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Abstract

Behavioral syndromes are widely recognized as important for ecology
and evolution, but most predictions about ecological impacts are based on
conceptual models and are therefore imprecise. Borrowing insights from
the theory of demographic heterogeneity, we derived insights about the
population-dynamic effects of behavioral syndromes. If some individuals
are consistently more aggressive than others, not just in interspecific con-
tests, but also in foraging, mating, and anti-predator behavior, then popu-
lation dynamics could be affected by the resulting heterogeneity in demo-
graphic rates. We modeled a population with a boldness–aggressiveness
syndrome (with the individual’s trait constant through life), showing that
the mortality cost of boldness causes aggressive individuals to die earlier,
on average, than their non-aggressive siblings. The equilibrium frequency
of the aggressive type is strongly affected by the mortality cost of boldness,
but not directly by the reproductive benefit of aggressiveness. Introducing
aggressive types into a homogeneous non-aggressive population increases
the average per-capita mortality rate at equilibrium; under many condi-
tions, this reduces the equilibrium density. One such condition is that the
reproductive benefit of aggression is frequency dependent and the popula-
tion has evolved to equalize the expected fitness of the two types. Finally,
if the intensity of aggressiveness can evolve, then the population is likely
to evolve to an evolutionarily stable trait value under biologically reason-
able assumptions. This analysis shows how a formal model can predict
both how a syndrome affects population dynamics and how the popula-
tion processes constrain evolution of the trait; we suggest some concrete
predictions.
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Introduction
Behavioral syndromes—within-individual and between-individual consistency in
behaviors across time or ecological contexts (Sih et al., 2004)—have been uncov-
ered in a variety of animals, including mammals, birds, fish, and a variety of in-
vertebrates (Sih and Watters, 2005; Riechert and Hedrick, 1993; Gosling, 2001).
In a species with a behavioral syndrome, an individual is classified as having a
particular behavioral type (BT), often quantified along axes such as aggression,
activity, sociability, or fearfulness. Behavioral syndromes indicate constraints
on adaptive behavioral plasticity across ecological contexts (Sih et al., 2004):
for example, an aggressive individual may be more effective at foraging, but
more vulnerable to predation. Behavioral types are sometimes heritable (e.g.,
Dingemanse et al., 2002), such that BT frequency may change in response to
selection.

Individual behavioral variation is now recognized as important for ecology
and evolution (e.g., Dall et al., 2012); Sih et al. (2012) and Wolf and Weiss-
ing (2012) hypothesized a variety of ecological consequences of behavioral syn-
dromes, including effects on population dynamics. Aggressive behavior might
stabilize density-dependent equilibria, through a shift from scramble to inter-
ference competition (Sih et al., 2012); a similar effect may emerge if aggressive
individuals cannibalize less aggressive individuals (Pruitt et al., 2008; Anders-
son et al., 2007). In contrast, increasing frequencies of aggressive individuals
may destabilize an equilibrium if they have a faster “pace of life” (Réale et al.,
2010), if temporal behavioral correlations introduce time lags in the popula-
tion’s response to fluctuating environmental conditions (Sih et al., 2012), or if
frequency-dependence leads to coupled oscillations of BT frequency and popu-
lation abundance (Sinervo and Calsbeek, 2006). Finally, behavioral syndromes
may affect the intensity of density dependence, with potential impacts on equi-
librium density: interaction rates may increase if aggressive individuals are more
active (Pintor et al., 2009) and hence encounter conspecifics more frequently (Sih
et al., 2012), but they may decrease if the various behavioral types use different
resources and habitats (Wolf and Weissing, 2012). Intriguing as these hypothe-
ses are, few are based on formal population models (a notable exception is the
study by Fogarty et al., 2011, showing how heterogeneity in a sociality syndrome
could affect invasion speed), and thus we do not know the range of conditions
over which they hold.

There is some empirical evidence suggesting that behavioral syndromes may
modify demographic rates such as birth and mortality rates. For example,
a review by Biro and Stamps (2008) found that aggressiveness and boldness
were consistently associated with increased birth rate, and a meta-analysis by
Smith and Blumstein (2008) found that aggression was positively associated
with birth rate and negatively associated with survival. These studies involved
small and idiosyncratic sets of species, so we cannot draw strong conclusions
about the generality of the results. However, when such effects occur, behavioral
syndromes will lead to among-individual variation in demographic rates, which
has come to be called “demographic heterogeneity” in population dynamics (e.g.,
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Fox et al., 2006).
Fortunately, there is a body of quantitative theory in population ecology

showing that, depending on within-population correlation structure (Engen
et al., 1998) and the underlying stochastic process, demographic heterogene-
ity can change the variance due to demographic stochasticity (Vindenes et al.,
2008; Kendall and Fox, 2003). Furthermore, persistent survival heterogene-
ity (i.e., phenotypic variation that creates lifelong differences in instantaneous
or annual mortality risk) in long-lived organisms can increase the population’s
density-independent growth rate (Kendall et al., 2011), increase its equilibrium
density (Stover et al., 2012), and reduce its extinction risk (Conner and White,
1999). In contrast, persistent birth rate heterogeneity alone has more limited
effects on dynamics. The differential effects of heterogeneity in the two types of
vital rates can be understood by recognizing that differences in survival accumu-
late multiplicatively with age: as a cohort ages, the more “frail” individuals tend
to die off and the mean survival of the cohort increases. This “cohort selection”
(Vaupel and Yashin, 1985) means that the expected survival (averaged across
all age classes in the population) is greater than would be found in a population
with the same baseline value but no heterogeneity in survival. Differences in
birth rates, however, accumulate only additively, and cohort selection on birth
rate will only occur if birth rate is correlated with annual survival rate.

