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Abstract!
Genomes evolve through a medley of mutation, drift, and selection, all of which act 
heterogeneously across genes and lineages. The pacemaker models of genomic evolution 
describe the resulting patterns of evolutionary rate variation: genes that are governed by the 
same pacemaker exhibit the same pattern of rate heterogeneity across lineages. However, the 
relative importance of drift and selection in determining the structure of these pacemakers is 
unknown. Here, we propose a novel phylogenetic approach to explain the formation of 
pacemakers. We apply this method to a genomic dataset from holometabolous insects, an 
ancient and diverse group of organisms. We show that when drift is the dominant evolutionary 
process, each pacemaker tends to govern a large number of fast-evolving genes. In contrast, 
strong negative selection leads to many distinct pacemakers, each of which governs a few 
slow-evolving genes. Our results provide new insights into the interplay between drift and 
selection in driving genomic evolution.  
!
Key words: mutation; genomic pacemakers; molecular evolution; neutral theory; insect 
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!
Introduction!
Molecular evolution proceeds by the fixation of mutations, a process that balances stochastic 
drift against natural selection. The relative importance of these two forces depends on 
population size (Ohta 1992) and on the distribution of fitness effects of new mutations (Eyre-
Walker and Keightley 2007). When mutations have neither a beneficial nor detrimental 
impact on fitness, their fate is determined entirely by the stochastic process of genetic drift 
(Kimura 1968). In contrast, purifying selection removes deleterious mutations over time. 
Selection is more efficient in large populations, where even small differences in selection 
coefficients can substantially change the relative probability of any particular mutation 
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becoming fixed (Ohta 1992). In small populations, mutations with small fitness effects behave 
similarly to neutral mutations, so drift tends to be more important.  
 Genes are subject to varying degrees of selective constraint, leading to measurable 
differences in evolutionary rates (gene effects). For example, functionally important protein-
coding genes tend to evolve slowly because many of the encoded amino acids are under 
strong selective constraint (Dickerson 1971). A simple way to detect gene effects is to 
examine the branch lengths of the gene trees. Genes that evolve under neutral conditions are 
expected to yield trees with longer branches, representing a larger total amount of genetic 
change. In contrast, when genetic change is retarded by purifying selection, genes are 
expected to yield trees with shorter branches.  
 The relative impacts of drift and selection also vary across species, depending on 
population size (Ohta 1992). For example, species with small populations are expected to 
evolve rapidly because of the dominance of genetic drift (Ohta 1987). In addition, differences 
in life-history traits, such as generation time, can produce rate heterogeneity among lineages 
in the tree (Bromham 2009). These lineage effects can be detected using phylogenetic 
methods, including relaxed-clock models (Ho and Duchêne 2014). Genes that share the same 
pattern of branch lengths, indicating that they are subject to the same lineage effects, are said 
to be governed by the same genomic pacemaker (Snir et al. 2012). On a genomic scale, there 
might be multiple pacemakers that each governs the evolution of a set of genes (Ho 2014; 
Snir 2014). The number and distribution of pacemakers throughout the genome can be 
detected by clustering gene trees according to their branch-length patterns (Duchêne and Ho 
2015; Duchêne et al. 2016). 
 When genes are governed by different genomic pacemakers, there is an interaction 
between gene effects and lineage effects (Gillespie 1991; Muse and Gaut 1997). Consider two 
genes, A and B, sampled from two taxa, x and y. Both genes are responsible for important 
biological functions, such that their evolution is constrained. However, gene A is under 
stronger purifying selection in taxon x than in taxon y. Gene B is subject to the reverse 
conditions, with weaker purifying selection in taxon x and stronger selection in taxon y. As a 
consequence, the trees for these two genes display disparate branch-length patterns.  
 Interactions between gene effects and lineage effects are expected to be more common 
under conditions of selection, because the strength and direction of selection is unlikely to be 
uniform across species. Therefore, genes under strong selection are predicted to be governed 
by many genomic pacemakers and to yield trees with short branches. In contrast, genes 
evolving by drift are predicted to be governed by few genomic pacemakers and to yield trees 
with long branches. Under these conditions, most rate variation is due to lineage effects, such 
as those caused by differences in generation time. These lineage effects act on a genome-wide 
scale (Gillespie 1991), such that different genes share the same pattern of branch-length 
variation.  
