; and (iv) H9 human ES cells from NIH Embryonic Stem Cell Registry (WA09, H9 456

number 0062). 457

Cells were cultured in Dulbecco’s modified Eagle’s medium/Ham’s F-12 medium containing 458

GlutaMax supplemented with 20 percent serum replacer (SR), 1 mM sodium pyruvate, 0.1 mM 459

nonessential amino acids, 50 U/ml penicillin, 50 µg/ml streptomycin and 10 ng/ml basic 460

fibroblast growth factor (all from Invitrogen), and 0.1 mM β-mercaptoethanol (Sigma-Aldrich). 461

hESCs were grown on γ-irradiated primary mouse embryonic fibroblasts (MEFs) and passaged 462

using dispase (1.2 U/ml; Invitrogen). They were passaged onto Matrigel (Corning) without 463

feeders in mTeSR1 (Stem Cell Technologies) for the final passages prior to analysis. Cells were 464

differentiated by passage onto Matrigel in Dulbecco’s modified Eagle’s Medium supplemented 465

with 20 percent fetal bovine serum and pen/strep. Images of our cultured stem cells grown under 466

differentiating conditions confirmed their pluripotency. 467
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Murine Cells and Culture Conditions 468

Methylation patterns from murine ES cells, and the origin and culturing of these cells, have 469

previously been described [14, 15, 17, 31]. 470

Collection of Double-Stranded DNA methylation patterns using hairpin- 471

bisulfite PCR 472

The DNA methylation patterns collected in our lab and analyzed here, both those published 473

previously and those presented here for the first time, were collected using the hairpin-bisulfite 474

PCR approach [13], with barcodes and batchstamps to authenticate each sequence [48]. Details 475

for collection of each data set are given in Table S2. 476

The data presented by Arand et al. [14, 17], and Zhao et al., [15] and analyzed here, were 477

collected in the absence of molecular batch-stamps and barcodes, raising the possibilty that the 478

reliably of those data sets is undermined by PCR clonality. However, both groups used alternate 479

strategies that revealed that PCR clonality was not rampant. Zhao et al. found that essential 480

features of data sets did not differ appreciably between the “real” data set collected 481

conventionally, using PCR, and a test, PCR-free data set that excluded opportunities for clonality 482

by including only one read from each locus, providing no evidence of impacts from PCR 483

clonality (Hehuang Xie, personal communication). In turn, Arand et al. used molecular codes 484

for several of their data sets, and, for the few data sets collected in the absence of such code, 485

observed appreciable heterogeneity among patterns, also hinting that data were not appreciably 486

impacted by clonality (Julia Arand, personal communication). 487
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Supporting Information

Figure S1. Markov chain used for the derivation of RCP.

Figure S2. RCP in Dnmt3 knockout cells. (a) RCP values were inferred at the Lep locus for
wildtype, Dnmt3a KO, and Dnmt3b KO murine ES cell lines, using data from Al-Azzawi et
al. [31]. (b-i) RCP values were inferred for eight additional loci for wildtype, Dnmt3a KO,
Dnmt3b KO, and Dnmt3a/b double-KO murine ES cell lines, using data from Arand et al. [14].

Table S1. Comparison of RCP values inferred here to the DNMT1 hemi-preference ratios
(HPR) inferred by Fu et al. [24]. Point estimates and approximate 95% confidence intervals
are shown for both statistics. Fu et al. provides only lower bounds of approximate 95%
confidence intervals.

Table S2. Hairpin-linkage and PCR conditions for collection of double-stranded DNA
methylation patterns. Entries shown are for patterns published here for the first time. R.E.
refers to the restriction enzyme used to create the genomic overhang prior to ligation with a
hairpin linker.

Table S3. RCP values and associated approximate confidence intervals inferred for the
24 data sets from our labs. We collected double-stranded DNA methylation patterns from two
species — mouse and human — and several loci using bisulfite conversion under either
low-molarity/temperature (“LowMT”) or high-molarity/temperature (“HighMT”)
conditions [49]. For each data set, we counted methylated (M ) , hemimethylated (H), and
unmethylated (U ) dyads, and used these values to infer methylation frequency, m, unmethylated
dyad frequency, U , and the ratio of concordance preference, RCP. Inferences for (m,U) and for
RCP incorporated correction for conversion error, as described in S3 Text. We estimated
approximate 95% confidence intervals by bootstrapping and applied the BCa correction to
obtain bias-corrected confidence intervals and point estimates, as described in S7 Text. Both
uncorrected and BCa-corrected intervals and point estimates are listed here.
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Table S4. RCP values and associated approximate confidence intervals inferred for data
reported in Arand et al. [14,17]. Dr. Julia Arand kindly shared raw double-stranded sequences
for samples described in these publications. We accounted for failed and inappropriate
conversion, as described in S3 Text, in our point estimates of m, U , and RCP. The inappropriate
conversion rate of 0.031 was inferred because the bisulfite conversion conditions used by Arand
et al. resembled lowMT conditions [49]. We estimated approximate 95% confidence intervals by
bootstrapping and applied the BCa correction to obtain bias-corrected confidence intervals and
point estimates, as described in S7 Text. Both uncorrected and BCa-corrected intervals and point
estimates are listed here. For one sample, Arand et al. (2015) mSat 3dpc, only dyad counts, but
no raw sequences, were available. We used the dyad counts to estimate the point estimate and
the confidence interval for this sample while assuming independent sampling of dyads (S8 Text).

