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Abstract (70 words) 

 

Characterization of tissue-infiltrating T cell repertoire is critical to understanding tumor-

immune interactions and autoimmune disease etiology. We present TRUST, an open source 

algorithm for calling the TCR transcript hypervariable CDR3 regions using unselected RNA-

seq data profiled from solid tissues. TRUST achieved high sensitivity in CDR3 calling even 

for samples with low sequencing depth and has demonstrated utilities in its application to 

large tumor cohorts.
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Neoantigen-specific tumor-infiltrating T lymphocytes (tTIL) are functional carriers for 

cancer cell elimination and are the primary focus of immunotherapies1-4. Characterization 

of the tTIL receptor repertoire is critical to understanding tumor-immune interactions. 

Profiling of the tTIL β chain hypervariable complementarity-determining region 3 (CDR3) 

relies on targeted PCR capture followed by deep next generation sequencing (TCR-seq)5 

and has recently demonstrated significant clinical impact6, 7. However, TCR-seq is 

unavailable for clinical studies with limited tissue materials, as high-throughput profiling of 

the tumor genome and transcriptome is usually of higher priority. With the increasing 

interest to study both tumor and its infiltrating immune repertoire, there is a pressing need 

to profile tTIL through repurposing tumor RNA-seq data, instead of consuming additional 

tissues for TCR-seq. Motivated by such need, we developed a computational tool, TCR 

Repertoire Utilities for Solid Tissue, or TRUST, for ultrasensitive detection and de novo 

assembly of the hypervariable CDR3 regions using RNA-seq data (Online Methods). In this 

work we show that TRUST achieved recall rate an order of magnitude higher than 

contemporary methods8-10, even at extremely low coverage of the TCR transcripts. 

 

Given RNA-seq reads previously aligned to the reference genome, TRUST first detects 

library type (Fig. 1a) and sorts the reads for CDR3 detection (Fig. 1b). In paired-end library 

(PE) mode, TRUST searches for pairs where one mate is properly mapped to the TCR gene 

loci and the other mate is unmappable. In single-end library (SE) mode, TRUST directly 

selects unmapped reads with consensus CDR3 motifs (Fig. 1c). Read pairs with both mates 

unmappable are subject to the same analysis as single-end reads if they contain CDR3 

sequences. Users can also force TRUST to run in single-end mode for paired-end library. 

Sorted unmapped reads are candidates for CDR3 assembly and are assigned to TCR genes 

based on their mapped mates (PE) or the partial sequences they contain (SE) (Fig. 1d). For 

each TCR gene, TRUST assembles reads into contigs based on partial sequence overlap (Fig. 

1e). It then realigns the flanking regions of each contig to the IMGT reference sequences11 

and reports ones with at least 6 consecutive matched amino acids(Fig. 1f). Finally, TRUST 

reports the complete or partial CDR3 assemblies and related variable (V) or joining (J) 

genes in FASTA format. 

 

In order to test if TRUST assembles real CDR3 sequences, we performed TCR-seq on the β 

chain of 3 formalin-fixed paraffin-embedded (FFPE) samples of TCGA kidney clear cell 

cancer with RNA-seq data available12 (Supplementary Table 1). CDR3s called using TCR-

seq are considered as real transcripts of the infiltrating T cells. We ran TRUST in both 

single-end and paired-end mode on the RNA-seq data of these samples and compared 

TRUST results with TCR-seq calls (Online Methods). In both modes, approximately two 

thirds of TRUST assembled CDR3s were found in the TCR-seq data (Fig. 2a and 

Supplementary Fig. 1a), confirming that TRUST is capable of calling real CDR3 sequences. 

DNA extracted from FFPE samples often has degradation13 and may not capture the entire 

tTIL repertoire14. In addition, tissue slides used for RNA-seq and TCR-seq were in different 

locations and may not contain the same tTIL. Therefore, it is expected that a fraction of 

TRUST calls were not found in the TCR-seq results. CDR3s called from both TCR-seq and 

TRUST are enriched for high frequency clonotypes (Fig. 2b and Supplementary Figure 1b). 