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 Therefore, our framework predicts that the structure of genomic pacemakers is 
associated with evolutionary rates across genes (Figure 1). This prediction can be tested by 
analysing genomic data using a phylogenetic approach, because drift and selection leave 
different signatures in the gene trees. Here we analyse 955 genes from 15 species of 
holometabolous insect. These insects undergo complete metamorphosis as part of their 
development. The superorder arose more than 350 million years ago (Tong et al. 2015) and is 
extraordinarily diverse: its members include those that are eusocial, parasites, long-distance 
migrators, and predators. They represent a large proportion of the global biomass and are 
responsible for the bulk of ecological functions on land. We statistically assigned each gene to 
one of a set of genomic pacemakers based on its pattern of branch-length variation. Our 
analyses of these data confirm the predictions of our model, whereby the number of genes 
governed by a pacemaker can be predicted by the evolutionary rate of those genes.  
!
A phylogenetic approach 
We used maximum likelihood to infer the phylogeny of 15 species of holometabolous insect 
from a concatenated alignment of 955 genes. Based on this estimate of the tree topology, we 
optimized the branch lengths for each gene. Thus, the resulting gene trees shared the same 
topology but had their own sets of branch lengths.  

We then tested the assumption that evolutionary rates are associated with the strength 
of negative selection. To determine the relative average rate in each gene, we took the sum of 
the expected number of substitutions along all of the branches in the corresponding gene tree 
(i.e., the tree length). Rapidly evolving genes yield longer trees, and these genes are expected 
to be under the weakest selective constraints. We confirmed this link by comparing gene-
specific ratios of radical and conservative amino acid substitutions with the lengths of the 
corresponding gene trees. Our method of identifying radical and conserved substitutions is 
similar to that of Zhang (2000). We used a model-free, non-parametric approach to estimate 
this ratio. This statistic has a similar interpretation to the Kr/Kc ratio (Zhang 2000), but the 
absolute values are expected to be different because Kr/Kc is estimated using an explicit 
substitution model and phylogenetic tree. Although our method is biased towards radical 
substitutions, with a consequent skew in our results, it provides a fast estimate of the degree 
of selection (Figure 2).  
 Next, we wished to test the relationship between evolutionary rates and genomic 
pacemaker structure. To group the estimated gene trees according to their branch-length 
patterns, we used a clustering approach based on Gaussian mixture models, as implemented 
previously (Duchêne et al. 2016). Importantly, this method clusters the gene trees by their 
pattern of branch lengths (lineage effects), but not their overall relative evolutionary rate 
(gene effects). Each of the clusters that are identified using this approach represents a set of 
genes that are governed by the same genomic pacemaker (Duchêne and Ho 2015). In this 
study, we did not aim to find the optimal number of clusters for the data; instead, we wished 
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Figure 1. A diagram showing the relationship between evolutionary rate and pacemaker structure. Genes that are under strong purifying selection have low rates of evolution, producing short phylogenetic trees. Genes that are under weak selection are primarily subject to genetic drift and have long phylogenetic trees. Genes share patterns of among-lineage rate variation if they share similar evolutionary pressures over time and exhibit the same lineage effects. These genes are said to be governed by the same genomic pacemaker. We posit that genes whose evolution has been dominated by drift will be governed by only a small number of pacemakers, but that genes under strong purifying selection will be governed by many separate pacemakers. Genes that are under weak selection are primarily influenced by lineage effects, which act uniformly across genomes. Genes under strong selection experience gene-by-lineage interactions, which lead to distinct patterns of among-lineage rate variation across genes.
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Figure 2. Purifying selection weakens with increasing evolutionary rate, as measured by gene-tree length. Each point represents one of 955 genes from 15 species of holometabolous insect. Kr/Kc is the ratio of estimated radical to non-radical amino acid substitutions. High Kr/Kc values indicate that radical substitutions outnumber non-radical substitutions, reflecting weak selective constraints.