Table S5. RCP values and associated approximate confidence intervals inferred for data
reported in Zhao et al. (2014) [15]. Dr. Hehuang Xie kindly shared raw data on M , H , and U
values for samples described in Figure S6 of Zhao et al., and also provided information on error
rates from bisulfite conversion: for the “Day 0” sample (cultured stem cells grown under
non-differentiating conditions), the failed conversion rate was 0.011, and the inappropriate
conversion rate was 0.0109; for the “Day 6” sample (cultured cells grown for 6 days under
differentiating conditions), the corresponding error rates were 0.012 and 0.0099. Dr. Xie also
commented, “‘All’ refers to the total CG dyads and ‘DNA’ refers to the CG dyads within ‘DNA
repeat elements (DNA)’ annotated in the UCSC genome database.” For these data sets, whose
individual sequence reads only contain 2 to 3 dyads on average, we assumed independent
sampling of dyads to obtain the confidence intervals (S8 Text).

Table S6. Pairwise comparisons of RCP values inferred for replicate samples of cultured
human ES and iPS cells, and for mouse embryonic cells sampled at various
developmental stages. We applied our test for heterogeneity, as described in S5 Text, to assess
evidence of significant differences between RCP values inferred from various sample replicates
presented by Arand et al. (2015) [17]. A color gradient encodes approximate levels of
significance, with dark green indicating non-significant differences, and red indicating highly
significant differences.

S1 Text: Deriving the Ratio of Concordance Preference, RCP

The goal of RCP is to quantify the extent to which the DNA methylation machineries that
gave rise to each data set deviate from random expectations under the binomial distribution, as
indicated by an over- or under-abundance of concordant dyads. Here we approach this problem
by modeling the formation of concordant and discordant dyads as transitions between
unmethylated and hemimethylated dyads and between hemimethylated and fully methylated
dyads, without regard to the molecular processes that facilitate these transitions. We then take a
mathematical approach to derive an expression for RCP.

We seek the equilibrium frequencies of fully methylated (M ), hemimethylated (H), and
unmethylated (U ), dyads. Consider a continuous-time Markov chain operating on the
probability distribution of the dyads 〈M,H,U〉:

d

dt

MH
U

 =

−2γ1 η1 0
2γ1 −η1 − γ0 2η0
0 γ0 −2η0

MH
U

 (2)

where η’s and γ’s represent the rates of methylation addition and removal, respectively, as
shown in Fig S1.
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We define RCP as the ratio between βc, the rate of dyad transitions yielding concordant
dyads, and βd, the rate of dyad transitions yielding discordant dyads. We thus define
βc =

√
η1γ0, the geometric mean of the methyl-addition and methyl-removal rates yielding

concordant dyads. Likewise, we define βd =
√
η0γ1.

We can then solve for the steady state distribution for the Markov chain in Equation (2) to
arrive at the ratio. We can also express it in terms of m and U , as shown below.

RCP :=
βc
βd

=

√
η1γ0√
η0γ1

=

√
4MU

H2
=

√
U(U + 2m− 1)

1− U −m
(3)

This formulation of RCP does not require the assumption that methylation frequency is
constant over time. Here, “steady state” refers to the dyad frequencies expected under a given
system of methylation processes, regardless of whether the methylation frequency is constant
over rounds of cell division.

It is notable that RCP2 is 4MU/H2, which is expected to equal 1 under the Hardy-Weinberg
equilibrium [21], if dyad frequencies are considered as genotype frequencies of a gene with two
alleles. Following this, RCP can be considered as a measure of deviation from the null
equilibrium.

RCP is therefore a metric for the degree to which the system of methylation processes
prefers concordance (RCP > 1), discordance (RCP < 1), or, possibly, exhibits no preference in
either direction (RCP = 1). If we set RCP = 1 and solve this expression for U , we find that
U = (1−m)2. This is consistent with the expectation under the binomial distribution that RCP
will be 1 when there is no preference for either concordance or discordance. As RCP approaches
∞, U approaches 1−m. Setting RCP = 0 results in two solutions: U = 1− 2m and U = 0.
These solutions are congruent with the boundaries that define the space of (m,U) as given in
“Ratio of Concordance Preference is Defined for All Possible Configurations of Methylation at
Symmetric Nucleotide Motifs” of the main text, and in Fig 1.