Models of demographic heterogeneity lead us to expect that any behavioral
syndrome that introduces persistent heterogeneity in survival will have impacts
on the low-density population growth rate and on equilibrium abundance, in
ways not addressed by Sih et al. (2012) or Wolf and Weissing (2012). Here, we
develop a population model that incorporates a syndrome in which aggressive
individuals are more successful at reproducing, but experience greater mortality
(e.g., because of energetic costs of aggression, or because of greater exposure to
predation). Using this model, we show four quite general results. First, the
equilibrium BT fitness is directly controlled by the mortality cost of aggressive-
ness but is affected only indirectly by the reproductive benefit of aggression (via
a parent-offspring correlation). Second, a population with a polymorphism for
behavioral types will typically have a different density-dependent equilibrium
than one made up entirely of the non-aggressive BT, and the polymorphic equi-
librium is most often lower. Such effects on density could affect the species’
local extinction risk and influence on the ecological community. Third, if par-
ents evolve to produce an offspring BT distribution that equalizes the expected
fitness of both types (as has been found by Pruitt and Goodnight (2014) in a
social spider), then the equilibrium population abundance will always be lower
than that for a monomorphic, non-aggressive population. Finally, we show that
selection on the strength of the aggression trait may lead to an evolutionarily
stable value (stable ESS); while the resulting level of aggressiveness depends
on details of model functions, the existence and stability of the ESS are nearly
guaranteed if the mortality cost is an accelerating function of aggressiveness.
By establishing quantitative links between population dynamics and behavioral
syndromes we hope to open up new realms of empirical inquiry in both fields.
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Model description
For simplicity of exposition, we modeled a population with two phenotypes,
using the subscripts a and n to identify aggressive and non-aggressive individu-
als, respectively. As has been documented in various species (e.g., three-spined
stickleback; Huntingford, 1976), aggressive individuals can monopolize mates
or good territories, and thus have a higher birth rate, β: all else being equal,
βa > βn. The other component of the syndrome is that aggressive individuals
are bolder in contexts that may increase their mortality risk; thus, we model
non-aggressives as having death rate µ and aggressives as having death rate
(1 + γ)µ, where γ > 0 is the additional risk born by the aggressive BT. Thus,
aggressive individuals have a fitness advantage over non-aggressive individuals
if

βa − (1 + γ)µ > βn − µ (1)

or

βa − βn > γµ. (2)

Table 1 provides a reference for all symbols used in the paper.
If aggressive individuals always hold a fitness advantage, then, if there is an

additive genetic component to the syndrome, we would expect the aggressive
BT to become fixed. Thus, to model a population that maintains multiple BTs
(as is often observed in natural populations), we must either invoke a genetic
mechanism such as heterozygote advantage (which has not been demonstrated
empirically), assume there is no heritable component to the syndrome (which
contradicts empirical evidence), or assume that the fitness difference between
the BTs varies with density and/or frequency. We adopt the latter assumption
in our analysis. In particular, we adopt the plausible assumption that aggressive
individuals lose reproductive fitness by interacting with one another (e.g., Pruitt
and Riechert, 2009; Lichtenstein and Pruitt, 2015). Thus, defining the frequency
of aggressive BTs in the population as

wa =
Na

Na +Nn
, (3)

the birth rate of both BTs declines with wa:

∂βi
∂wa

< 0, (4)

but that of the aggressive BT does so faster than that of the non-aggressive BT:

− ∂βa
∂wa

> − ∂βn
∂wa

. (5)

Finally, we assume that the birth rate of both BTs declines with density in
the same way:

∂βa
∂N

=
∂βn
∂N

< 0, (6)

4

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 5, 2016. ; https://doi.org/10.1101/073262doi: bioRxiv preprint 

https://doi.org/10.1101/073262
http://creativecommons.org/licenses/by/4.0/


Table 1: Symbols used in this paper.

Symbol Definition

Variables, parameters, and indices in model

N Population abundance
wa Frequency of aggressive BT1 in population
π Frequency of aggressive BT among newborns
β Birth rate
µ Death rate
γ Additional death rate of aggressive individuals
α Intensity of aggressive trait
a Subscript to indicate the aggressive BT
n Subscript to indicate the non-aggressive BT

Quantities and symbols used in model analysis

x∗ Asterisk: Superscript indicating that quantity x is evaluated at de-
mographic equilibrium (dN/dt = 0)

q Weighted difference in BT abundances: q = Nn/(1 − π) −Na/π

x̄ Overbar indicates the mean of quantity x across the population
N∗

0 Equilibrium abundance of monomorphic non-aggressive population
w̃ Frequency of aggressive BT in population at demographic equilib-

rium when average birth rates equal average death rates
ŵ Frequency of aggressive BT in population at demographic equilib-

rium when differences between birth rates equal differences be-
tween death rates

Quantities and symbols used in ESS analysis

R Subscript indicating resident population
I Subscript indicating invader population
B Birth rate of invader in environment created by the resident popu-

lation
sx(y) Invasion exponent: per-capita growth rate of invader with pheno-

type y in environment created by resident with phenotype x
1Behavioral type
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where N = Na + Nb is the total population size. An example of birth rate
functions displaying these qualitative features is illustrated in Figure 1.

It is, of course, biologically plausible that frequency or density-dependence
could instead (or in addition) occur in the death rate, or that the density-
dependence is frequency dependent. We chose these particular assumptions to
better draw upon the insights provided by the models in Stover et al. (2012).
However, we do not expect that alternate assumptions about density- and
frequency-dependence will qualitatively change our conclusions.

For the model to be explicitly about the boldness–aggressiveness behavioral
syndrome, we must specify constraints and tradeoffs on the various functions and
parameters. First, we let the birth rates depend on aggressiveness (α) as well
as on the frequency of aggressives wa and densityN, and assume that increasing
the aggressiveness parameter increases the birth rate difference between the two
BTs at a given frequency and density:

∂

∂α
[βa (α,wa, N) − βn (α,wa, N)] > 0. (7)

Furthermore, we expect that mortality is a function of α, so that increasing
the aggressiveness parameter will also increase boldness, resulting in a greater
mortality penalty:

∂

∂α
γ(α) > 0. (8)

This tradeoff is needed to prevent runaway selection on the aggressiveness pa-
rameter.