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to test our hypothesis using different numbers of clusters. Therefore, we compared the results 
obtained using three numbers of pacemaker clusters: 20, 30, and 40.  
 The gene trees were ranked according to length and divided into deciles. For each 
tree-length decile, we identified the number of genomic pacemakers that were represented 
(Figure 3). The results of our analyses confirmed our prediction of a relationship between 
evolutionary rate, as represented by tree length, and the structure of genomic pacemakers. 
Specifically, slowly evolving genes are governed by many pacemakers, whereas rapidly 
evolving genes are governed by few pacemakers. We found very few genes that both evolved 
slowly and were governed by the same genomic pacemaker. Genes that do evolve under these 
conditions are probably important housekeeping genes, such as those that encode histone or 
ribosome proteins. These genes would evolve similarly across different species, but with a 
very low substitution rate because they would be under strong purifying selection.  

In addition to testing the role of evolutionary rate, we investigated whether pacemaker 
structure could be explained by gene function. Our dataset is poorly annotated, which is 
typical of large datasets generated by high-throughput sequencing. This limited the scope of 
our investigation to enzymes because enzyme commission (EC) numbers were available for 
only a subset of our data. EC numbers refer to particular catalytic processes that are enabled 
by the enzymes. These classifications were available for 297 genes in our data set, but other 
genes either had incomplete annotations or did not encode enzymes. We looked at the number 
of pacemakers represented for each of six EC numbers. To correct for an imbalance in the 
number of genes within each EC category, we divided the number of represented pacemakers 
by the number of genes. We found that isomerase genes (EC number 2) are more likely to be 
governed by the same pacemaker than the genes assigned to other EC numbers (Figure 4). In 
contrast, transferase genes (EC number 5) are represented across many pacemakers. 
Interestingly, isomerases are more likely to evolve new functions in different EC classes 
(Martinez Cuesta et al. 2014). Such isomerase sequences might possess latent potential for 
selection (Dykhuizen and Hartl 1980), whereby long periods of drift produce a stream of raw 
genetic variation that can be subject to selection under particular conditions (Ohta 1987; 
1992). We speculate that if this is the case, selection is probably occurring at the secondary or 
tertiary level of protein structure because the trees of the isomerase genes cluster in few 
pacemakers, indicating that they are subject to little selection pressure at the sequence level.  
 Our investigation of the relationship between enzyme function and pacemaker 
structure is limited in its statistical power. Despite our correction for the imbalance in the 
number of genes represented across the six EC categories, three of the six categories have 13 
or fewer genes; these relatively small groups of genes might have had a large bearing on the 
results (Figure 4). Further clouding any signal in the dataset is the fact that some enzymes can 
accumulate many nucleotide changes while preserving gene function, and that gene function 
can change without substantial alterations to the nucleotide sequence (Martinez Cuesta et al. 
2014). Enzymes can also exhibit ‘promiscuity’, whereby they evolve to catalyse new suites of 
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Figure 3. Genes with the longest trees are governed by fewer pacemakers than the decile of genes with the shortest trees. Here, genes have been sorted into deciles according to their tree lengths. Tree length is measured in substitution per site and reflects the relative rate of molecular evolution that has been experienced by a gene. For three separate pacemaker clustering schemes (20, 30, and 40), fewer pacemakers are represented in deciles of genes with higher rates.
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Figure 4. Relationship between enzyme classification (EC) number and pacemakers for 297 genes from holometabolous insects. Each EC number represents a collection of genes that share a common enzyme function. EC number 5, denoting genes that code for transferases (enzymes that move chemical functional groups from one molecule to another), is the most degenerate of categories, meaning that these genes are dispersed across more pacemakers compared to genes belonging to other EC categories. EC number 2 is the least degenerate. EC number 2 denotes isomerases, which are enzymes that convert molecules from one isomer to another. The results are based on a 40-cluster pacemaker scheme.
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reactions in addition to their normal functions (O’Brien and Herschlag 1999, Duarte et al. 
