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Slice-based fMRI

Abstract

A major drawback of functional Magnetic Resonance Imaging (fMRI)

concerns the lack of temporal accuracy of the measured signal. Although this

limitation stems in part from the neuro-vascular nature of the fMRI signal,

it also reflects particular methodological decisions in the fMRI data analysis

pathway. Here we show that the temporal accuracy of fMRI is affected by

the specific way in which whole-brain volumes are created from individually

acquired brain slices. Specifically, we show how the current volume creation

method leads to whole-brain volumes that contain within-volume temporal

distortions and that are available at a low temporal resolution. To address

these limitations, we propose a new framework for fMRI data analysis. The

new framework creates whole-brain volumes from individual brain slices that

are all acquired at the same point in time relative to a presented stimulus.

These whole-brain volumes contain no temporal distortions, and are avail-

able at a high temporal resolution. Statistical signal extraction occurs on

the basis of a novel time point-by-time point approach. We evaluated the

temporal characteristics of the extracted signal in the standard and new

framework with simulated and real-world fMRI data. The new slice-based

data-analytic framework yields greatly improved temporal accuracy of fMRI

signals.

Keywords: fMRI BOLD; temporal accuracy; FIR basis functions; statistical

modeling; Slice-Based fMRI
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Slice-based fMRI

The changes in blood oxygen concentration that result from neural activity are de-

tected by functional Magnetic Resonance Imaging (fMRI) in the form of changes in the

Blood Oxygen Level Dependent (BOLD) signal (Ogawa et al., 1990). The BOLD signal

is observed in T2* weighted imaging runs and represents changes in the magnetic field

strength as a function of time. It has a characteristic shape that involves an initial dip,

a dispersed peak, and a post-stimulus undershoot (Hu et al., 1997; Menon et al., 1998).

The BOLD signal is sluggish and peaks about 5 seconds after the onset of neural activ-

ity. The precise shape of the BOLD signal is of crucial importance in event-related fMRI

studies that examine BOLD signal dynamics in response to the presentation of stimuli

(Friston et al., 1998; Josephs et al., 1997), in studies of functional connectivity, where

the connection strength between different areas of the brain is established on the basis

of the overall similarity in their BOLD signal dynamics (Biswal et al., 1995; Rissman et

al., 2004), and in studies of neuro-vascular coupling, where BOLD signal dynamics are

used to make claims about the metabolic implications of neuronal activity (Attwell &

Iadecola, 2002; Hillman, 2014; Logothetis & Wandell, 2004; Uludağ & Uğurbil, 2015). A

crucial question for current fMRI studies is therefore related to the temporal accuracy

and resolution by which the fMRI BOLD signal can be estimated from the data. We will

first discuss the details of fMRI data acquisition and outline why the current method for

creating whole-brain volumes produces a lack of temporal accuracy and poor temporal

resolution. We will then discuss our new proposal for improving the temporal aspects of

fMRI BOLD signal extraction.

fMRI data acquisition and volume creation

One of the most common forms of data acquisition in fMRI experiments is one where the

data are obtained by progressively taking small samples from different parts of the brain.

Specifically, when an animal or human subject is positioned in the MRI scanner, fMRI

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 5, 2016. ; https://doi.org/10.1101/073437doi: bioRxiv preprint 

https://doi.org/10.1101/073437
http://creativecommons.org/licenses/by-nc-nd/4.0/


Slice-based fMRI

data is acquired in the form of two-dimensional planes of data points called slices. Each

slice covers a small, specific and unique portion of the brain. To provide whole-brain

coverage, typically more than 30 slices are required. Different from other techniques

such as EEG and MEG (e.g., Nunez & Srinivasan, 2006), current MRI technology does

not permit the instantaneous sampling of all data points on all slices in the entire brain.

Instead, the most common form of data acquisition involves the progressive sampling of

single slices in sequence (Cohen & Weisskoff, 1991) or of a few slices in parallel (Moeller

et al., 2010). Slices are acquired at well-defined points in time. Currently, the time

between successive samples is on the order of several tens of milliseconds. This means

that with typical MRI parameters (i.e., the TR), the time from sampling the first slice

to the last slice in a whole-brain covering series takes around 3 seconds.

Formally, fMRI data D can be represented as a set of m slices S that are repeatedly

sampled n times:

D = [S1,1, ..., Sm,n], (1)

where each S is itself a two dimensional matrix of acquired fMRI signal intensities (not

shown here). This data matrix of slices D is accompanied by a similar size m×n matrix

of slice acquisition times DT .