S2 Text: Comparing RCP Values and Hemi-Preference Ratios from HMM

“Hemi-preference ratio”, a parameter inferred under our earlier analysis with a
hidden-Markov model (HMM) [24], evaluates the preference of a given DNA methyltransferase
for acting at hemimethylated as compared to unmethylated dyads [11], and thereby measures its
preference for creating concordant dyads. Fu et al. [24, 28] calculated this ratio for DNMT1, a
mammalian maintenance methyltransferase. Because RCP measures the concordance preference
of the entire ensemble of enzymes that give rise to methylation patterns, the hemi-preference
ratio of a given enzyme and the RCP value inferred from the same data set are expected to have
good agreement if that enzyme is the primary actor. The congruence between these two metrics
is expected to decline with increasing contributions from other enzymes.

Three of the four data sets analyzed previously under HMM showed very good agreement
between the RCP values we infer here and the hemi-preference ratios previously inferred for the
maintenance methyltransferase DNMT1: 58.0 vs. 58 for FMR1, 13.3 vs. 15 for G6PD, and 89.1
vs. 94 for LEP [24] (Table S1). The close correspondence between these values indicates that for
these loci in leukocytes, methylation dynamics are driven primarily by conservative,
maintenance-type processes such as accomplished by DNMT1, and that neither active
demethylation nor de novo processes have a substantial role. Furthermore, when there is such a
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correspondence, RCP strongly suggests that the mechanistic assumptions made for the
enzymatic model hold for that data set.

A large discrepancy, on the other hand, may suggest shortcomings of the mechanistic model.
The fourth data set that had been analyzed under HMM, LEP in human adipose tissue, had an
inferred RCP value of 34, well within the range of RCPs inferred for other data sets from
single-copy loci including LEP in leukocytes (Fig 1a; Table S1). This RCP value was, however,
more than eighteen-fold lower than the DNMT1 hemi-preference ratio estimate of 628 that we
obtained under the earlier HMM approach (Table S1). What might account for this discrepancy?
A hemi-preference ratio of 628 is unrealistically high, even for a maintenance enzyme,
compared to the hemi-preference ratios inferred in other data sets, including those from
methylation patterns established by DNMT1 in vitro [11]. This could reflect the inability of the
HMM to yield a reasonable estimate for a data set impacted by demethylation, a process that
was not considered in the HMM design. This lack of correspondence between HMM and RCP
estimates is consistent with the possibility that active removal of methylation has a heightened
role at loci with temporally variable transcription levels, and may reflect the role of the LEP
locus as a sentinel of adipose but not blood [29].

S3 Text: Assessing the Potential Impact of Bisulfite-Conversion Errors

Two classes of error that occur during bisulfite conversion can lead to misinterpretation of
cytosine methylation states. Failure to convert unmethylated cytosines to uracil occurs at rate b,
and can result in overestimation of methylation frequency. Inappropriate conversion of
methylated cytosines to thymine, first noted by Shiraishi and Hayatsu [50], occurs at rate c, and
can result in underestimation of methylation frequency. We have reported previously that the
rates of failed and inappropriate conversion depend strongly on the chemical and thermal
conditions of bisulfite conversion [49]. In particular, we found that bisulfite treatment prolonged
beyond that required to attain complete or nearly complete conversion of unmethylated cytosines
can yield high rates of inappropriate conversion. Historically, conversion protocols have been
designed to minimize the failed-conversion rate, with little or no attention to the rate of
inappropriate conversion events. Thus, while both classes of error can alter parameters used to
infer RCP — the methylation frequency, m, and the unmethylated dyad frequency, U — errors
arising through inappropriate conversion are likely of more substantial impact.

How severely can conversion error impact RCP? And to what extent does its potential impact
depend on the true methylation frequency of the target sequences? Densely methylated
sequences contain a large number of fully methylated dyads, such that the most likely
conversion error is inappropriate conversion yielding apparent hemimethylated dyads. Such
events elevate the apparent level of discordance in a given data set and artifactually depress the
inferred RCP values. To quantify this potential impact, we calculated how RCP would be altered
by a single artifactual hemimethylated dyad introduced by inappropriate conversion, assuming
that in its true state the relevant data set had one unmethylated dyad, one hemimethylated dyad,
and 98 methylated dyads. The inappropriate conversion of one cytosine among 98 dyads whose
true state is fully methylated is close to the number expected for an inappropriate conversion rate
of about 0.5%, a conservative estimate of this error rate [49]. For this hypothetical data set, the
introduction of a lone artefactual hemimethylated dyad by an inappropriate conversion event
reduces RCP from about 20 to about 10, i.e., by a factor of 2. Thus, in the absence of
mathematical corrections of the sort implemented here, even very low levels of inappropriate
conversion can severely impact inference of RCP.