We need one more component to build the population model: the frequency
of each BT among the newborns. Behavioral syndromes have been demonstrated
to be heritable (Dingemanse et al., 2002), but the underlying mechanisms have
not been described. Therefore we assume simply that a certain fraction, πa,
of an aggressive individual’s offspring are aggressive; 1 − πa of them are non-
aggressive. Likewise, a fraction πn of a non-aggressive individual’s offspring are
non-aggressive (πa and πn need not have the same value). The explicit func-
tional forms of πa and πn depend on the details of the inheritance mechanisms,
and even with simple two-sex genetic models (e.g., one locus and two alleles with
dominance, or quantitative variation in an underlying latent trait) the functions
will be quite complex (for example, if the behavior is controlled by an underlying
continuous latent trait, πa and πn will depend on the frequency of aggressives in
the population; Falconer, 1989). However, under a wide range of genetic mech-
anisms and mating systems, it is reasonable to assume that the rate at which a
phenotype reproduces itself increases with the frequency of the phenotype; only
when inheritance is near-perfect (e.g., parthenogenic with mutation or strong
assortative mating) will the rates will be independent of phenotype frequency.
Thus we assume

∂

∂wa
πa ≥ 0 (9)

∂

∂wa
πn ≤ 0. (10)
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We can now write the population model:

dNa

dt
= πa(wa)Naβa(α,wa, N) + [1 − πn(wa)]Nnβn(α,wa, N) − µ [1 + γ(α)]Na

dNn

dt
= πn(wa)Nnβn(α,wa, N) + [1 − πa(wa)]Naβa(α,wa, N) − µNn.

(11)
If the parent-offspring correlation is zero (as might arise if the behavioral pheno-
type is primarily controlled by environmental conditions that are uncorrelated
between parents and offspring) then the fraction of newborns in each phenotype
will be constant, and it will be more convenient to write

dNa

dt
= π [Naβa(α,wa, N) +Nnβn(α,wa, N)] − µ(1 + γ)Na (12)

dNn

dt
= (1 − π) [Naβa(α,wa, N) +Nnβn(α,wa, N)] − µNn, (13)

where π is the fraction of offspring with the aggressive BT.
These models differ structurally from the model of Stover et al. (2012) in

three important ways: the flexible function for the fraction of newborns in each
BT, which allows us to include both BT heritability and adaptive control of
newborn BT frequency; birth rate functions that are both more flexible (the
Stover model assumed linear density dependence in which the heterogeneity
parameter affected both the slope and intercept) and allow for frequency de-
pendence; and association of the “baseline” death rate with the non-aggressive
BT rather than with the average phenotype. Nevertheless, many insights and
analysis techniques can be carried over from Stover et al. (2012).

Note that some of inequalities (1–2) and (4–8) might be relaxed (become
equalities) under special circumstances such as low density. However, it is rea-
sonable to assume that they apply when the population is near its equilibrium
density, which is where we conduct our analysis.

Model analysis
There are a number of questions we want to answer about the model. First,
for a given level of aggression, α, with associated boldness cost γ(α), what is
the equilibrium frequency of the aggressive BT (w∗

a)? Second, is the associated
equilibrium abundance (N∗) greater or less than the equilibrium abundance
that would be found in a population made up only of non-aggressive individuals
(N∗

0 )? Third, is there an evolutionarily stable strategy (ESS) for the fraction
of newborns that have the aggressive BT (π)? Finally, given a tradeoff between
the benefits and costs of aggression, is there an ESS for α?

As written, equations (11) are too general to explicitly solve for N∗ and
w∗

a. Even with the simplest form of the birth rate functions (linear dependence
on density and frequency), the formulas for the equilibrium are too complex
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Figure 1: Example of density- and frequency-dependent birth rates that could
arise from an aggression syndrome. Birth rates of both aggressive (heavy lines)
and non-aggressive (thin lines) individuals decline with the frequency of aggres-
sives in the population, but the relative advantage of aggression declines with
increasing frequency of the aggressive BT. Birth rates of both behavioral types
also decline with overall density (low density shown in solid lines, high density
with dashed lines).

to provide much insight. However, we can get some qualitative (if sometimes
vague) answers to the these questions by looking at the model from different
perspectives. For example, rather than attempting to examine four-dimensional
figures (birth rates as a function of total population size, the fraction of ag-
gressives in the population, and the measure of aggressiveness), in Fig. 1 we
examine a two-dimensional slice: for fixed α, we focus on how wa, the frequency
of aggressives, might affect birth rates at two population densities. Much of the
analysis below uses a similar heuristic approach.

Equilibrium frequency of the aggressive BT
What is the equilibrium frequency of the aggressive BT in the population as
a whole (which we denote w∗

a)? First, let us look at the situation where the
fraction of newborns that are aggressives (π) is constant. We can simplify the
work by studying the variable q = Nn/(1− π)−Na/π, which is chosen because
it allows us to eliminate the reproductive terms from eqs. (12) and (13) and to
study the single quantity q rather than both Nn and Na. The dynamics of q
are given by:

dq

dt
=

1

1 − π

dNn

dt
− 1

π

dNa

dt

= µ

[
(1 + γ)Na

π
− Nn

1 − π

]
.

(14)
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Figure 2: Equilibrium frequency of the aggressive BT in the population (w∗
a) as

a function of the mortality cost of aggression (γ). The curves are for different
values of the aggressive BT frequency at birth (π), at equal intervals from 0.1
to 0.9.

At equilibrium, dq
dt = 0; applying this to eq. (14) and rearranging gives

w∗
a ≡ N∗

a

N∗
a +N∗

n

=
π

π + (1 + γ)(1 − π)
, (15)

where the stars indicate that the model is being evaluated at equilibrium. Thus
the aggressive BT’s equilibrium frequency depends only on its birth frequency
and the mortality cost of boldness; increasing γ reduces the frequency of ag-
gressives in the population relative to their frequency at birth (Fig. 2). This
result is a consequence of cohort selection (Kendall et al., 2011): as a cohort
of newborns ages, the aggressive BTs die faster, and so their frequency in the
cohort declines. At equilibrium, the population growth rate is zero, and so the
age and phenotype structures of the population match the life table of a cohort.
Thus, the aggressive BT frequency in the population is found by averaging the
frequency over all ages in a cohort, weighting by the fraction surviving to a
given age, which will be less than the frequency at birth.