DT = [t1,1, ..., tm,n]. (2)

Under the assumption of a standard sequential slice acquisition scheme, each specific

time point t(a, b) in this matrix can be determined by the following function:

t(a, b) =
TR

m
× (a + (b− 1)×m), (3)

where a and b index the specific slice and acquisition number. Adjustments to this

formula are required for more complex (i.e., interleaved) acquisition schemes. fMRI data
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can thus be represented as a long series of slices sampled at well-defined time points.

This method of progressively sampling a small area of the brain raises a fundamental

problem for fMRI data analysis. Specifically, the problem is how to perform whole-brain

analyses of the fMRI signal when at each point in time only data from a small part of the

brain are available. The solution to this problem is not straightforward. At the moment,

the only available solution is to create whole-brain volumes by temporally displacing

the individually acquired slices (e.g., Friston et al., 1994). Specifically, according to this

solution, sets of sequentially acquired slices that cover an entire brain are simply assumed

to be acquired at the same moment in time. This moment in time is defined with respect

to an arbitrarily chosen referent slice, for example the first or the middle slice in the set.

This then creates series of whole-brain volumes, each of which contains a set of slices

that are all assumed to be acquired at the moment in time when the referent slice was

acquired (see Figure 1 for a graphical explanation).

Formally, the raw fMRI data D is transformed from m × n individual slices, each

acquired at distinct point in time to a n size vector D′ of whole-brain volumes V1, ..., Vn:

[S1,1, ..., Sm,n]D → [V1, ..., Vn]D′ . (4)

In this new formulation of the data D′, it is simply assumed that all slices within a

given volume are acquired at the same point in time. Specifically, the vector of volume

acquisition times is give by:

D′T = [tv1, ..., tvn], (5)

where each volume acquisition time tv(v) is determined by the function:

tv(v) = TR× v, (6)

where v ranges from 1 to n. In a typical fMRI experiment, the tv values are on the order
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of seconds.

This method of creating whole-brain volumes by time-shifting individual slices leads

to two major problems with respect to the temporal aspects of the fMRI signal. First, the

method produces within-volume temporal distortions. Specifically, within this method,

volumes are composed out of slices that were not acquired at the same moment in time.

In the real-world terms, this means that voxels that are only a few mm apart in the

brain could have been sampled seconds apart in time. This temporal distortion of the

signal that is present within each volume causes the whole-brain volumes created within

this method to be temporally imprecise. Note that this aspect of fMRI data acquisition

is well-known, and is the reason for the existence of a data-analytic procedure called

Slice Time Correction (STC; Henson et al., 1999; Sladky et al., 2011). This procedure

attempts to account for the within-volume temporal distortion by making the data of

slices within a volume more like those of the referent slice (e.g., by time shifting signals).

However, although this may improve basic signal detection methods (Sladky et al., 2011),

its impact on improving the temporal aspects of signal extraction remain uncertain. We

further addressed this issue below.

The second problem with the aforementioned volume creation method concerns the

temporal resolution by which the volumes are created. Specifically, the sampling fre-

quency in the original data format D is often is on the order of several tens of millisec-

onds. Specifically, the sampling frequency of the original raw data is proportional to

the ratio between the TR and the number of slices m (see Equation 3). By contrast,

the sampling frequency of the transformed data D′ is generally on the order of seconds.

Specifically, in this case the sampling frequency is directly proportional to the TR (see

Equation 6). Note that this temporal resolution of the transformed data D′ is therefore

one or two orders of magnitude below the actual temporal resolution by which data was

sampled from the brain in D. Thus, even though data was sampled at a high temporal
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resolution, this temporal resolution is unfortunately lost in the transformed data D′.

To summarize, the current standard method creates whole-brain volumes from raw

fMRI data by time-shifting individually acquired slices into whole-brain volumes. As we

explained above, this leads to volumes that contain signals that are temporally inaccurate

and that are of a low temporal resolution. These limitations on the temporal aspects

of fMRI data are relevant for all current fMRI studies that rely on inferences based on

the dynamics of the fMRI BOLD signal. In this light, we have created an alternative

framework for fMRI BOLD signal extraction.

Slice-based fMRI: An alternative method for volume creation

The key aspect of the new volume-creation method is that whole-brain volumes contain

slices that are all acquired at the same point in time relative to a presented stimulus.

The method places important constraints on the timing of stimulus presentation in an

imaging run. In particular, stimuli have to be presented in-phase with the acquisition

of the different slices that provide the whole-brain coverage. Volume creation in this

framework relies on the combination of slices that were acquired during different stimulus

presentations, but that were acquired at the same point in time relative to a stimulus.

This method leads to the creation of whole-brain volumes that contain no temporal

distortions and that have a temporal resolution equal to the sampling frequency (see

Figure 2 for a graphical explanation). Given the importance of slices in this method, we

will refer to this method of volume creation as Slice-Based fMRI.

