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Abstract

Deep Mutational Scanning is a robust method for massive scale assessment of genotypic variants and is being

applied to wide domains of research. dms2dfe (Deep Mutational Scanning to Distribution of Fitness Effects)

is a comprehensive computational workflow designed to streamline analysis of such data on the basis of

evolutionary principles. dms2dfe assists in contextualizing data from Deep Mutational Scanning experiment

in terms of Distribution of Fitness Effects which is a powerful indicator of evolutionary dynamics. In addition

to estimations of preferential enrichments of experimentally determined mutations, dms2dfe utilizes a novel

application of robust random forest modeling to infer of preferential enrichments of mutants which are not

empirically determined. This helps to deduce biologically relevant interpretations from population level

dynamics of DFEs across different experimental conditions by solving normalization issue and sampling

bias. dms2dfe is available at https://kc-lab.github.io/dms2dfe .
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Rationale

Recent developments in high throughput mutagenesis and massively parallel DNA sequencing culminated

in a method popularly known as Deep Mutational Scanning (DMS) [1, 2]. A conventional Deep Mutational

Scanning experiment involves selection of a pool of a mutagenized gene under selection pressure of interest

followed by deep sequencing of amplicons by next-generation sequencing. Due to the combination of ease of

experimentation, cost effectiveness and generation of massive scale information rich data, Deep Mutational

Scanning is being widely employed in diverse fields of research [3–22]. In order to streamline and standardize

analysis of such data, a comprehensive analysis pipeline is needed which would additionally also help in

design and optimization of DMS experiment.

Comprehensive fitness landscapes produced from Deep Mutational Scanning provide information about

all possible evolutionary paths available for a gene - including the ones which are not accessible through

natural selection - which makes it valuable in challenging task of predicting effects of new mutations [23].

The distribution of fitnesses along fitness axis of fitness landscape i.e. distribution of fitness effects (DFE)

is a powerful estimator of the underlying evolutionary dynamics and has been traditionally used to contex-

tualize molecular evolution [24, 25]. One can easily characterize the nature of selection pressure in effect

and potential susceptibility, evolvability or robustness of the individuals in the population by comparing

DFEs. Deep Mutational Scanning provides empirical fitnesses of large scale of mutations which useful for

fundamental studies in population genetics which are heavily dependent on the analysis of Distribution of

Fitness Effects (DFEs).

As compared to previously reported workflow [26], dms2dfe provides a more tunable framework which ren-

ders wider applicability across variety of modifications of Deep Mutational Scanning method. dms2dfe also

provides utilities to infer the fitnesses of mutants which are not empirically recorded, by utilizing a robust

machine learning approach of random forest decision trees. We find that this ensemble approach performs

better than previously reported approach [27] across independent datasets. The resultant cumulative DFE

encompassing empirical and inferred fitnesses increase the information available per fitness landscape which

is critical to make population level interpretations. dms2dfe workflow also provides mechanistic insights

underlying observed changes in organismal fitnesses, in terms of ranked relative importances of molecular

features involved in the activity, folding or molecular dynamics of the gene in concern.

In the comprehensive workflow of dms2dfe, following key aspects of the analysis of Deep Mutational Scanning

experiment are addressed.
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1. Assessment of quality of mutational data in terms of sequencing depth and biological and technical

noise.

2. Variant calling and estimation of frequency of mutants per amino acid and codon.

3. Estimation of fitnesses of mutants from preferential enrichments of mutants under selection pressure

with respect to frequency of mutants under no selection pressure.

4. Inference of fitness of mutants which are not empirically determined.

5. Comparison of resultant DFEs across different conditions to characterize nature of condition specific

selection pressure in effect.

Results

Applicability of dms2dfe

In a conventional DMS experiment, a pool of mutants is selected in a co-culture competition assay under

selection pressure of interest and frequencies of the mutants are compared with pool or mutants used as an

input pool or a pool under no selection pressure. dms2dfe is applicable to all such approaches wherein a

basic DMS experiment involves a comparative analysis of input and selected pool of mutants. In addition

to the shot gun and full length ultra-deep sequencing, dms2dfe also supports concatamer based approach

[13] as well as multiplexing strategy using barcoded amplicons.

dms2dfe workflow can also import sequencing data (in unaligned fastq or aligned sam or bam formats) or

alternatively, a mutation matrix of frequencies of mutants can provided. Also pre-estimated fold changes

or fitness scores of mutants can be provided to infer fitness scores of the mutants that are not empirically

determined. Along with input sequencing or mutation data, dfe2dfe requires the reference sequence (in

fasta format) and PDB structure of the protein. Alongside informative visualizations, dms2dfe also stores

the data associated with each analysis in widely applicable comma separated text (csv) format.