Note that if the population is growing, then the age structure will tend to
be biased towards younger individuals, relative to the equilibrium population.
Younger cohorts have a higher frequency of aggressive BTs, since they have not
been subject to so much cohort selection, and so a growing population will tend
to have a higher aggressive BT frequency than will be found at equilibrium. By
a similar argument, a population that is declining from above the equilibrium
will have a lower aggressive BT frequency than the population will have at
equilibrium.

When the phenotype is heritable, we can still analyze the model at the
demographic equilibrium, where πa (w∗

a) and πn (w∗
a) are constant. Here, we
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can write

π∗ =
πa (w∗

a)N∗
aβ

∗
a + [1 − πn (w∗

a)]N∗
nβ

∗
n

N∗
aβ

∗
a +N∗

nβ
∗
n

=
πa (w∗

a)w∗
aβ

∗
a + [1 − πn (w∗

a)] (1 − w∗
a)β∗

n

w∗
aβ

∗
a + (1 − w∗

a)β∗
n

, (16)

where β∗
i are the birth rates evaluated at w∗

a and N∗. Inserting eq. (16) into
eq. (15) and solving for w∗

a will give the equilibrium frequency. Unfortunately,
for most inheritance functions this will not be analytically tractable, but it will
still be true that the frequency of aggressive BTs will be lower in the population
as a whole than among the newborns. In fact we can be more specific: at
equilibrium, the average death rate in the population is the harmonic mean of
the newborn death rates, as was shown by Stover et al. (2012).

Note that if a second gender carries the genes for the behavioral syndrome
but does not express them, that gender will not be subject to cohort selection.
Thus, the non-expressing gender will have a genotype frequency that matches
that of newborns (and differs from that of the expressing gender). This sub-
stantially complicates the expression for the inheritance functions, but does not
qualitatively change the fundamental result above.

Aggression’s effect on the equilibrium population density
As a point of reference, we take the equilibrium density of a population made
up of only non-aggressive individuals (which we call N∗

0 ), and we ask whether a
population with both BTs has a population equilibrium that is larger or smaller
than this reference. N∗

0 is defined as the density at which the non-aggressive
birth rate matches its death rate: βn (0, N∗

0 ) = µ (in this section we are hold-
ing α constant so we suppress it for notational simplicity). If, near wa = 0,
the aggressive BT’s birth rate is lower than its death rate, then the aggres-
sive BT cannot invade the population, and so we focus on the situation where
βa (0, N∗

0 ) > µ(1+γ). Increasing the aggressive BT frequency, wa, while holding
N = N∗

0 constant leads to declines in the birth rates of both BTs, but does not
affect the death rates of either BT (because birth rates are density-dependent
but death rates are not; Fig. 3). We can also define average birth and death
rates:

β̄ (wa, N) = waβa (wa, N) + (1 − wa)βn(wa, N) (17)
µ̄(wa) = µ [wa(1 + γ) + (1 − wa)]

= µ(1 + waγ). (18)

While the death rates of each BT are constant, the average death rate increases
linearly with wa because the aggressive type has a greater death rate. The
average birth rate may show more complex patterns, because birth rates can
also be density-dependent. In general, given constraints (5) and (6), the average
birth rate will be maximized for a positive value of wa and its derivative with
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respect to wa will be greatest at wa = 0, as shown in Fig. 3. At N = N∗
0 , the

average birth and death rates are equal at wa = 0. If the aggressive BT enters
the population at low frequency, (so wa > 0), then, given the model assumptions
there are three general cases we might see.

Case 1. First, the average birth rate might be greater than the average death
rate for all values of wa. This would require that the average birth rate increase
quite rapidly with wa. In particular, inspection of Fig. 3 reveals that this
case requires that the birth rate increase faster than the death rate when the
aggressive BT is rare and that the aggressive BT’s birth rate exceeds its death
rate even when wa = 1. This can be shown to require:

− ∂βn
∂wa

∣∣∣∣
wa=0

< βa(0, N∗
0 ) − βn(0, N∗

0 ) + µγ (19)

βa(1, N∗
0 ) > µ(1 + γ). (20)

Case 2. The average birth rate might be less than the average death rate
for all values of wa. This would require that that the non-aggressive birth rate
decline sufficiently rapidly with wa when the aggressive BT is rare. In particular:

− ∂βn
∂wa

∣∣∣∣
wa=0

> βa(0, N∗
0 ) − βn(0, N∗

0 ) + µγ. (21)

Case 3. The average birth rate might be larger than the average death rate
for small wa and be less than the average death rate for large wa as is illustrated
in Fig. 3. The average birth and death rates are equal at an intermediate value
of wa which we call w̃a.

In all three cases, if the population is found at BT frequency wa and total
abundance N∗

0 , then abundance will increase if β̄ (wa, N
∗
0 ) > µ̄(wa) and decrease

if β̄ (wa, N
∗
0 ) < µ(wa) (of course, wa will then change dynamically as well). Now,

we know that at equilibrium, the equilibrium BT frequency is w∗
a, defined by eq.

(15). We also know that at equilibrium, where N = N∗, the average birth and
death rates must be equal. Therefore, it is only possible for N∗ = N∗

0 under the
conditions of case 3 and when w∗

a = w̃a. If β̄ (w∗
a, N

∗
0 ) > µ̄(w∗

a), then N∗ > N∗
0 ;

likewise, if β̄ (w∗
a, N

∗
0 ) < µ̄(w∗

a), then N∗ < N∗
0 .