Consider a set P of m stimuli [p1, ..., pm], whose corresponding stimulus presentation

times PT coincide precisely with the slice acquisition times determined by equation 3:

PT = [pt1,a, ..., ptm,y] = [t1,a, ..., tm,y], (7)

where a, ..., y is chosen such that there is a sufficiently long time in between stimulus
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presentations. Note also that the number of stimuli is equal to the number of slices

m. Next, we create m epochs E1, ..., Em corresponding to each stimulus presentation.

Each epoch has length ∆t. For a given epoch Ej corresponding to stimulus pj , let ptj,a

correspond to the timepoint at which slice j was acquired exactly at the moment stimulus

when stimulus pj was presented. In addition, let ptk,d correspond to the timepoint at

which slice k was acquired precisely at timepoint ptj,a + ∆t (i.e., the end of the epoch).

A given epoch Ej then contains raw fMRI signal intensities as defined as the set of slices:

Ej = [Sj,a, ..., Sk,d], (8)

with the corresponding set of slice acquisition time points:

ETj = [tj,a, ..., tk,d], (9)

where each specific time point in this set is determined by Equation 3. Next, for each

given epoch Ej we compute the relative time difference RETj between the exact presen-

tation time of the stimulus pt(j, a) and each time point in the epoch:

RETj = [tj,a − ptj,a, ..., tk,d − ptj,a] = [rtj,a, ..., rtk,d]. (10)

Importantly, note that because stimuli are presented precisely in-phase with the slice

acquisition times, the relative times in RET are necessarily a subset of the actual slice

acquisition times. This means that the total number of relative time points that is

available in an epoch is equal to the number of slices included in the epoch. In turn, this

means that the available temporal resolution in the epoch is equal to the slice sampling

frequency.

8
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Finally, we create a single epoch L with r whole-brain volumes

L = [V1, ..., Vr], (11)

where r is determined by the ratio between the epoch length ∆t and the slice sampling

frequency TR
m . The corresponding matrix of volume acquisition times LT is determined

by

LT = [lt1, ..., ltr], (12)

where each lt is determined by the function:

lt(v) =
TR

m
× v. (13)

Each volume in the epoch L contains slices that are acquired at the same time point

relative to the onset of the stimulus. This is achieved by combining slices from different

epochs E1, ..., Em on the basis of their RET values. Specifically slices 1, ...,m can be

combined into a whole-brain volume if their corresponding relative times rt match. For

a given volume:

Ve = [S1,a, S2,d, ..., Sm,y] ⇐⇒ rt1,a = rt2,d = ... = rtm,y. (14)

This then leads to an epoch of whole-brain volumes that do not contain any temporal dis-

tortions, and where volumes are available at a temporal resolution equal to the sampling

frequency.

As a concrete example, consider the simplified situation represented in Figure 2.

Here there are only three separate slices, slice1, slice2, and slice3 that provide whole-

brain coverage. The TR is 3 s meaning that the sampling frequency is 1 s (see equation

3). Imagine there are three stimuli that are presented that are in-phase with the different

9
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slice acquisitions. Thus, for example, stimulus1 is presented at 0 s (in phase with slice1),

stimulus2 at 7 s (in phase with slice2), and stimulus3 at 14 s (in phase with slice3).

Then, during the presentation of stimulus1, slice1 will capture the state of the brain

0 s after the presentation of a stimulus, slice2 will capture the state of the brain 1 s

after the presentation of a stimulus, slice3 2 s, and so on. During the presentation of

stimulus2, slice2 will now capture the state of the brain 0 s after the presentation of the

stimulus, slice3 1 s, and so on. After the presentation of all stimuli, each slice will have

captured the state of the brain at all possible time points relative to the stimulus, and

it is therefore possible to construct whole-brain volumes that are temporally correct and

at a high temporal resolution.

Statistical modeling of the BOLD signal

Statistical modeling of the fMRI BOLD signal differs fundamentally between the standard

and the new Slice-Based framework. In the standard method, the fMRI BOLD signal is

extracted from the data using a time-series approach in the context of a General Linear

Model (GLM; Bandettini et al., 1993). A time-series approach entails that the fMRI

data from an entire run is fitted to a single GLM model. In order to extract the time

course of the BOLD signal, statistical methods have been developed that rely on so-called

Finite Impulse Response (FIR) basis functions (e.g., Ollinger et al., 2001; Serences, 2004;

Zarahn et al., 1997). In this type of analysis, each parameter in the GLM attempts

to capture a different time point in the progression of the BOLD signal. This method

requires choosing a certain epoch length, and then choosing a number of basis functions.