2013). This hazy correspondence between nucleotide changes (or lack thereof) and biological 
function, the ultimate target of selection, is likely to be a contributor to the statistical noise in 
our pacemaker analyses. Amino acid substitutions are also thought to be more insensitive to 
generation-time effects compared with nucleotide substitutions, particularly nucleotide 
changes occurring in non-coding regions, because proteins are more likely to be targets of 
selection (Ohta 1992).  
 Finally, we fitted a random forest classifier to test whether the tree length, ratio of 
radical and conserved amino acid substitutions, or EC number could predict the pacemaker 
assignments of the genes (Liaw and Wiener 2002). Predictive power was quantified using 
Gini coefficients. We found that the length of the gene tree has the best predictive accuracy, 
with a Gini coefficient of 64. This was followed by our Kr/Kc ratio and the EC number, with 
respective coefficients of 60 and 25. However, the classifier has overall low predictive 
accuracy, suggesting that more gene features might need to be considered to provide a 
comprehensive mechanistic model for pacemaker assignment. This can be improved in the 
future with further progress in genome annotation.  
!
Evolutionary rates and genomic pacemakers 
Our analyses reveal the roles of selection and drift in determining the structure of pacemakers 
across the genome. Genes that are the most weakly selected are subject to the vagaries of 
drift, and they tend to have the highest evolutionary rates across the genome. The main driver 
of rate heterogeneity in these genes is lineage effects, which explains our finding that large 
groups of rapidly evolving genes are governed by the same pacemakers. The most well 
studied lineage effect is that of differences in generation time (e.g., Thomas et al. 2010; 
Weller and Wu 2015). Generation time has a negative relationship with evolutionary rate 
because genome replication occurs more infrequently in species with long generations than in 
those with short generations. This is tempered by the fact that long-lived species tend to have 
small populations, where drift is the dominant driver of molecular evolution and leads to a 
higher evolutionary rate (Ohta and Kimura 1971). However, theoretical examinations suggest 
that certain mutagenic conditions allow the fixation of neutral mutations to be independent of 
population size (Welch et al. 2008).  
 A key problem in our attempt to describe the structure of genomic pacemakers here is 
the effect of fluctuating selection pressures over time. The fitness effects of mutations can 
vary through time, with the potential for selection that is realized under new environmental 
and ecological conditions (Dykhuizen and Hartl 1980; Ohta 1992). The converse might also 
be true: as selection dynamics shift, the magnitude of selection acting upon a gene might vary 
over time, or become effectively zero. Nevertheless, our phylogenetic approach is able to 
detect an underlying signal through this noise. The pacemaker structure that we observe here 
reflects groups of genes that share the same temporal patterns of rate variation. The 
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pacemakers represented in the most rapidly evolving decile of genes might differ from one 
another by the shifting balance between selection and drift that has occurred over time. For 
instance, two pacemakers might have experienced the same total amount of evolutionary 
change due to drift, but differ in the periods of time in which they were subject to selection 
and drift, thereby generating different branch-length patterns. Our results suggest that in the 
pacemakers that govern the most rapidly evolving genes, these sources of fluctuation are 
genome-wide factors. Among the most slowly evolving genes, there is a variety of governing 
pacemakers because of gene-by-lineage interactions that lead to highly heterogeneous 
evolutionary rates.  
!
Implications for phylogenomic analysis 
Identifying the role of evolutionary rates in the structuring of genomic pacemakers provides 
some useful insights into how genome-scale data might be handled in phylogenetic analysis. 
There is a need for new analytical methods to extract phylogenetic and temporal signals from 
genome-scale data without creating excessive computational demands (Ho 2014; Kumar and 
Hedges 2016). One promising new approach involves data-clustering to identify subsets of 
genes that share similar evolutionary characteristics (Duchêne et al. 2014; Mirarab et al. 
2014). These techniques have already been used in phylogenomic analyses of mammals (dos 
Reis et al. 2012), birds (Jarvis et al. 2014), and insects (Misof et al. 2014).  