Estimation of preferential enrichments

Variant calling

dms2dfe provides utilities to widely popular preprocessing tools for quality filtering (Trimmomatic [28])

and alignment (bowtie2 [29] and samtools [30]) to process raw sequencing data to get aligned reads which

are used for subsequently variant calling. By iterating through aligned sequences, based on position in the
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Figure 1: Structure of dms2dfe‘s analysis workflow. Shown in green and yellow boxes are inputs and outputs of the
workflow respectively. (A) In the first step, preprocessing of sequencing data is carried out by quality filtering to
filter out reads with lower Q-score than threshold and subsequent alignment to reference sequence. (B) Variants are
then identified from the aligned sequences and stored in the form of frequencies of mutations (Ni). (C) Empirical
preferential enrichments (FCi) are estimated as log fold change of frequencies of mutants in selected and input
libraries. (D) Preferential enrichments which are not empirically recorded are inferred by random forest regressor
using existing empirical fold changes as a training set and molecular features extracted from the feature extraction
tools. Fitness scores are estimated by rescaling preferential enrichments with respect to preferential enrichments of
wild type (synonymous alleles). (E) In the downstream analysis, DFEs of test and control experimental conditions
are compared and accordingly mutants are categorized into ’positive’, ‘negative’ or ‘robust’ classes, the relative
proportions of which provide information about the condition specific selection pressure. The full documentation of
dms2dfe is available at https://kc-lab.github.io/dms2dfe.
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Figure 2: Visualizations of mutational data in the form of mutational matrix. Positions of wild type residues are
represented on x-axis and corresponding mutations are set on y-axis. Here, for an example dataset - APH2, the
frequencies (log transformed) of mutants in input pool, selected pool and preferential enrichments are represented in
panels A B and C respectively.
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corresponding reading frames, nucleotide variants are called and are reported at codon level. Mutations at

codon level are then transformed into a mutation matrix (also known as sequence-function map) in which

each locus identifies read depth of a unique mutation (Figure 2A and B). Codon level mutations are scored

only if the average Q-score of the codon is greater than a threshold which can be provided through input

configuration of dms2dfe. Also to avoid biases in the ratio based estimation of preferential enrichments a

threshold can be set to filter out mutants with low frequencies.

Preferential enrichments

Preferential enrichments are estimated as log ratios of the frequencies of the mutants in selected pool with

respect to input pool (Equation 1). The accuracy of the fitness estimations in DMS experiment is dependent

on levels of frequencies of mutants which in turn depend on the sequencing depth of the respective libraries

[31, 32]. Given that the frequencies of mutants are at optimal levels - which can be assessed through

dms2dfe s quality check utilities (described in subsequent sections) - a ratio based approach serve as both

efficient and intuitive way to estimate preferential enrichments.

Estimation fitness scores

Normalization of preferential enrichments

In order to determine whether a mutant is beneficial or deleterious its fitness is compared with the fitness

of wild type allele which serves as a reference. Two approaches are implemented in dms2dfe to normalize

preferential enrichments of mutants with respect to wild type. Either preferential enrichments of wild type

(synonymous alleles) or sequencing depths of wild type sequences can be employed as normalization factor.

Since all the synonymous mutants would express into the same wild-type protein, in first method, preferen-

tial enrichments of synonymous mutations are used as a normalizing factor. With the conventional methods

used to generate mutation libraries e.g. using degenerate (NNK or NNS) codons, along with non-synonymous

mutations, a proportion of synonymous mutations are produced. For normalization, preferential enrich-

ments of all mutants are z-score normalized with respect to maximum likelihood and standard deviation

of distribution of the preferential enrichment of synonymous mutations (Equation 2). This method is ap-

plicable in cases where proportions of synonymous mutations are relatively invariable across experimental

conditions.