Thus, the introduction of the aggressive behavioral syndrome into a naive
population will increase the equilibrium abundance only if the aggressive BT
has a very strong fitness advantage (taking into account the boldness cost) even
at high frequencies (case 1) or if the equilibrium frequency of the aggressive BT
is relatively low (case 3). Under case 2 or most circumstances of case 3 the
syndrome will reduce the equilibrium abundance.

Evolution of the birth frequency of the aggressive BT
For a given set of demographic parameters and inheritance functions, (N∗, w∗

a)
is the demographic equilibrium of the population model. However, it will not,
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Figure 3: Birth and mortality rates of the aggressive BT (heavy lines), the
non-aggressive BT (thin lines), and the population average (grey lines), as a
function of wa, the frequency of aggressive BTs in the population. The overall
population density is at the demographic equilibrium for a population made up
of only non-aggressive BTs (at wa = 0, non-aggressive birth rate equals non-
aggressive mortality rate). The vertical line indicates w̃a, the positive frequency
of aggressives that would reach demographic equilibrium at the same density
(average birth rate equals average mortality rate). If 0 < wa < w̃a then the
average birth rate exceeds the average mortality rate and the population would
grow until it reaches demographic equilibrium at a higher density (lowering the
birth rate curves; see Fig. 1). If wa > w̃a then the average birth rate is less
than the average mortality rate and the population would decline until it reaches
demographic equilibrium at a lower density.

in general, eliminate the fitness differences between the two BTs. To see this,
suppose that case 3 applies and that w∗

a = w̃a, so that the demographic equi-
librium is at (N∗

0 , w̃a), as shown in Fig. 3. At this point, the average birth rate
equals the average death rate. However, the birth and death rates are not equal
for either of the BTs. In particular, the non-aggressive BT must have negative
net fitness, because its net fitness when N = N∗

0 is zero only when wa = 0 and
declines with increasing aggressive BT frequency. To achieve zero net fitness
at the population level, the aggressive BT must have positive fitness. At the
demographic equilibrium, the population growth rate is zero, and the reproduc-
tive value at birth for each BT is its birth rate divided by its death rate. At
the equilibrium in Fig. 3, these are unequal. Just as Fisher (1930) showed with
regard to the evolution of primary sex ratios, there will be selection on parents
to increase the frequency of the type with the higher reproductive value (the
aggressive BT) among their offspring.

If the inheritance function is purely genetic, with a fixed genetic architec-
ture, then there is no way to respond to selection at this particular demographic
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equilibrium. However, if there are environmental influences (expressed directly
or via epigenetic mechanisms) on an individual’s BT, then parents may be able
to increase the frequency of the aggressive BT among their offspring, effectively
changing the inheritance function (for example, androgen levels in egg yolk can
influence offspring behavior, although this has not yet been explicitly linked to
a behavioral syndrome; Ruuskanen and Laaksonen, 2010). Increasing the fre-
quency of aggressives among newborns π will, in turn, increase the demographic
equilibrium w∗

a to a value greater than w̃a. As shown in the previous section,
this will lead to an equilibrium density that is less than N∗

0 . As long as the birth
rates of the two BTs respond in the same way to density, at this new equilibrium,
then, under the conditions of case 3, there will be a wa > w̃a, which we call ŵa,
that satisfies eq. (1) – that is, the differences between the birth rates match the
differences between the death rates. At the associated demographic equilibrium
then not only do births match deaths for the population as a whole but also for
each of the BTs (Fig. 4). Further increases in wa lead to a fitness advantage
for the non-aggressive BT, so ŵa is the evolutionarily stable BT frequency. An
analogous argument applies in case 2.

In contrast, in case 1, where βa(1, N∗
0 ) > µ(1 + γ), there is no frequency

at which the two BTs have equal fitness at a demographic equilibrium (math-
ematically, ŵa > 1), so the evolutionary stable BT frequency is 1 (fixation of
the aggressive BT). Only in this last situation (at which we would no longer
recognize a syndrome, as there is no behavioral variation) would evolution to a
stable BT frequency result in a demographic equilibrium density that is larger
than the density of a non-aggressive population (N∗

0 ).

ESS for aggressiveness
In addition to the BT frequency, the strength of the aggressiveness trait (α)
might itself be subject to selection. Incorporating an explicit genetic model for
α would add a great deal of complexity to the model, so we instead take an
adaptive dynamics approach, and look for an evolutionarily singular strategy
(ESS) for aggressiveness (Geritz et al., 1998). In particular, we focus on the
conditions allowing a resident population (with a given aggressiveness param-
eter, αR) that is at demographic equilibrium can be invaded by a population
with a different aggressiveness parameter (αI). We start by stating the results,
and then give the mathematical derivation.

To our existing model, we need to add one new quantity: the birth rate
of an aggressive individual with trait αI in the presence of a given abun-
dance and BT frequency of a resident population with trait αR. We call this
Ba (αI , αR, w

∗
a, N

∗); note that it will not be the same as the resident birth
rate, βa (αR, w

∗
a, N

∗). We also assume that the resident evolves to a birth rate
frequency that equalizes the fitnesses of the two BTs, so that w∗

a = ŵa.
The evolutionarily singular strategy, α∗, is the value of aggressiveness that

satisfies the condition
∂Ba

∂αI
= µ

∂γ

∂α
(22)
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Figure 4: Birth and mortality rates of the aggressive BT (heavy lines), the non-
aggressive BT (thin lines), and the population average (grey lines), as a function
of wa, the frequency of aggressive BTs in the population. The overall density
is at the demographic equilibrium for wa = ŵa, the frequency of aggressives at
which the two BTs have equal relative fitness (the difference in fecundities equals
the difference in mortalities). Because ŵa > w̃a, this demographic equilibrium
is at a density lower than that of the non-aggressive-only equilibrium, allowing
the frequency-dependent fecundities to be elevated.

when evaluated at αI = αR = α. In other words, from the invader’s perspective,
the birth rate benefits of increased aggression are exactly matched by the death
rate costs when the invader and resident traits are identical.