Specifically, TRUST identified an average of 53.5% of the top 1% most abundant CDR3s 
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from TCR-seq. In addition, V/J gene assignments by TRUST are highly concordant with 

those obtained from TCR-seq (Fig. 2c and Supplementary Figure 1c). 

 

Since TCR-seq from FFPE samples might have limited coverage, we implemented in silico 

simulations to thoroughly evaluate the performance of TRUST. To this end, we generated 

short read sequencing data that resembles real RNA-seq data, with known true positive 

TCR transcripts (Supplementary Figure 2 and Online Methods). It is estimated that in an 

RNA-seq data with 200 million (M) 50nt reads, the coverage for TCR transcripts is 0.0412. 

We first simulated SE library with read length 50nt and read depth from 100M to 5,000M, 

which is equivalent to coverage from 0.02 to 1.0. Read depth refers to the total number of 

reads in an RNA-seq data. For PE library, read depth is twice as the number of DNA 

fragment, which contains two reads produced from a same haplotype. We randomly 

sampled 100 TCRβ transcripts for each simulation and performed 100 simulations at each 

coverage. TRUST achieved average recall of 2.1% at read depth 100M, while two competing 

methods MiXCR10 and iSSAKE8 were 0.12% and 0.0% respectively at the same read depth. 

Precisions of TRUST, MiXCR and iSSAKE at read depth 100M were 100%, 100% and 0.0% 

(Fig. 2d). Similar recall and precision were observed for PE library simulations as well 

(Supplementary Figure 3). We also applied Decombinator9 on the simulated data, but it 

failed to assemble any contig even at read depth 5,000M. The above results suggest that 

TRUST is a superior method suitable for calling CDR3s from RNA-seq data with better 

sensitivity and specificity than other contemporary methods. 

 

We performed another set of simulations to investigate TRUST performance over different 

read lengths. Fixing read depth at 500M, we simulated libraries with read length 50, 75 and 

100nt (Online Methods). The TRUST recall increases with longer reads, with precision not 

influenced by either SE or PE inputs (Fig. 2e and Supplementary Figure 4). This is because 

long reads have higher possibility to cover the CDR3 region than shorter reads, when the 

number of fragments is fixed. The fraction of complete calls (defined as CDR3 assemblies 

containing both N- and C-terminus motifs) also increases with longer reads, and this 

fraction is unaffected by read depth (Supplementary Figure 5).  

 

Non-cancerous solid tissues sometimes also contain a sizeable amount of infiltrating T cells, 

especially in case of autoimmune diseases. In order to explore the utilities of TRUST on 

other types of solid tissues, we collected 9 samples from the public domain, including 6 

negative control cell line samples from ENCODE15 and 3 solid tissues from NCBI sequence 

read archive (SRA). Of the 6 cell line samples, 3 of them are in vivo differentiated normal 

cells and 3 are cancer cell lines. Since V(D)J recombination only occurs in the lymphocyte 

lineage, these 6 cell lines are expected to be TCR-negative. Using CDR3 counts per million 

reads (CPM) as a measure of TCR content, we found CPMs to be extremely low or zero in 

the cell lines as expected. We then compared the TCR contents in the normal colon and 

colon tissues with Crohn’s disease or ulcerative colitis, and found the amount of T cells to 

be much higher in inflamed tissues than normal tissue (Fig. 2f and Supplementary Table 2). 