Sparsely methylated sequences contain a large number of unmethylated cytosines that are
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potential targets for failed conversion. We calculated that for such sequences the impact of
conversion error depends on whether most unmethylated cytosines are in hemimethylated or in
unmethylated dyads. For example, when most unmethylated cytosines in a sparsely methylated
sequence occur in hemimethylated dyads, the level of discordance is already high, such that the
addition of an artifactual hemimethylated dyad by failed conversion only slightly decreases RCP.
By contrast, when most unmethylated cytosines are in unmethylated dyads, production of an
artifactual hemimethyated dyad by failed conversion reduces RCP by a factor of two, as
illustrated in the previous paragraph. Mathematical correction for conversion error is therefore
critical, not only because error has potentially large impacts on RCP values, but also because the
magnitude of these impacts differs among data sets, with the potential either to magnify or to
dampen variation among them.

S4 Text: Mathematical Correction for Bisulfite-Conversion Error

To account for conversion errors occurring at known rates, we express the observed dyad
frequencies, Mfobs, Hfobs, and Ufobs , as functions of the true dyad frequencies Mt, Ht, and
Ut, that would have been observed had conversion error not occurred:

Mfobs(Mt, Ht, Ut, b, c) = Mt (1− c)2 +Ht b (1− c) + Ut b
2

Hfobs(Mt, Ht, Ut, b, c) = 2Mt c (1− c) +Ht (1− b) (1− c) + 2 Ut b (1− b)
Ufobs(Mt, Ht, Ut, b, c) = Mt c

2 +Ht (1− b)c+ Ut (1− b)2
(4)

In cases where the mathematical correction yielded negative counts for one or two dyad
types, the negative counts were redistributed to the remaining dyad types in proportion to the
original dyad counts, such that no dyad counts were negative after correction.

For each of the data sets reported here, DNAs were converted under one of two conditions:
low molarity-temperature (LowMT), with failed-conversion rate 0.0030 and inappropriate
conversion rate 0.031, and high molarity-temperature (HighMT), with failed-conversion rate
0.0086 and inappropriate-conversion rate 0.017 [49]. Error rates used in analysis of published
data from other groups are given in Table S4 (Arand et al. [14, 17]) and Table S5 (Zhao et
al. [15]). Using these rates, observed dyad frequencies, and Equation 4, true dyad frequencies
can be inferred.

S5 Text: Assessment of Heterogeneity Among Replicates and Quasi-Replicates

To ask about possible heterogeneity among RCP values inferred for replicates — for
example, for individual developmental stages as investigated by Arand et al. [17] — and for
quasi-replicates — for example, for multiple cell lines at similar cell-culture and differentiation
conditions — we utilized pairwise, two-tailed permutation tests.

These calculations revealed an intriguing pattern. There was no evidence of heterogeneity
among samples of cultured human ES and iPS cells (p > 0.29, pairwise two-tailed PTs for the
six cultured stem cell lines at the L1 locus; p-values summarized in Table S6; Fig 3). By
contrast, several pairwise comparisons of mouse embryonic cells sampled independently for a
given developmental stage yielded evidence of significant differences in RCP (p-values
summarized in Table S6). Notably, however, most of the significant heterogeneity observed was
for cells in pronuclear stages, at which data collection at identical stages is made difficult by
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rapid developmental transitions. In contrast, there was evidence of only limited heterogeneity
among totipotent and pluripotent cells between the 2-cell stage and the 3.5-dpc stage. Similarly,
when experimental interventions were taken to prevent DNA replication or methylation (i.e.
aphidicolin treatment at PN4/5 stages and SAMase treatment just after fertilization and before
the first round of DNA replication), no evidence of heterogeneity was observed. Cell culture
techniques are focused on minimizing opportunities for developmental differences to arise
among cells, and could account for the observation of no heterogeneity among the cultured
human ES and iPS cells.

Given the low levels of heterogeneity observed and the fact that some level of heterogeneity
is inevitable in cells undergoing rapid epigenetic transitions, we pooled several sets of replicates
for analysis, as described in S6 Text (Fig 6).

S6 Text: Pooling Data Sets Across Replicates

In some instances, multiple independent replicates were collected and used to assess RCP for
cells under a given biological condition — for example, multiple embryos at a given pronuclear
stage (Fig 6). In these cases, the sequence-level dyad counts of individual replicate data sets
were corrected for conversion errors independently before the replicate data sets were pooled.

When using likelihood methods to quantify and to assess pooled data sets – thus assuming
independence of dyads (S8 Text) – we explicitly allow m to vary across replicates while
estimating a single RCP value in the likelihood-maximization process. When using bootstrap
methods (S7 Text), as we do whenever individual-molecule data are available, we do not
explicitly account for the possibility that m may vary across the replicate data sets. This may
result in a slight enlargement of confidence intervals in the bootstrap process.