Alternatively, through dms2dfe, preferential enrichments of mutants can also be normalized with respect to
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Figure 3: Estimation of fitness scores and downstream analysis. (A) Molecular features relevant to the fitness of
mutants such as activity, folding of protein, evolutionary conservation and physico-chemical properties of amino
acids and user provided custom features are used to train random forest regressor to infer preferential enrichments of
the non-empirically determined mutants from empirically determined ones. (B) The preferential enrichments of all
mutants are rescaled with respect to that of wild type allele. Resultant cumulative mutation matrix of empirical and
inferred fitness scores allows more coverage of fitness landscape. dms2dfe suite also provides modules to compare
fitness of mutants across of multiple test conditions. Here, for demonstration, from APH2 dataset, test (Kanamycin
concentration of 1:1 MIC) and control (Kanamycin concentration of 1:4 MIC) conditions are used. Panels (C) and
(D) proportions of beneficial, neutral and deleterious mutations in control and test conditions respectively. (E)
owing to evident more deleteriousness of the test condition the DFE of test condition show a significant (p<10-4)
disparity as compared to DFE of control. (F) Depending on the comparative dynamics of DFEs, the mutants can be
categorized as under negative or positive selection pressure or robust (Equation 6). Relative proportions of mutants
in such categories for test dataset APH2 shows that the selection pressure of test (higher antibiotic concentration)
shifts mutants to the negative class and hence characterizing the nature of the selection pressure of the condition.
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sequencing depths of wild-type alleles as previously described by Melnikov et al. [13] (Equation 3). This

approach is especially useful in scenarios where frequencies of synonymous mutants are considered to vary

across experimental conditions or in cases where synonymous mutations are not generated by methods used

for cloning mutants.

Estimation of fitness scores by rescaling preferential enrichments relative to wild type

Since DMS studies are often based on co-culture competition assays, preferential enrichment of mutants can

be best interpreted in terms of corresponding changes in their relative fitnesses. Preferential enrichments

of mutants at a position are rescaled with respect to the wild type (synonymous allele) at that position

(Equation 4). Since fitness scores scaled with respect to that of wild type alleles, they are classified into

categories beneficial or deleterious if there fitness is greater or lower than that of the wild type (Equation

5 and Figure 3C and D).

Need to infer preferential enrichments

Normalization issues

Since their functional importances would be conserved and equal to wild type allele, fold changes of syn-

onymous mutations serve as benchmark of preferential enrichment of wild type and hence can be used as a

reference to estimated fitness of mutants. But due limited efficiencies of widely used cloning or transforma-

tion methods, fraction of synonymous mutants are lost before sequencing. In such cases, normalization of

preferential enrichments and subsequent rescaling relative to wild type (synonymous alleles) to determine

whether the mutation under consideration is beneficial or deleterious becomes impossible and preferential

enrichment values of the rest of the mutants at that position are rendered unusable.

In other popularly used normalization method, frequencies of mutants are normalized with respect to the

total sequencing depth at that position. The fitness values estimated by this approach are rendered sensitive

to changes in levels of sequencing depth along the length of reference sequence. This is especially prevalent

the case in shot gun sequencing methods e.g. tagmentation based library preparations.

Possible sampling biases

To characterize the condition specific selection pressure without a sampling bias, fitnesses of majority of

individual representatives from all the populations being compared are required. In case of highly deleterious
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selection pressures, fraction of the mutants can be killed so their frequencies are not empirically determined.

Additionally, current widely used method for generation of mutation libraries including degenerate (NNK

or NNS) codon is inefficient in cloning all the substitutions at every position. Even with the use of synthetic

oligos due to reasons such as transformation efficiencies of host cells, a fraction of mutants are lost from the

input pool of mutants. As a result the left out mutations is a loss of information in in the analysis of the

comprehensive DFE. The resulting data can be used for pairwise analysis of mutants across experimental

conditions but due to inherent sampling bias, interpretation of DFE of the gene is compromised.

To solve this issue, in the workflow of dms2dfe, preferential enrichments of mutants which are empirically left

out, are estimated by inferring them by training a random forest regressor model on preferential enrichments

of empirically determined mutants.

Inferring preferential enrichments

Extraction of molecular features

In order to constrain the random forest regressor model to the biological significance of the underlying

mechanisms that can potentially guide dynamics in DFEs, molecular features which are potentially rele-

vant to the fitness of mutants are collected through dms2dfe feature extraction suite (Figure 3A). They

collectively cover following aspects of factors that can determine the fitness of mutants.