The ESS is “ESS-stable,” meaning that a resident population that is at the
ESS cannot be invaded, (Geritz et al., 1998) if

∂B2
a

∂α2
I

< µ
∂2γ

∂α2
. (23)

In particular, under the biologically reasonable assumption of diminishing re-
turns to reproduction from increased aggression (making the left hand side neg-
ative), this condition will always be met if the the mortality cost is linear or
accelerating in the aggression trait.

However, ESS-stability does not guarantee that the ESS can be reached
through successive mutations of a resident population that is not at the ESS.
This requires an additional property, called “convergence stability” (Geritz et al.,
1998), and the ESS is called a convergence stable strategy (CSS; Diekmann
2004). Unfortunately, the formal conditions for the ESS to be convergence stable
in this model require additional information, such as the relative sensitivity of
the invader and resident birth rates to changes in the resident BT frequency
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and the inheritance mechanisms that determine the BT frequency in the invader
population. While the condition can easily be calculated if functional forms are
assumed, the general expression is sufficiently complex as to be non-informative.
However, it seems clear that, if α = 0 is not an ESS (that is, a mutant with
slight aggressiveness can invade a population with none), then the existence of
one or more ESSs at positive values of α will ensure that at least one of them
is convergence-stable.

Mathematical derivations

The analysis of an ESS focuses on the the invasion exponent sx(y), which is
the low-density per-capita growth rate of an invader with trait value y in the
environment created by a resident population at equilibrium and having trait
value x (the notation here follows Geritz et al. 1998 and Diekmann 2004). In
the present context, x = αR and y = αI . The analysis proceeds by looking at
derivatives of s evaluated at y = x. In particular, the condition for x to be an
ESS is

c2 ≡ ∂

∂y
sx(y)

∣∣∣∣
y=x

= 0, (24)

and the condition for ESS-stability is

c22 ≡ ∂2

∂y2
sx(y)

∣∣∣∣
y=x

< 0. (25)

To calculate the invasion exponent we write out the dynamics of the in-
vader population. Since the invader is rare, we assume that only the resident
population N∗ impacts the invader’s reproduction and that individuals of both
populations are unaffected by the invader’s aggressiveness or BT frequency:

dN
(I)
a

dt
= πa(w(I)

a )N (I)
a Ba (αI , αR, w

∗
a, N

∗) (26)

+
[
1 − πn(w(I)

a )
]
N (I)

n Bn (αI , αR, w
∗
a, N

∗) − µ [1 + γ(α)]N (I)
a

dN
(I)
n

dt
= πn(w(I)

a )N (I)
n Bn (αI , αR, w

∗
a, N

∗)

+
[
1 − πa(w(I)

a )
]
N (I)

a Ba (αI , αR, w
∗
a, N

∗) − µN (I)
n , (27)

where w(I)
a is the aggressive BT frequency among invaders (which might affect

the BT frequency at birth). Adding these together and dividing by N (I) =

N
(I)
a +N

(I)
n gives

sx(y) = w(I)
a [Ba − µ (1 + γI)] +

(
1 − w(I)

a

)
[Bn − µ] . (28)

It is quite reasonable to assume that the invader non-aggressive BT is identical
to that of the resident, so that Bn = βn. Furthermore, if we assume the resident

15

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 5, 2016. ; https://doi.org/10.1101/073262doi: bioRxiv preprint 

https://doi.org/10.1101/073262
http://creativecommons.org/licenses/by/4.0/


is at the fitness equalizing frequency, such that βn = µ, then the second term is
zero, leaving

sx(y) = w(I)
a [Ba − µ (1 + γI)] . (29)

The first derivative is

∂

∂y
sx(y) =

∂w
(I)
a

∂αI
[Ba − µ (1 + γI)] + w(I)

a

[
∂

∂αI
Ba −

∂

∂αI
µ (1 + γI)

]
. (30)

When αI = αR, it is quite reasonable to assume that Ba = βa and γI = γR.
Again, if we assume the resident is at the fitness equalizing frequency then
βa = µ (1 + γR) and the first term is zero. As long as w(I)

a > 0, this leads
directly to the ESS condition in eq. (22).

The second derivative is

∂2

∂y2
sx(y) =

∂2w
(I)
a

∂α2
I

[Ba − µ (1 + γI)] + 2
∂w

(I)
a

∂αI

[
∂

∂αI
Ba −

∂

∂αI
µ (1 + γI)

]
+w(I)

a

[
∂2

∂α2
I

Ba −
∂2

∂α2
I

µ (1 + γI)

]
. (31)

As above, when αI = αR, then the first term is zero. Furthermore, if the resident
is at an ESS, then the second term is also zero (the quantity in brackets is just
c2). As long as w(I)

a > 0, this leads directly to the ESS-stability condition in eq.
(23).

Discussion
We have developed a model that links behavioral and population processes by
noting that the fitness associated with a particular behavior translates into
demography—birth and death rates—at the population level. Applied to be-
havioral syndromes, this allows us to draw on existing theoretical frameworks
(demographic heterogeneity and adaptive dynamics) to make a number of pre-
dictions about ecological and evolutionary outcomes, including the factors that
control the frequency of the syndrome in the population, the effect of the syn-
drome on equilibrium abundance, and how selection should drive the evolution
of both the distribution of the syndrome among offspring and the overall inten-
sity of the behavioral trait. We applied the model to the boldness–aggression
syndrome, but the general approach should apply to any syndrome with identi-
fiable fitness consequences.