As TRUST assembles an appreciable amount of CDR3 sequences even at very low 

sequencing depth, these results suggest that TRUST is potentially suitable for analyzing 

RNA-seq data profiled from non-cancerous inflammatory solid tissues as well. 
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A prototype of TRUST has been applied to a large cohort of cancer samples and revealed 

rich information of tumor-immune interactions12. The current version of TRUST is built on 

this prototype with three important improvements. First, while the prototype only handles 

paired-end data, TRUST also analyzes single-end library RNA-seq data with comparable 

performance as paired-end input. Second, the inclusion of unmapped read pairs (Fig. 1b) as 

well as optimized CDR3 realignment and annotation approach increased the recall by 91% 

(4.2% at 100M read depth, PE mode compared to the prototype 2.2%) while maintaining 

high precision. Third, the coverage for high abundance T cell clones (top 1% quantile) is 

increased from 12.8% to 58.5% (PE mode). It is known that antigen-specific infiltrating T 

cells undergo clonal expansion and become more abundant in the repertoire16. Further 

more, recent study revealed that high T cell clonality is associated with improved outcome 

in anti-PD1 therapies in melanoma6. Therefore, the high abundance T cells recovered by 

TRUST may harbor tumor-reactive clones with direct clinical applications. 

 

In summary, we developed TRUST for ultrasensitive calling of CDR3 sequences using 

unselected RNA-seq data profiled from solid tissues which is applicable to both single-end 

and paired-end sequencing libraries. TRUST has demonstrated utilities in application to 

large cancer sample cohorts and is a unique addition to the current sequence analysis 

toolset. In this work, we observed an average recall of 2-4% for RNA-seq data with 100M 

reads. Recent technology development has enabled the sequencing of PE 150nt library of 

300M DNA fragments (600M reads) inexpensively17. At this setting, TRUST can achieve 9.4% 

average recall with 96.6% precision and 76.6% complete CDR3 assembly rate 

(Supplementary Figure 6). Therefore, approximately one tenth of the TCR repertoire can be 

accurately retrieved by repurposing the RNA-seq data. With rapidly accumulating RNA-seq 

data and continuously decreasing sequencing cost, we anticipate TRUST to attract broad 

interest in the immunology and cancer research fields.  
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Methods 

 

TCR hypervariable region de novo assembly workflow 

 
i). Automatic detection of input library type 

TRUST implements different approaches of read sorting and alignment for singled-end and paired-

end libraries and therefore, the first step in the method is to detect library type. Given the input 

BAM file, TRUST initiates a read screen and selects unmapped reads. If the no paired-end fragments 
(first bit of SAM flag is 0) in the first million reads, TRUST assigns single-end library to the input 

data. Oppositely, if paired-end fragments are detected in the first million reads, TRUST assigns 
paired-end library to the input data. User can force TRUST to run in single-end mode (-s option) for 

paired-end library data. When this option is enabled, TRUST ignores paired-end information and 

always treats input data as single-end. 
 

ii). Read sorting for CDR3 detection 

After input library type is determined, TRUST searches the entire library for informative read or 
read pairs. For paired-end library, TRUST keeps read pairs with at least one mate unmapped to the 

reference genome. For single-end library, TRUST keeps the unmapped reads. A subset of these 

informative read or read pairs may contain the hypervariable CDR3 region and cannot map to the 
reference genome due to insertion of non-template DNA bases. 

 

iii). Sorting reads based on mapping or consensus motifs 

For paired-end library input, TRUST finds unmapped read with its paired mate properly mapped to 

the TCR gene regions, including variable, joining and constant genes. The genomics locations for the 

TCR loci are (hg19 assembly): α (chr14:22090057-23021075), β (chr7:141998851-142510972), γ 
(chr7:38279625-38407656). δ gene region is embedded in the α region (chr14:22891537-

22935569) and therefore the reads will be obtained along with TCRα. For single-end library input, 
TRUST determines if a read is potentially informative by whether it contains CDR3 DNA consensus 

motifs. The motifs are predefined based on IMGT variable or joining gene sequences. For paired-

end library, if both mates are unmapped, they could potentially contain CDR3 region as well. These 
reads are subject to TRUST single-end library analysis. Redundant contigs resulted from paired 

reads of same fragment are removed in the downstream analysis. 