S7 Text: Inferring and Comparing RCP Without Assuming Independent
Sampling of Dyads

CpG dyads typically are not sampled individually, but instead as members of sequence reads
that can contain from a few to many neighboring dyads. Often, there is correlation among the
methylation states of these neighboring dyads. The processivity of the DNA methyltransferases,
especially Dnmt1, is a substantial contributor to these correlations. As the mean number of dyads
per read increases, so too does the potential for dyad-dyad correlation to undermine the accuracy
of confidence intervals inferred under the assumption of independent sampling of dyads.

Of the three groups of data we analyzed here, one — Zhao et al. (2014) [15] — consists of
Illumina paired-end reads. These reads span 40 to 60 genomic nucleotides, and so are much
shorter than those generated by our methods and those of Arand et al.. On average, each of the
read pairs in Zhao et al. provides methylation data for only 1.2 CpG dyads. As this CpG count is
only slightly greater than the condition of 1 CpG dyad per read that would provide for complete
independence among sampled dyads, we anticipate that correlation among methylation states of
dyads ascertained on a given read by Zhao et al. will have only a minor impact on sampling.
The subset of these reads that derive from CpG-rich CpG Islands do contain more CpGs, likely
up to 3 [51]. However, this sequence class contributes only 1.2% of CpG dyads in the “All” CpG
dataset. Reads for our data have as many as 22 CpG dyads; mean dyad counts for data from
Arand et al. [14, 17] are intermediate between our data and those of Zhao et al. (2014) [15].

For our own data and those of Arand et al. [14, 17], we used an approach that, at slightly
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higher computational cost, models and seeks to account for the potential impacts of dyad-dyad
correlations. Our data yielded moderately larger confidence intervals under the bootstrapping
approach as compared to under the likelihood approach with the assumption of independent
sampling of dyads. By contrast, the data from Arand et al. [14, 17] yielded almost identical
confidence intervals whether without or with the assumption of independence. In view of the
even smaller mean number of dyads per read in the data of Zhao et al. (2014) [15], we chose to
make the assumption that dyads were sampled independently in their data. Although it is
possible that two or more reads originated from nearby regions of a single molecule and thus
have dyad-dyad dependence, we assumed that the effect of such occurrences, if at all present, is
very small, given the large amount of starting material.

The first of the two methods is described in this section, and the second in the next section,
S8 Text.

Inferring RCP point estimates and confidence intervals. For our own data and those of
Arand et al., we used a bootstrapping approach to model the uncertainty in RCP values
introduced by possible within-sequence correlations in methylation states, and to make point
estimate and confidence-interval inferences that account for this uncertainty.

For each data set of n sequences, we sampled n sequences with replacement, B = 2,000,000
times. For each of these bootstrapped sets, RCP was calculated by summing the M , H , and U
dyad counts for all of the resampled molecules and using Equation 3. We inferred the true
distribution of RCP for a given observed data set from the distribution of these B bootstrapped
RCP values. It was clear from the resulting distributions that RCP is a biased estimator, as many
of these distributions had longer right tails than left.

The simplest, and potentially misleading, approach for inference of point estimates and
construction of confidence intervals from bootstrap distributions is to assume normality, and
then to exclude right and left tails at the intended level of confidence. Efron and DiCiccio
(1996) [52] commented that, for biased estimators, this approach can lead to inference of
inappropriately exclusive limits at the long-tailed end of the distribution, and inappropriately
inclusive limits at the short-tailed side.

To address this problem, we applied Efron and Diccicio’s “bias-corrected and accelerated”
(BCa) method. Under the BCa method, the cumulative-density function observed for the
distribution of bootstrap replicates is compared to that expected under normality. Bias-corrected
point estimates are then inferred as the 50th-percentile values in the BCa- corrected distributions.
Similarly, critical points for intervals of a given confidence level are inferred from the values at
the relevant percentiles of the distribution of bootstrapped values.

Because methylation states are predicted to be correlated across dyads within a molecule, but
not across molecules, we resample at the level of molecules. Furthermore, as noted above, our
molecular-barcoding procedures enable exclusion of redundant reads, such that each methylation
pattern in our resulting data set is known to derive from a unique molecule in the original sample.
Moreover, it appears that molecules are sampled without bias due to methylation: in all eight
data sets from murine DNA methyltransferase knockout lines (Fig 4) and all six data sets from
wildtype human cells (Fig 3) there was no evidence of correlation between methylation
frequency and RCP. Thus, it is reasonable to consider sampled molecules as independent and
identically distributed draws from a population.

For each sampled molecule we derive a vector of values, (Mi, Hi, Ui, ni), where ni is the
number of dyads. These are the vectors we resample in our procedure. We see that RCP can be
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written, using this vector, as

RCP =

√
4M̄Ū

H̄
(5)

where M̄ =
∑

niMi∑
ni

, H̄ =
∑

niHi∑
ni

and Ū =
∑

niUi∑
ni

. Now considering the vector
(niMi, niHi, niUi, ni) and, noting that the ratio of sums can be written as a ratio of means, we
see that this falls directly under the “smooth function of means” framework introduced in [53]
for the standard bootstrap and applied in [54] to the BCa bootstrap. From results in Section 6
of [54], we conclude that our bootstrap procedure gives approximate confidence intervals with
asympotically correct coverage.