1. Activity of protein. In co-culture competition assays, since fitness of mutants is directly linked to

activity of genes, features that can roughly reflect changes in the activity of proteins are of utmost impor-

tance. Since residues at the active site of protein tend to be more conserved than the rest, distance of the

mutated residue from the active site can be used as an indicator of potential changes in activity [8, 18].

Though ‘feature extraction’ modules of dms2dfe, distances of all amino acids are measured from all the

atoms of known residues lining active sites and substrates.

2. Structural features Folding of protein is coupled to the activity of protein and is guided by structural

constraints such as solvent accessible surface area of amino acids and dihedral angles. Structural features

such as secondary structure, solvent accessibility and values of dihedral angles of residues are extracted

from user provided PDB structure by utilizing DSSP [33]. Since solvent accessibility is found to be the

crucial factor in earlier DMS experiments, additionally a closely related molecular feature - residue depth

per residue is estimated by utilizing MSMS [34].
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3. Physico-chemical properties of residues In terms of molecular dynamics of the proteins, changes due

to mutation would affect non-covalent inter-residue interactions. Such interactions would in turn depend

on the physico chemical properties of the interacting residues such as solvent accessibility, pI, pKa, charge,

hydropathy etc. For this reason physico-chemical properties of the reference and mutated amino acids

predicted by chemaxon (http://www.chemaxon.com) and are used to account for the perturbations of local

interactions.

4. Conservation score Since conservation scores accounts for the molecular evolutionary history of pro-

tein and represents the level of tolerance to mutations. This factor can potentially be of higher relative

importance in prediction of fitness of mutations. Through modules of dms2dfe’s feature extraction utilities,

a multiple sequence alignment (MSA) is generated by a protein BLAST. Conservation scores of the residues

of the protein are determined from inverse Shannon entropy of each residue position of protein the MSA.

Additionally, using the efficient libraries of Rate4site [35], conservation score of residues of the protein is

determined using maximum likelihood distance and Jukes-Cantor distance approaches.

5. Custom features In addition to the above auto-generated features, the custom features which could

be potentially relevant to the experiment can be provided through input configuration of a dms2dfe run.

Relevant custom features such as per residue aggregation propensity can potentially improve the predictive

power for an aggregation prone protein.

Regression model

To circumvent the possible normalization issues and sampling biases in the interpretation of DFEs, through

dms2dfe suite, empirical preferential enrichments are used as training set and preferential enrichments of

rest of the mutants is inferred. dms2dfe utilizes random forest among machine learning approaches because

of its inherent robustness.

Firstly, using all the extracted molecular features, a random forest classifier is trained to predict whether

the preferential enrichment value of mutant is greater or lesser that the median of preferential enrichments

of all mutants in the training set. This provides ranking of molecular features based on their relative

importances, from which top most important features are selected and used along with the empirical

preferential enrichments to train a random forest regressor to predict the preferential enrichments of rest

of the mutations.
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Although popularly known as a black box method, critical information such as relative importances of

the features is helpful in contextualizing the mechanistic insights guiding dynamics of DFEs. Shown in

Figure 3B is a mutation matrix of the resultant fitness scores the coverage of mutational space of which is

more as compared to that solely from empirical preferential enrichments (Figure 2C). This increase in the

information per fitness landscape would assist user in making interpretations with efficient normalization

and reduced sampling bias.

Downstream analysis

Comparison of DFEs across experimental conditions

Depending on condition specific selection pressure, the shape and position of DFEs may exhibit a relative

dynamics. dms2dfe generates visualization of the DFEs control and test conditions along with significance

of the dynamics estimated by two tailed Mann–Whitney U test (Figure 3E).

Depending on the relative changes in the fitness of mutants, they are classified in positive, negative and

robust categories (Equation 6). The mutants under positive selection pressure gain fitness while those

under negative selection pressure lose their fitness as compared to control condition. The mutants which

do not gain or lose their fitness are classified as robust. This comparison based on the relative proportion

of mutants in each categories can be visualized though dms2dfe visualization utilities as shown in Figure

3F. This way, the condition specific nature of selection pressure can be characterized.