 
iv). Sort CDR3 reads into TCR genes 

As TRUST uses a comprehensive pairwise read comparison method for sequence assembly, its time 

cost is O(N2), where N is the number of candidate CDR3 reads. We here use a divide and conquer 
approach to reduce the time cost by assigning CDR3 reads into smaller sets and process each set 

individually. Intuitively, we assign candidate CDR3 reads selected from the previous step into TCR 

genes. Reads assigned to different genes belonging to the same category (variable or joining) must 
not come from a same transcript. Therefore, these reads can be assembled individual to TCR genes 

without losing CDR3 detection power. For paired-end genes, TRUST assigns TCR genes based on 
their mapped mates. For single-end reads, TRUST aligns the read depending on the type of motif it 

contains. For example, reads containing β variable gene motifs will be aligned to IMGT β variable 

gene DNA sequences. If the mapping score of the top hit is greater than 20, the read is kept and 
assigned to the corresponding gene. 

 

v). De novo read assembly based on partial sequence overlap 

For unmapped reads assigned to a TCR gene, TRUST performs pairwise sequence comparisons, 

searching for reads with more than N bases overlap, where N is a user-defined threshold with a 
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default of 10. TRUST uses a two-bit coding for the DNA nucleotide sequences to accelerate 

computation and reduce memory use. TRUST allows for up to E mismatches in the overlap 
sequence to tolerate sequencing errors (E is user-defined parameter with a default of 1). For each 

TCR gene, a read-sharing matrix is produced documenting the sequence overlap information of all 

reads assigned to this gene.  
 

We use an undirected graph to represent the read-sharing matrix, with each node representing an 

unmapped read and each edge indicating partial sequence overlap. TRUST then traverses the graph 
to find all the disjoint subgraphs, or cliques and order reads within each clique based on their 

overlapping sequences. For example, when the 3’ end of read X overlaps with the 5’ end of read Y, 
TRUST places X in the 5’ end of Y, and vice versa. If there are reverse complement reads, all the 

reads are converted to one randomly chosen direction before ordering. After ordering, reads are 

assembled into one contig. When two reads positioned after a same read do not overlap, they may 
come from two contigs sharing the same upstream variable gene. In this situation, TRUST 

assembles each CDR3 contig individually. 

 
As above mentioned, reads assigned to different genes of the same category (variable or joining) 

must be generated from different TCR transcripts. However it is possible that contigs assigned to 

different genes of different categories were parts of the same transcript. For example, a contig 
assembled from a variable gene may be the same transcript as a contig assembled from a joining 

gene. We define variable gene as ‘upstream genes’ and joining or constant genes as ‘downstream 

genes’. TRUST then compares each of the upstream/downstream contig pairs, and merge them if 
they overlap by at least 2N bases, with up to E mismatch(es). Meanwhile, if two contigs are 

products of the same read pair, one of them are removed to reduce redundancy. 
 

vi). Realign contigs to IMGT reference genes and annotate CDR3 regions 

The final contigs assembled from above steps must contain at least one CDR3 consensus motif(s) 
and are likely CDR3 assemblies. For each contig, TRUST first convert the DNA sequence into amino 

acid (AA) sequence and locates the consensus AA CDR3 motif using a predefined list of patterns. 

The N terminus residual sequence of a variable motif, or the C terminus residual sequence of a 
joining motif, is called a flanking region. TRUST realigns the flanking region to the IMGT reference 

gene amino acid sequences. If the top hit contains at least 6 consecutive matched AAs, including the 

CDR3 motif, TRUST reports this contig as a CDR3 assembly, and reports its corresponding variable 
and/or joining gene with highest alignment score. If not, this contig is discarded to reduce false 

positive rate. The final output includes the input file name, CDR3 amino acid sequence, CDR3 DNA 

sequence and complete DNA sequence of the assembled contig, in FASTA format. 

 
In silico simulation 

We performed in silico simulations to systematically evaluate the performance of TRUST 

(Supplementary Figure 2). We randomly selected the DNA sequences of 3 β variable (11-1*01, 12-
3*01 and 2*03), 3 β joining (1-1*01, 2-1*01 and 2-4*01) and β constant gene (TRBC1) from IMGT 

reference sequences and performed in silico VJ recombination to generate full-length TCRβ 

transcripts. Non-template random DNA bases were inserted into the VJ junction, with number of 
bases follow Poisson(5). Meanwhile, N bases at the 3’end of the variable gene and 5’end of the 

joining gene were deleted, with N following Poisson(1). 100 transcripts were generated as the true 

TCR transcripts. 
 