In the boldness–aggression syndrome, phenotypes differ in both their birth
rates and their death rates. To a scientist not steeped in demographic theory,
it may come as a surprise that these two effects are not commensurate. For ex-
ample, we showed that when the population growth rate is zero, the frequency
of the two behavioral types depends only on the frequency of the types among
newborns and the relative death rates of the types—not on the differences in
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birth rates. We hasten to add that if there are genetically, epigenetically (e.g.,
Francis et al., 1999; Weaver et al., 2004) or environmentally induced correlations
between the behavioral types of parents and their offspring, then the differences
in birth rate will have an indirect effect via their effect on the distribution of
newborn types. This occurs because mortality heterogeneity results in cohort
selection, in which the composition of a cohort changes as the cohort ages (Vau-
pel and Yashin, 1985), whereas birth rate heterogeneity does not. One way of
developing some intuition about this is to think about lifetime reproductive suc-
cess (LRS) in a simple life history in which a phenotype’s birth (β) and death (µ)
rates are both age-independent. Here, for an individual with phenotype i, the
expected LRS is simply βiLi, where Li is the phenotype’s expected longevity.
In a population with heterogeneous birth rates, the mean LRS can be found by
using the mean of the phenotype-specific birth rates, and is unaffected by the
amount of heterogeneity. Likewise, in a population with heterogeneous death
rates, the mean LRS can be found by using the mean of the phenotypic-specific
longevities. However, an individual’s expected longevity is an inverse function
of its mortality rate: Li = 1/µi. This nonlinear relationship means that the
average longevity in the population will not be the same as the longevity of an
individual with an “average” mortality rate; Jensen’s inequality (Zens and Peart,
2003) tells us that heterogeneity in µ will cause the population mean longevity
to be larger than the longevity with the mean death rate, with the discrepancy
increasing as the magnitude of the heterogeneity gets larger. This translates di-
rectly into effects on mean LRS. This fundamental distinction between birth and
mortality heterogeneity persists even with age- and environment-dependent vi-
tal rates, as long as there is some degree of within-individual correlation through
time (as in behavioral syndromes—and many other behavioral traits as well).

We found that the boldness–aggression syndrome often leads to a reduc-
tion in equilibrium abundance relative to a population made up of only non-
aggressive types. This occurs because of the intersection of two factors. First, as
the frequency of the aggressive BT increases, the mean death rate in the popu-
lation also increases, reflecting the higher risk associated with boldness. Second,
increasing the aggressive BT frequency increases the mean birth rate (for a fixed
abundance) when the aggressive BT is rare (because the aggressives have higher
birth rates), but the frequency-dependent depression of the birth rate drives
down the mean birth rate when the aggressive type is more common. Once
the frequency is high enough that the mean birth rate (at the non-aggressive
equilibrium density) is below the mean death rate, then an equilibrium can only
be reached if the density-dependence in the birth rate is relaxed by settling
to a lower abundance. Note that, while our model incorporates density- and
frequency-dependence in the birth rate only, qualitatively similar results would
obtain if one or both dependences were in mortality. This affect on equilibrium
density means that the behavioral syndrome may increase the population’s local
extinction risk, with implications for conservation and metapopulation dynam-
ics. It may also reduce the species’ trophic and facilitative impacts on other
members of the ecological community.

Even at the demographic equilibrium, the two BTs will not necessarily have
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equal fitness. When they do not, there will be selection to increase the pro-
portion of the more fit BT. If there is a response to this selection (whether
through plasticity or evolutionary change), the BT frequency will move towards
a value where both BTs have the same fitness. We have shown that this fre-
quency equilibrium will always be at a value that results in a reduced equilibrium
abundance, relative to a purely non-aggressive population. In density-dependent
populations, selection maximizes the equilibrium abundance (often thought of as
the carrying capacity, K), if fitness is not frequency dependent (Charlesworth,
1980). But because of the frequency-dependence of fitness of each BT in our
model, behavioral evolution reduces abundance and thus increases the risk of
population-level extinction due to stochastic fluctuations or exclusion by a com-
petitor that can persist at lower resource densities (Webb, 2003).

How does aggressiveness (α) evolve? Our results show that there may be
an evolutionarily stable value, but predicting where that will occur requires an
understanding of the fitness of an invader with one aggressiveness level in a
population of residents with a different aggressiveness. It may be reasonable
that the outcome of the interaction between two aggressive individuals with
different levels of aggressiveness only depends on the difference between the two
α’s. Thus, the left hand side of eq. (22)—the derivative of the invader birth
rate with respect to the invader aggressiveness, evaluated where the invader
and resident have the same aggressiveness—will be independent of the resident
aggressiveness level. However, changing the resident aggressiveness level will
also, in general, change the resident’s equilibrium density and BT frequency; by
analogy to the analysis comparing polymorphic and monomorphic populations,
we might expect that increasing aggressiveness will decrease N∗ and increase
w∗. We cannot say much in general about how these will impact the invader
birth rate, especially as the predicted changes are likely to have opposite effects.
If the effects balance out, then the left hand side of eq. (22) will be a constant,
and an ESS will only exist if the right hand side is non-constant—that is, the
death rate cost is a nonlinear function of aggressiveness. Turning to the stability
condition, it is reasonable to assume that the invader birth rate has diminishing
returns to aggressiveness, making the right hand side of inequality (23) negative.
Thus, if the mortality cost is an accelerating function of aggressiveness, then
both the existence of the ESS and its stability will be guaranteed.

We have modeled the behavioral syndrome as a dichotomous trait, in large
part for ease of analysis and exposition, but a trait such as aggressiveness may
take on a continuous range of values. In simple models of demographic hetero-
geneity (without density-dependence, frequency-dependence, or inheritance), a
continuous distribution of death rates has been shown to have virtually identi-
cal effects on population dynamics as a dichotomous trait, the key value being
the variance of death rates (Kendall et al., 2011). In models with density de-
pendence, a key value for two-type models is the harmonic mean death rate
among individuals in a newborn cohort (Stover et al., 2012); one might expect
this to generalize to continuous trait distributions, but this has not been tested.
Frequency-dependence in continuous traits has to be handled with care; the
simplest approach is to assume a strict hierarchy, so that the fitness of an indi-
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vidual with aggressiveness trait αi only depends on the frequency of individuals
with traits greater than αi.