Our results suggest that any form of clustering that groups genes according to their 
branch-length patterns will identify large groups of rapidly evolving genes and many small 
groups of slowly evolving genes. The latter are especially useful for studying ancient 
divergences because they have experienced less saturation, but they also display greater 
variation across genes in terms of their among-lineage rate heterogeneity. Therefore, 
understanding pacemaker structure has important practical implications for evolutionary 
dating using molecular clocks. Any molecular dating study must be based on a compromise 
between selecting genes with an appropriate rate of evolution, and selecting genes to 
minimize the variation in patterns of among-lineage rate heterogeneity. 
 In summary, our analysis of holometabolous insects has revealed an underlying 
structure to the complexity of genome evolution. Specifically, we have identified support for a 
model of genomic evolution in which drift and selection lead to predictable patterns of rate 
variation. Further detailed annotation of genomes will open the way for deeper insights into 
the impacts of gene function on shaping phylogenetic information. We hope that our results 
will spur the discovery of other widespread patterns in genome evolution and lead to 
improvements in phylogenomic analysis.  !
Materials and Methods 
We analysed a data set comprising the amino acid sequences of 955 genes from 15 insect taxa 
(Supplementary Table S1): two bees (Apis mellifera and Bombus terrestris), two ants 
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(Linepithema humile and Pogonomyrmex barbatus), a wasp (Nasonia vitripennis), three 
mosquitoes (Anopheles gambiae, Aedes aegypti, and Culex quinquefasciatus), three flies 
(Drosophila melanogaster, Drosophila persimilis, and Drosophila sechellia), a beetle 
(Tribolium castaneum), the silkworm (Bombyx mori), a louse (Pediculus humanus), and an 
aphid (Acyrthosiphon pisum). This was modified from the data collected by Peters et al. 
(2014). The data were filtered to produce a subset of 955 sequences without missing data.  
 The tree for each gene was inferred using maximum likelihood in RAxML v8.1 
(Stamatakis 2014). The same substitution model, GTR+G with four categories of site rates, 
was used for all genes. We ran ten replicates of each search and chose the tree with the highest 
likelihood score. Because we were interested in the relationship between tree length and 
branch-length patterns, our analyses required the topologies of the gene trees to be mutually 
congruent. We checked for any substantial differences in topologies between gene trees by 
clustering them using the k-means Partitioning Around Medoids (PAM) algorithm. We found 
strong support for a single cluster of tree topologies, whereby every gene supported the same 
set of evolutionary relationships among the 15 insect species. Accordingly, we inferred the 
maximum-likelihood tree from a data set comprising the 955 genes in concatenation. This tree 
topology was then fixed for subsequent optimization of the branch lengths for each gene tree 
in RAxML.  
 We applied a Gaussian mixture model (GMM) clustering algorithm from the Python 
machine learning toolkit, Scikit-learn (Pedregosa et al. 2011), which allows us to select the 
number of clusters into which we fit our phylogenetic data. GMM algorithms assign data to 
multivariate normal components and appear to work well when used to identify genomic 
pacemakers (Duchene et al. 2016). Based on the gene trees inferred using RAxML, we sorted 
the trees into deciles according to their lengths. We identified the number of different 
pacemakers represented in each decile, and plotted these in a histogram.  
 To evaluate the degree of selection acting on each gene, we calculated the ratio of 
radical to conserved amino acid substitutions using a custom program written in R v3.2.3 (R 
Core Team 2015). These values were then plotted against the corresponding gene-tree lengths. 
We have uploaded this program to GitHub (github.com/sebastianduchene). 
 We isolated a subset of 297 enzyme-coding genes from our 955-gene dataset. We 
matched an EC number from the NCBI database of Drosophila melanogaster to each of these 
enzyme sequences. For each EC number, we plotted the number of unique pacemakers and 
the mean tree length.  
 We investigated whether a set of variables could predict cluster assignment for the 
different genes. To do this, we used a random forest classifier, where the cluster assignment 
was the target variable and the predictors were tree length, Kr/Kc, and EC number. This 
method is appropriate because it does not make parametric assumptions and it is more robust 
to over-fitting than regression methods (Hastie et al. 2001). 
!
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