Factors guiding dynamics in DFEs

Since molecular features underlying dynamics of DFEs are often coupled [36] and their relation to organismal

fitness is a complex, we use ensemble approach implemented through random Forest decision trees to infer

preferential enrichments. Along with the predictions of preferential enrichments, this approach also provides

relative importances of molecular features used for predictions, which in turn provide a mechanistic insight

as well as helps to contextualize the interpretation of DMS experiment. The levels of relative importance

of a molecular feature can be used to characterize the nature of respective selection pressure under effect.

Visualizations

dms2dfe generates following visualizations to represent the analysis of DMS data.

1. Distribution of fitness scores i.e. DFE (Figure 3E).
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2. Heatmaps of mutation matrix of frequencies and fitness scores of mutants (Figure 2A and 3B).

3. Average fitness scores per residue position of the protein projected onto PDB structure. Along with that

a PDB file is generated with Average fitness scores incorporated in place of b-factor (Figure 5B).

3. Comparative analysis of DFEs across experimental conditions (Figure 3E and F).

4. Substitution matrix in which each locus represents averaged fitness scores for a particular mutation.

Additionally dms2dfe also generates visualizations for assessing the quality of DMS data (Figure 4A and

B) and clustering of mutation matrices.

Quality checks for a DMS experiment

Because of the multiple level of complexities involved in the co-culture competition assays, DMS experiments

are prone to biological and technical noise which ultimately reflects in the accuracies of the fitness scores.

Therefore to gain accurate estimation of fitness of mutants it is crucial to check the quality of DMS data

before its interpretation. dms2dfe provides a suite of tools to account for following quality checks.

Monitoring sequencing depth

In order to estimate fitness scores with optimum accuracy, sequencing depth is a crucial factor [32]. De-

pending on the total number of mutants considered for a DMS experiment, sequencing depth determines

the frequencies of mutants. dms2dfe analyzes the depth of sequencing and the cumulative frequencies along

the length of protein which gives a rough estimation of the expected accuracy of fitness scores (Figure 4A).

Monitoring reproducibility across replicates

In addition, given the possibilities of biological or technical the noise technical and biological replicates are

used to monitor their levels. dms2dfe provides utilities to generate a correlation matrix of such biological

or technical replicates (4B) to help user get an estimate of the level of noise in the experimentation.

Performance validation

Across different datasets

To benchmark the efficiency of dms2dfe workflow, we used two different datasets of DMS experiments of two

different proteins aminoglycoside-2”-phosphotransferase (APH2) [13] and TEM-1 beta-lactamase (TEM1)

[14]. As described earlier, the implementation of random forest classifier produced accuracy scores (AUC)
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Figure 4: Quality check utilities provided by dms2dfe. (A) dms2dfe generates a visualization of sequencing depth of
the sequencing data along with the cumulative frequencies of mutants at respective positions along the length of the
gene. Here, sequencing depth and frequencies of mutants represented in the panel are generated from APH2 dataset.
(B) Additionally dms2dfe generates a correlation matrix of frequencies of mutants in the replicates (technical or
biological) to assess the noise in the input data. Shown in panel (B) are correlations between frequencies (log
transformed) of mutants in replicates from the example APH2 dataset. ‘Replicate 1’, ‘Replicate 2’ and ‘Replicate
3’ are representing 3 rounds of selections of first, second and first background libraries respectively at Kanamycin
concentration of 1:4 MIC of wild type APH2.
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of 0.79 and 0.83 for APH2 and TEM1 dataset respectively (Figure 5A and C respectively). This signifies

the efficiency of the feature extraction tools and robustness random forest approach of prediction. Addi-

tionally as variously reported earlier in alignment with the earlier DMS studies, conservation score, surface

accessibility and residue depth are found to the most important features of the models, thus underscoring

the biological significance of the predictions from the dms2dfe suite. Through dms2dfe, the average fitness

values per position are projected onto the PDB structure by utilizing visualization modules from UCSF-

Chimera [37]. As shown in Figure 5B and D, the depletion of fitness scores for buried residues signifies the

efficiency of the inferences of the fitness scores by dms2dfe.

Figure 5: Performance validation across different datasets. ROC curve generated from random forest modeler to
predict preferential enrichments of APH2 and TEM1 dataset are shown in panel (A) and (C) respectively. The
estimated fitness scores of APH2 and TEM1 datasets are projected onto respective PDB structures as shown in
panel (B) and (D) through visualization utilities.