Some qualitative predictions that derive from our model are described in
Table 2. Nevertheless, applying this theoretical framework to particular species
will require explicit functional forms for the density- and frequency-dependence
in vital rates, as well as behavioral effects on these functions. These can be
estimated empirically in focal populations, but further generalization will re-
quire a more mechanistic understanding of the underlying physiological bases of
behavior (which generates the behavioral correlations) and the factors that link
behaviors to fitness. The latter obviously include the risks of injury or death
from inter- and intra-specific interactions, but could also include processes such
as energetics (e.g., aggressive individuals might have a higher metabolic rate
that forces them to be more risk-tolerant during foraging). A predictive theory
also needs a mechanistic basis for the newborn phenotype distribution—e.g.,
what are the roles of genetics, parental effects, plasticity? Where genetics are
known, we would need to develop explicit inheritance models using population
genetics (Charlesworth, 1980) or quantitative genetics (Barfield et al., 2011); the
latter would probably be most appropriate when the behavioral trait is contin-
uously distributed. These are all areas where empirical research needs to guide
model development. Such models could be used to understand the causes and
consequences of phenomena such as the reduced fitness of heterotypic matings
across a boldness syndrome in guppies (Ariyomo and Watt, 2013).

The population model used here is very simple; in particular, it does not have
age- or size-structure, and assumes that environmental conditions are constant.
These factors can generate time-lags in feedback loops (because of the time to
reach maturity) and fluctuating selection (e.g., fluctuations in predator popu-
lations, or in populations of alternate prey, which might lead to fluctuations in
the relative cost of boldness as well as in overall mortality rates), respectively,
and so may prevent the population from settling down to an ecological or evo-
lutionary equilibrium. However, except in long-lived species, these are likely to
be second-order effects that primarily affect quantitative rather than qualitative
predictions. Of greater import, the model does not account for differences be-
tween sexes. Some species exhibit sexual dimorphism in behavioral traits (e.g.,
Pruitt et al., 2011; Han et al., 2015), and while individuals of the sex that does
not express the syndrome do not experience the direct fitness effects, they may
still influence the phenotypes of their offspring via genes or parental effects. If
the frequency of aggressive BTs is below the level where both phenotypes have
equal fitness and there is a genetic contribution to behavior, then individuals
of the non-expressing sex could increase their fitness by preferentially mating
with aggressive individuals. This would put the syndrome under sexual selec-
tion, and would further increase the birth rate advantage of aggression without
necessarily increasing the boldness cost (Logue et al., 2009).

A recent essay on “data-free papers” in the behavioral syndromes literature
(DiRienzo and Montiglio, 2015) suggests that such papers (encompassing syn-
theses of older theories as well as novel conceptual frameworks, terminologies,
or statistical approaches) are contributing relatively little to our understanding
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Table 2: Qualitative predictions about populations exhibiting a boldness-
aggression tradeoff that derive from the theory developed in this paper.

Prediction Rationale

Compared with a population at a BT fre-
quency that equalizes fitness between the
types, an artificial population made up
solely of non-aggressive individuals will,
under identical environmental conditions,
grow to a larger equilibrium abundance.

Corollary of the result that introducing an
aggressive BT to a non-aggressive popula-
tion will lower equilibrium abundance at the
fitness-equalizing BT frequency.

The aggressive BT in populations grow-
ing in low-predation environments will
exhibit stronger aggressive tendencies
than the aggressive BT in high-predation
environments.1

Reduced boldness cost at a given aggressive-
ness level will allow evolution to higher ag-
gressiveness. Assumes local evolution of ag-
gressiveness trait.

Populations in low-predation environments
will have a higher aggressive BT frequency
and may, depending on the strength of the
boldness cost and the contribution of pre-
dation to overall mortality, have a lower
equilibrium abundance than high-predation
populations.1

Low predation reduces µ, reducing mor-
tality difference between BTs; this moves
the fitness-equalizing frequency to a greater
fraction of aggressives, where the birth-rate
difference is also lower. For a given den-
sity, this reduces mean birth rate; if base-
line mortality is not much affected by pre-
dation then reduced birth rate may exceed
reduced mean death rate, requiring reduced
density to attain demographic equilibrium.
Assumes local adaption to fitness-equalizing
BT frequency.

Populations in which aggression is under
sexual selection will have an increased BT
frequency and reduced equilibrium abun-
dance relative to otherwise identical popu-
lations without sexual selection

Sexual selection increases difference in birth
rates without affecting difference in death
rate; thus fitness-equalizing BT frequency
will be a greater fraction of aggressives. Ef-
fect on equilibrium density follows directly
from this. Assumes no differences in aggres-
siveness trait.

Quantitative predictions will require a model that is tailored to the empirical
system being studied. Deviations from the model’s qualitative assumptions
about density- and frequency-dependence will require new analysis to confirm
that the predictions apply.

1 Assumes that the boldness cost is a consequence of heightened vulnerability
to predation.
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of the subject. Notably absent from their critique are formal models; this is
perhaps due to their relative paucity (we have found only one model linking
behavioral syndromes to population dynamics; Fogarty et al. 2011). However,
DiRienzo and Montiglio (2015) suggest (correctly, in our view) that formal mod-
els are an important avenue (along with empirical study) to effectively study
the speculative links suggested by verbal conceptual frameworks. The work here
represents such a contribution. In particular, our findings that the equilibrium
frequency of the aggressive behavioral type depends strongly on the mortality
cost of boldness and that the equilibrium population abundance is negatively
related to the frequency of the aggressive BT could only have been derived from
a model that translates the fitness consequences to the individual into birth
and death rates, and included dynamic feedbacks via density-dependence and
frequency-dependence. Indeed, these feedbacks help shape the fitness landscape
in which the behavioral syndrome evolves in such a way that understanding
the optimal values of the intensity of the syndrome and the BT frequencies re-
quires explicit modeling of the species’ population ecology. Making quantitative
predictions about specific systems will require tailoring the model to those sys-
tems; such species-specific models can then be used, for example, to predict and
explain patterns observed in common garden experiments with animals drawn
from different selective environments. We hope that this paper will stimulate
studies that integrate empirical observation and formal modeling.
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