Assessing whether a data set has RCP value greater than 1. If methyl groups are placed
completely at random — that is, with preference for neither concordance nor discordance —
RCP is expected to be 1. In a previous report, Shipony et al. [16] interpreted their data to
indicate that methyl groups are, indeed, placed essentially at random in undifferentiated cells.
As there is very little evidence in any of our data sets to indicate possible preference for
discordance, we opted to perform a one-tailed test, asking for the probability that our data sets
do not have RCP values greater than 1.

To do so, we first calculated RCP point estimates for 200,000 bootstrap replicates and
performed the BCa correction, using the method described above, and then calculated the
approximate p-value as the fraction of those point estimates that were less than or equal to RCP
of 1. For example, from the finding that only 20 of the 200,000 bootstrap replicates yielded an
RCP point estimate less than 1, we would conclude that RCP is significantly greater than 1 with
an approximate p-value of 0.0001. Note that we shifted from the 2,000,000 bootstrap draws
noted above to the 200,000 reported here upon finding only trivial differences between p-values
derived under these two approaches.

Assessing whether RCP values differ significantly between data sets. A key goal of our
study is to assess possible evidence for RCP differences between data sets. For example, we ask
whether RCP for a given cell type differs between samples collected under differentiating as
compared to non-differentiating conditions.

To compare two data sets that can be modeled by the same null distribution, as is the case for
most comparisons we make here, we performed a permutation test (PT). For comparisons in
which a shared null distribution cannot be established (such as would be the case if the two data
sets were from different loci and thus had different numbers and locations of dyads), we used a
bootstrap test (BT). We describe these two methods below.

To compute the significance of observed differences between RCP values for Data Sample A
and Sample B, which can share a null distribution, we used permutation to compute the null
distribution of ordered differences (for example, RCP(Sample A)− RCP(Sample B)) expected
under the null assumption that the sequences in the two sets were drawn from a single
population. To do this, we pooled sequences from Sample A and Sample B and then repeatedly
drew from that pool, without replacement, to generate, at random, versions of Sample A and
Sample B with sequence counts equal to those of the observed data. For each pair of randomly
generated sets, we calculated the difference between their RCP point estimates (θ∗) , and
obtained the distribution of RCP-difference values under the null hypothesis. For one-tailed tests,
for example, to ask whether one data set has RCP value greater than the RCP value for another,
we took the proportion of the distribution greater than the difference of the point estimates (θ̂) as
the p value. For two-tailed/equal-tailed tests, for example, to ask whether RCP values for two
data sets differ significantly, we first calculated the proportion of permuted differences smaller
than θ̂. We then calculated the proportion of permuted differences greater than θ̂. We took the
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twice the lesser of these two values as the p-value for observing a difference this great in the
event that the sequences in the two data sets were, in reality, drawn from the same distribution.

To compute the significance of observed differences between RCP values for two samples
with different generating distributions, we used a bootstrap-based comparison test. Instead of
pooling the data sets to form a single population of molecules, we bootstrapped a single RCP
value from each of the two separate populations of molecules and computed the difference. We
repeatedly sampled this difference to draw a bootstrap distribution of the difference in RCP
values. For one-tailed tests, with which we examine directional differences, we determined the
p-value as the proportion of bootstrap-difference samples to the left of 0. For two-tailed tests,
with which we can detect differences in any direction, we determined the p-value as twice the
smaller proportion of the bootstrap difference samples on either side of 0.

Defining the approximate 95% confidence region for a data set in the (m,U ) space,
without assuming independent sampling of dyads. Using the methods described above, we
generated 2,000,000 bootstrap samples of each data set. Instead of estimating the RCP value for
each of the bootstrap samples, we calculated m and U . We constructed the two-dimensional
confidence region for the two parameters for plotting using ci2d function in the gplots R
package.

S8 Text: Inferring and Comparing RCP With Assuming Independent
Sampling of Dyads

Calculating the likelihood of proposed true dyad frequencies, Mt, Ht, and Ut, given
the observed dyad counts, Mc obs, Hc obs, and Uc obs. Failed- and inappropriate-conversion
events create observed dyad frequencies that differ from true dyad frequencies. If the rates of
these two types of error are known, the likelihood of a set of proposed true frequencies — Mt,
Ht, and Ut — can be calculated as follows, given the observed dyad counts — Mc obs, Hc obs,
and Uc obs — and Equation (4). Mfobs, Hfobs, and Ufobs, which indicate the observed
frequencies of the dyads, can be easily calculated from the dyad counts.