Comparison with dms_tools

Next, we compared dms2dfe’s inference of fitness scores with that by dms_tools. We randomly sampled

empirical (true) preferential enrichments of the two datasets (APH2 and TEM1) and tested the extent of

conformity of inferred fitnesses with randomly sampled empirical preferential enrichments. As shown in

Figure 6A and B, the pearson correlation coefficients of the inferred fitness values of APH2 dataset (Fi

14

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 31, 2016. ; https://doi.org/10.1101/072645doi: bioRxiv preprint 

https://doi.org/10.1101/072645
http://creativecommons.org/licenses/by-nc-nd/4.0/


dms2dfe Methods

in case of dms2dfe and Φr,x in case of dms_tools) versus true values are found to be higher for dms2dfe’s

predictions than that by dms_tools across 5 random samplings of 100 mutants each. In case of TEM1

dataset with one exception all other randomly sampled mutations are better correlated to fitness inferred

by dms2dfe as compared to dms_tools. As a result, these comparisons indicate that for independent example

datasets, the random forest approach of dms2dfe performs better than Markov chain Monte Carlo (MCMC)

approach used in dms_tools.

Figure 6: Comparison of dms2dfe with dms_tools. Correlations of fitness scores of randomly sampled mutants
inferred using dms2dfe (panel (A) and (C)) show better correlation with empirical preferential enrichments than
that by dms_tools (panel (B) and (D)). First row i.e. panel (A) and (B) represents data from APH2 dataset while
second row i.e. panel (C) and (D) represents data from TEM1 dataset.

Discussion

The broad appeal of DMS method is evident by the wide range of applicability [38] inclusive of questions

relevant to structural modeling [4], protein stability [3], substrate specificity [13, 16, 18], protein-protein

interactions [6, 7, 10, 11, 19, 20], mutational effects on organismal fitness [8, 12, 21], environmental effects
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[22], biology of viruses [5, 15, 17], fitness landscapes of antibiotic resistance [14] and oncogenes [9]. As the

usage of DMS reaches even wider scientific community, there is a need to make analysis utilities available

in a user friendly format with easily interpretable data formats and visualizations. Scalability of dms2dfe

workflow renders it readily applicable to this need. With adaptability to wide range of modifications and

developments in DMS experiments, dms2dfe can potentially serve as a robust alternative to existing tools

designed for analysis of DMS data.

dms2dfe allows assessment of quality of the DMS data by accounting for biological and technical noises and

sequencing depth per position of gene. It also provides solution to normalization issues and sampling biases

in interpreting relative dynamics of DFEs by inferring preferential enrichments of mutations. dms2dfe work-

flow also characterizes the nature of experimental condition specific selection pressure and provides insights

into mechanistic insights into the factors guiding the dynamics in DFEs in terms of relative importances of

molecular features.

Biological significance of the random forest modeler is evident by the higher accuracy scores for both

the independent datasets used. The better accuracy of the predictor (AUC score) for unrelated datasets

indicates that the molecular feature extracted by the feature extraction tools of dms2dfe efficiently capture

the biological significance of the fitness effects. Additionally, better correlation between random sampling

of empirical preferential enrichments and inferred fitness scores shows that dms2dfe approach offers better

performance than dms_tools. Collectively, the validation of dms2dfe workflow underscores the efficient use

of robust random forest approach and a definite advance in the methods used for analysis of DMS data.

dms2dfe through its comprehensively documented python programming library (API) (available at http:

//kc-lab.github.io/dms2dfe) would allow further developments and improvements to synchronize with ad-

vances and modifications in DMS experiments. In conclusion, a direct link from sequencing outputs to the

analysis of DFEs provided by dms2dfe suite enables reproducibility and scalability which would assist user

in design, optimization and execution of DMS experiments.
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Materials and methods

Example datasets

For generating visualization for the variant calling, estimation of preferential enrichment, inference of

fitnesses, subsequent comparison of DFEs and quality assessments of sequencing data as shown in Fig-

ures 2,3 and 4, sequencing data from Deep Mutational Scanning of aminoglycoside-2”-phosphotransferase

(APH2)[13] was used. The sequencing data for the input pool of mutants (KKA2_Bkg1) and pools selected

in Kanamycin selection at concentration of 1:4 (KKA2_S1_Kan14_L1) and 1:1 (KKA2_S1_Kan11_L1)

MIC of wild type protein are obtained from SRA (SRR1292901, SRR1292881 and SRR1292709 respec-

tively).