We applied simNGS, a toolbox for simulating next-generation sequencing libraries to produce the in 

silico datasets18 using the 100 simulated TCR transcripts. For SE libraries, we directly sampled DNA 

fragments with given read length (r). For PE libraries, we first sampled DNA fragments with median 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 9, 2016. ; https://doi.org/10.1101/073395doi: bioRxiv preprint 

https://doi.org/10.1101/073395


insert size 2×r+50. Illumina short reads with length r were subsequently sampled from the DNA 

fragment library. Tophat (v2.1)19 was applied to map the short RNA-seq reads (Bowtie2 version 
2.2.1)20 to the human reference genome (hg19), with default parameters except for disabling 

coverage search (--no-coverage-search) to accelerate mapping. SAMtools21 was applied to generate 

the corresponding BAM index files. TRUST was then applied to the BAM files for CDR3 detection. 
CDR3 sequences reported by TRUST were compared to the original 100 simulated TCR transcripts 

for recall and precision estimations. For coverage evaluation, we set the simLibrary –x option to be 

0.02, 0.1, 0.5 and 1.0 for read depth 100M, 500M, 2,500M and 5,000M. 100 simulations were 
performed for each coverage setting and we fixed read length to be 50nt. For read length evaluation, 

we set the simLibrary –r option to be 50, 75, 100 and 150nt. 10 simulations were performed for 
each read length setting. For read length 50, 75 and 100nt, we fixed the number of fragments to be 

4 (simLibrary –n 4) for SE library and 2 for PE library, which is equivalent to read depth 500M. For 

read length 150nt PE library simulations, we fixed coverage 0.36 (simLibrary –x 0.36), which is 
equivalent to read depth 300M.  

 

Application of MiXCR, iSSAKE and Decombinator to simulated datasets 

We applied default settings of MiXCR, iSSAKE and Decombinator to the in silico RNA-seq datasets 
generated as above described. Outcomes of all 3 methods were compared to the simulated TCR 

transcripts for performance evaluation. No transcripts were reported at read length 50nt by 

Decombinator even at read depth 5,000M and therefore it excluded in Fig. 2d.  

 

Access and analysis of public datasets 

RNA sequencing data in fastq format for 6 cell line samples (ENCSR859HWB, ENCSR294NDO, 

ENCSR023VVO, ENCFF002DHV, ENCFF002DKJ and ENCFF002DLL) were obtained from ENCODE 
data portal (https://www.encodeproject.org). Other 3 samples of colon normal or diseased tissues 

(SRR1813898, SRR1813883 and SRR2314045) were downloaded from the NCBI Short Read 

Archive (SRA) database (http://www.ncbi.nlm.nih.gov/sra) in fastq format. All 9 samples were PE 
RNA-seq libraries. In order to evaluate the single-end mode performance, we only used half of the 

original data. All files were first aligned to the human reference genome hg19 using Tophat19 with 

default settings. BAM index files were built using SAMtools21. The resulting files, BAM with index, 
are desired input for TRUST method. 
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Figure Legends 

 

Figure 1. Cartoon summary of TRUST method workflow. TRUST takes the input in BAM 

format, with reads previous aligned to human reference genome. It automatically 

determines if input library is paired-end (PE) or single-end (SE) (a). For PE input, TRUST 

selects read pairs with one mate properly mapped (solid arrow) and the other unmapped 

(dashed arrow).  For SE input, TRUST selects all the unmapped reads for further processing 

(b). In the next step, TRUST sort CDR3-related unmapped reads based either of the two 

criteria: its paired mate properly aligning to the TCR region (red arrow) or the read 

containing putative CDR3 motifs (c). For PE library, each read is assigned to individual TCR 

genes based on the mapping location of its paired mate. In case of SE library, the read is 

aligned to the motif-containing regions of the IMGT reference DNA sequences. If the top hit 

has a maximum mapping score larger than 20, the read is kept and the corresponding TCR 

gene is assigned (d). De novo assembly is then performed for reads assigned to each of the 