L(Mt, Ht, Ut |Mc obs, Hc obs, Uc obs, b, c) = C ×Mfobs(c, b,Mt, Ht, Ut)
Mc obs

×Hfobs(c, b,Mt, Ht, Ut)
Hc obs

× Ufobs(c, b,Mt, Ht, Ut)
Uc obs

with multinomial coefficient C =
(Mc obs +Hc obs + Uc obs)!

Mc obs! Hc obs! Uc obs!

(6)

Inferring RCP point estimates and confidence intervals. The RCP point estimate of a
data set is calculated directly from the conversion-error-corrected observed dyad frequencies.
We determine the approximate 95% confidence interval for RCP as the interval that includes all
values of RCP for which the natural log likelihood lies within χ2

0.95; df=1 = 1.92 units of the
maximum natural log likelihood point estimate [55].

Although bias is just as much a concern with the assumption of independent sampling of
dyads, we did not perform a bias correction for the data from Zhao et al. [15], because without
bootstrapping, we lacked a simple method for bias estimation. Nonetheless, our analyses of
other data sets suggest that most of these samples are likely not severely affected by bias. From
bootstrapping of smaller data sets collected by our lab and by Arand et al. [14, 17], we have
observed that the asymmetry in the distribution is small in the lower ranges of RCP (1∼10), but
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greater as RCP increases. Therefore, bias is likely to be small for most samples presented by
Zhao et al., for which RCP point estimates rarely exceed 10. For data sets presented by Zhao et
al. that yielded RCP estimates greater than 10, biases are unlikely to affect the general
conclusion of methylation behavior characterized by strong preference for concordance.

Assessing whether RCP values differ significantly between two data sets. To compare
the RCP values between two data sets while assuming independence among all dyads, we can
use a likelihood approach, comparing a model in which two true RCP values are required to
described the two data sets to an alternate model in which both data sets can be explained by a
single RCP value. We implemented that test as follows:

Solving for U in Equation 3 gives:

U(m,RCP) = 1−m− 1

2

1−
√

1− 4m(1−m)
(
1− RCP2

)
1− RCP2

 (7)

Using this, we can also define M(m,RCP) and H(m,RCP). Modifying Equation 4, we can
derive the expressions for Mfobs(c, b,m,RCP), Hfobs(c, b,m,RCP), and Ufobs(c, b,m,RCP).
We then can rewrite Equation 6, such that the parameters are c, b, m, and RCP:

Lone set(Mfobs, Hfobs, Ufobs | c, b,m,RCP) = C ×Mfobs(c, b,m,RCP)Mcobs

×Hfobs(c, b,m,RCP)Hcobs

× Ufobs(c, b,m,RCP)Ucobs

(8)

We then employ a likelihood-ratio test to quantify the fit of an alternative model relative to the
null. In the null model, which has three variable parameters, m1

null, m
2
null, and RCPnull, one

value of RCP explains both data sets. Using Equation 8:

Lnull(M
1
fobs, H

1
fobs, U

1
fobs,M

2
fobs, H

2
fobs, U

2
fobs | c1, b1,m1

null, c
2, b2,m2

null,RCP)

= Lone set(M
1
fobs, H

1
fobs, U

1
fobs | c1, b1,m1

null,RCPnull)

× Lone set(M
2
fobs, H

2
fobs, U

2
fobs | c2, b2,m2

null,RCPnull).

(9)

The alternate model, which has four variable parameters, m1
alt, m

2
alt, RCP1

alt, and RCP2
alt, has

two values of RCP, one for each data set.

Lalt(M
1
fobs, H

1
fobs, U

1
fobs,M

2
fobs, H

2
fobs, U

2
fobs | c1, b1,m1

alt,RCP1
alt, c

2, b2,m2
alt,RCP2

alt)

= Lone set(M
1
fobs, H

1
fobs, U

1
fobs | c1, b1,m1

alt,RCP1
alt)

× Lone set(M
2
fobs, H

2
fobs, U

2
fobs | c2, b2,m2

alt,RCP2
alt).

(10)

Computing the ratio of the maximum likelihoods for the null and alternate models, we can
calculate the test statistic, D:

D = −2 ln

(
Lnull(m̂

1
null, m̂

2
null,

ˆRCPnull)

Lalt(m̂1
alt,

ˆRCP
1

alt, m̂
2
alt,

ˆRCP
2

alt)

)
(11)

Under the assumption of large sample of dyads, D is approximately χ2 distributed with 1 degree
of freedom.

Assessing whether a data set has RCP value greater than 1. We again take a
likelihood-based approach as we did in the section above. Here, the null model states that the
system operates under the specified RCP value. The alternate model states that the system
operates under another RCP value.
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Lnull(RCPspecified,m1, ...,mn |Mc obs 1, Hc obs 1, Uc obs 1, b1, c1, ...,Mc obs n, Hc obs n, Uc obs n, bn, cn)

=
n∏
i

L(mi,RCPspecified |Mc obs i, Hc obs i, Uc obs i, bi, ci)
(12)

Lalt(RCPalt,m1, ...,mn |Mc obs 1, Hc obs 1, Uc obs 1, b1, c1, ...,Mc obs n, Hc obs n, Uc obs n, bn, cn)

=
n∏
i

L(mi,RCPalt |Mc obs i, Hc obs i, Uc obs i, bi, ci)
(13)

We treat the two likelihood functions differently in maximizing them. For the alternate model,
both n values of m and RCPalt are parameters for maximization. For the null model, the RCP
value is specified and thus fixed; only the n values of m are parameters for maximization.