In order to benchmark the efficiency of dms2dfe (Figure 5), we used mutational data of TEM-1 beta-

lactamase (TEM1) [14] in addition to APH2. In case of APH2 dataset, we used data for pool of mutants

selected in the Kanamycin concentration of 1:4 the MIC of wild type protein as selected pool and background

pool as the input library (Figure 5 panel A and B). While in case of TEM1 dataset, we used a subset of

data in which pool of mutants was selected for resistance against 256 µg/ml Ampicilin and we regard the

sample selected at minimal concentration of Ampicilin (0.5 µg/ml) as input library (Figure 5 panel C and

D).

Estimation and normalization of preferential enrichments

Preferential enrichments are estimated as a log fold change of frequencies of the mutants in selected and

input pool as follows.

FCi = log2

(
Ni,selected

Ni,input

)
(1)

where FCi is the fold change of frequencies of ith mutant in selected pool (Ni,selected) and input pool

(Ni,input).

Following two approaches used to normalize empirical preferential enrichments in the implementation of

dms2dfe.

In the first approach, preferential enrichments are Z-score normalized employing population mean and

standard deviation of distribution of preferential enrichments of synonymous mutations.
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FCi,normalized = FCi − µsyn

σsyn
(2)

where FCi,normalized is the normalized preferential enrichment of ith mutant. µsyn and σsyn are the popu-

lation mean and standard deviation respectively of Gaussian fitted distribution of preferential enrichments

of synonymous mutants.

Alternatively, through dms2dfe, normalization can also be carried out with respect to sequencing depth of

wild type sequences as described by Melnikov et al. [13].

FCi,normalized = FCi − FCi,wild,depth (3)

where FCi,normalized and FCi are normalized, and non-normalized preferential enrichments of ith mutant

respectively. FCi,wild,depth fold change of sequencing depth of wild type alleles.

Rescaling of preferential enrichments with respect to synonymous mutations

In order to interpret fitness of mutants relative to the wild type allele, preferential enrichments are rescaled

with respect to preferential enrichments of the wild type allele at that position.

Fi = FCi − FCi,wild (4)

where Fi and FCi are fitness score and preferential enrichment of ith mutant respectively. FCi,wild is the

fold change of wild type sequences at that position.

Classification of mutants based on fitness scores

Since the fitness scores are scaled based on wild type, relatively, the mutants can be classified into beneficial

and deleterious categories as follows,

Mi ∈


beneficial if Fi > 0

neutral if Fi = 0

deleterious if Fi < 0

(5)

where, Mi is ith kind of survived mutant and Fi is its respective fitness score.
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Classification of mutants based on comparison of DFEs

For comparison of DFEs between experimental conditions, mutants can be classified based on their relative

fitnesses into following 3 categories.

Mi,test ∈


positive if (Mi,control ∈ deleterious and Mi,test ∈ beneficial)

negative if (Mi,control ∈ beneficial and Mi,test ∈ deleterious)

robust else

(6)

where Mi,test and Mi,control are ith kind of survived mutant in test and control conditions respectively.

Software availability

dms2dfe is open source and published under the GNU General Public License. The python package is freely

available at https://github.com/kc-lab/dms2dfe. Accompanying documentation with installation and usage

information along with examples is available at https://kc-lab.github.io/dms2dfe .

Abbreviations

dms2dfe : Deep Mutational Scanning to Distribution of Fitness Effects;

DMS : Deep Mutational Scanning;

DFE : Distribution of Fitness Effects;

MSA : Multiple Sequence Alignment;

APH2 : aminoglycoside-2”-phosphotransferase;

TEM1 : TEM-1 beta-lactamase.

SRA : Sequence Read Archive

Additional files

SI_01: Fitness scores of APH2 dataset.

SI_02: Fitness scores of TEM1 dataset.

SI_03: Empirical preferential enrichments (FCi), inferred fitness scores by dms2dfe (Fi) and by dms_tools

(Φr,x) of randomly sampled mutations from APH2 and TEM1 datasets.
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