TCR genes individually (e). If two reads share no less than N overlapping bases, with up to 

E mismatch tolerated, they will be joined into one contig. N and E are user-defined 

parameters, with N default 20 and E default 1. Contigs assembled from the previous step 

are annotated by re-alignment to the IMGT reference gene amino acid sequences of the 

motif-flanking region. Red letters in e are mapped template amino acids. Contigs not 

mapped to any reference gene are discarded. Kept contigs are annotated for the CDR3 

sequences and corresponding variable and/or joining genes. TRUST reports variable gene 

for the N-terminus partial assemblies, joining gene for the C-terminus partial assemblies 

and both genes to the complete assemblies. 

 

Figure 2. Performance evaluation of TRUST in single-end mode. a. Venn diagrams showing 

the number of CDR3 sequences called from TCR-seq (ImmunoSeq), RNA-seq using TRUST 

and the overlap of the two approaches for 3 TCGA kidney renal clear cell carcinoma 

samples. b. TRUST-reported CDR3s are enriched for clonotypes with high abundance. At 

each quantile (Q), Y-axis is the fraction of TRUST-reported CDR3 with clonal frequency 

above or equal to Q. Same analysis was repeated for all three TCGA samples. c. Accuracy of 

variable/joining gene estimations by TRUST. Accuracy is the percentage of correctedly 

assigned variable or joining genes by TRUST using the overlapping CDR3s (a) and TCR-seq 

reports as true positive. d. Recall and precision estimations based on in silico simulations at 

different read depths. 100 TCRβ transcripts were randomly sampled using IMGT reference 

genes, mimicking the process of V(D)J recombination. 100 simulations were performed for 

each of the four different coverage settings, 0.02, 0.1, 0.5, 1.0, which correspond to read 

depths of 100M, 500M, 2,500M and 5,000M respectively. TRUST, MiXCR and iSSAKE were 

applied to the simulated datasets. Recall and precision were estimated by comparing to the 

original 100 sampled TCRβ transcripts. e. Recall and precision estimations at different read 

length settings. Similar simulations to d were performed for libraries size 500M with 50, 75 

and 100nt reads. Recalls are displayed as lower boxes and precisions are upper boxes. f. 

Application of TRUST to non-cancerous tissue samples. Nine single-end RNA-seq samples 

from the public domain were collected. These samples fall into four categories, based on 

their TCR-containing and disease status. Y-axis is the number of TRUST-reported CDR3 

normalized by the read depth of input data. 
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Supplementary Figure Legends 

 

Supplementary Figure 1. Comparison of TCR-seq results with TRUST-reported CDR3s 

using RNA-seq data in paired-end mode. Same results are presented as Figure 2a-c, except 

that TRUST was run in paired-end mode. The performance of TRUST in PE mode is similar 

to that in SE mode. 

 

Supplementary Figure 2. Flowchart of the in silico simulation pipeline used for TRUST 

method evaluation. 

 

Supplementary Figure 3. Recall and precision estimations at different read depths in 

paired-end mode. Similar as Figure 2d, performances of TRUST, MiXCR and iSSAKE were 

tested on simulated datasets with paired-end libraries. Similar levels of recall and precision 

were observed for TRUST in PE mode as those in SE mode. 

 

Supplementary Figure 4. Recall and precision estimations at different read lengths. 

Paired-end libraries with different read lengths were simulated and the performances of 

three methods were tested. Similar to single-end libraries, recall and precision were 

unaffected by read lengths. 

 

Supplementary Figure 5. Fraction of complete CDR3 calls with different read length and 

read depth settings for both single-end and paired-end libraries. Complete CDR3 call rates 

increase with read length but not read depth for both library types. 

 

Supplementary Figure 6. Performance evaluation on an RNA-seq with PE 150nt read 

length and 300M DNA fragments. 
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