D = −2 ln

(
Lnull(RCPspecified, m̂1, ..., m̂n | ...)
Lalt( ˆRCPalt, m̂1, ..., m̂n | ...)

)
(14)

Under the assumption of a large sample of dyads, D is approximately χ2 distributed with 1
degree of freedom.

Defining the approximate 95% confidence region for a data set in the (m,U ) space.
We determine the approximate 95% confidence region in the space of two parameters — here m
and U — as the region that includes all proposed pairs of parameter values for which the natural
log likelihood lies within χ2

0.95; df=2 = 3.00 units of the maximum natural log likelihood point
estimate [55].

S9 Text: Could Spontaneous Differentiation of a Subset of ES and iPS
Cells Substantially Influence the Inference of RCP?

One possible explanation for the inference of conservative processes operating in cultured,
undifferentiated cells is that these cells may in reality be a mixture of differentiated and
undifferentiated cells. We calculated how large the differentiated subpopulation would need to
be under this scenario to yield the observed RCP values for the ES and iPS cells, given that the
subpopulation operated with the RCP inferred for the corresponding differentiated cells. The
remainder of the population was assumed to operate at RCP of 1, per the alternate hypothesis.
We allowed specification of m for each of the two populations.

Let p1 and p2 represent the proportions of the two putative subpopulations that we wish to
estimate, such that p1 + p2 = 1. We start with RCP and m for each of the two subpopulations,
which we denote by RCP1, RCP2, m1, and m2. We can find U1 and U2 using the RCP and m
values. We have the following set of equations:

p1m1 + p2m2 = moverall

p1U1 + p2U2 = Uoverall
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Using these equations and the observed overall RCP value, and the expression for RCP given m
and U (Equation (3)), we can find p1 and p2.

Assuming that m of the undifferentiated subpopulation is at least 0.2, we found that over half
of the cells would need to be differentiated if methylation in the remaining undifferentiated cells
operates at RCP of 1 (calculated using data sets presented in Fig 5a). Morphological inspection
of the cultured human stem cells did not suggest the presence of such a substantial
subpopulation of differentiated cells. Moreover, comparison of RCP for totipotent and
pluripotent stem cells from murine embryos revealed values very similar to those inferred for all
cultured ES and iPS cell lines that we examined, corroborating the interpretation that preference
for concordance is present in stem cells.

S10 Text: Comparing RCPs of Dnmt3-Knockout Lines with Those of
Wildtype Lines

The relative contributions of conservative processes are expected to be more substantial
when the fraction of methylation events achieved through maintenance-type activity is elevated
through loss of one or both of the de novo enzymes. Indeed, at the Lep locus, we inferred RCP
values of 8.11 for Dmnt3a KO cells, a value significantly higher than that for wildtype cells
(p = 0.046, two-tailed PT; Fig S2a; Table S3). Although the point estimate was higher for
Dmnt3b KO cells as well, the difference was not significant (p = 0.11, two-tailed PT).

Examination of data from Arand et al. [14] for a broader set of loci in cell lines with
knockouts at one or both of the Dnmt3s, however, revealed a more complex role for these
enzymes in shaping methylation concordance. Overall methylation levels were diminished in the
absence of the de novo methyltransferases 3a and 3b, as expected (Fig S2b-i, Table S3); RCP
values increased as expected for several, though not all, loci. Results for cells that lacked only
one of the two DNA methyltransferases were even more variable across loci (Fig S2, Table S3).
In some cases, loss of a single Dnmt3 enzyme had the predicted impact of increasing RCP (L1 in
3a KO, p < 10−16, Fig S2h; L1 in 3b KO, p = 0.002, Fig S2h; IAP in 3a KO, p = 0.002,
Fig S2g; IAP in 3b KO, p = 0.029, Fig S2g; two-tailed PTs), as was observed for Lep in our
data. For one locus, B1, knockout of both of the Dnmt3s resulted in significantly increased RCP
(p < 10−16, two-tailed PT), though neither of the single knockouts did (Fig S2f). Most
surprisingly, for two loci, loss of either of the Dnmt3s decreased RCP (Igf2, p < 0.016, Fig S2c;
Igf2, p < 10−16, Fig S2c; two-tailed PTs). These counterintuitive results likely reflect variation
across loci in the roles of the individual DNA methlytransferases — and possibly the
demethylation machinery — in shaping overall methylation levels for various loci and categories
of genic elements [56].
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