Because in standard analyses the sample points are available at the resolution of the TR

(see section above), the number of basis functions is usually chosen to be equal to the

ratio of the epoch length and the TR. The GLM parameters of the FIR basis functions

then capture the progression of the BOLD signal in the epoch at the temporal resolution
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of the TR. Within this method, the temporal resolution can be increased by adding

additional sets of basis functions to the GLM and by accurately presenting stimuli out

of phase with the TR. These additional parameters then attempt to capture additional

timepoints in the progression of the BOLD signal (e.g., Dale, 1999; Josephs et al., 1997;

Price et al., 1999; Toni et al., 1999). As has been repeatedly pointed out, a problem with

this method is that increasing the number of parameters in the statistical model leads

to a reduction of power (e.g., Lindquist et al., 2009).

By contrast, statistical modeling in the slice-based method does not rely on a time-

series approach, but on a time point-by-time point approach. This approach to modeling

data is common in recent approaches in electrophysiology (Janssen et al., 2014; Lage-

Castellanos et al., 2010), but has not frequently been applied to fMRI data (but see Leung

et al., 2000). This means that instead of fitting a single statistical model to a whole

imaging run, separate statistical models are fitted at each individual time point in the

epoch. To preserve sensitivity, we do not perform any data averaging, and analyses take

place on all available data points from all stimuli at a given time point. A further aspect

of these analyses refer to the particular choice of the baseline signal. In our analyses, we

choose the baseline signal as those intensity values that are available at timepoint 1 in the

epoch (i.e., the first time point). Statistical modeling then involves comparing intensity

values at subsequent timepoints to those values obtained at baseline, and therefore leads

to a data-driven extraction of the BOLD signal. Finally, in our analyses below we further

refined this baseline procedure by including in the baseline not only the intensity values

at timepoint 1 from a given voxel, but also the intensity values at timepoint 1 from this

voxel across all slices. In other words, the baseline at a given voxel included intensities

values at timepoint 1 from that voxel (i.e., x and y coordinates), but also those values at

timepoint 1 from that same voxel (i.e., the same x and y coordinates) at all other slices

(i.e., z coordinates). We hypothesized that this baseline procedure would include global
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signal information that is unspecific to any particular voxel, and therefore lead to a more

accurate extraction of the BOLD signal across time. We will come back to this issue in

the General Discussion.

The current study

The goal of the current paper was to evaluate the temporal accuracy of BOLD signal

extraction in the standard FIR method and Slice-Based methods. Specifically, we com-

pared BOLD signal extraction using the FIR method without STC, the FIR method with

STC, and the Slice-Based method. Note, however, that these comparisons are complex

because they entail both a difference in the volume creation method and in the statistical

modeling of the signal. That is, both FIR techniques rely on the standard method of

whole-brain creation (i.e., time shifting of slices), and use a GLM time series technique

to extract the BOLD signal. By contrast, the Slice-Based method uses a very different

method of volume creation (i.e., combining slices collected at same relative timepoints),

and uses a time point-by-time point technique to extract the BOLD signal. Here we

did not intend to separate the contributions of each of these aspects of the procedures

in our comparisons. However, as will become clear below, it will be rather obvious to

identify whether limitations of each of the three techniques is due to the volume creation

or statistical modeling method.

We evaluated the temporal accuracy of these three techniques in the context of sim-

ulated and real-world data. In Simulation 1, we evaluated the three methods’ abilities to

recover the absolute timing of a simulated hemodynamic response from the fMRI data.

Specifically, we simulated an fMRI imaging run in which a large patch of (fictitious) neu-

ral tissue was stimulated in a slow event-related design. Stimulus presentations generated

a uniform hemodynamic response across the whole neural tissue. This large patch of neu-

ral tissue was covered by a set of adjacent fMRI slices that therefore each sampled the
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exact same hemodynamic response signal (with standard fMRI sampling parameters).

We had two basic questions: First, how well does each method recover the ground-truth

signal from the sampled BOLD data? Second, how well do the three methods extract the

same BOLD signal on the set of adjacent slices? We evaluated these questions in terms

of the basic Pearson correlation between the extracted BOLD signal and the expected

ground-truth signal, and in terms of the Pearson interslice correlation of the extracted

BOLD signal between the adjacent slices. If the Slice-Based method more accurately

extracts the time course of the BOLD signal we expected a higher correlation with the

ground-truth hemodynamic response, and a higher correlation of BOLD signals between

adjacent slices compared to the standard methods.

In Simulation 2, we were interested in each method’s ability to recover the rela-

tive timing of two generated, temporally delayed, ground-truth hemodynamic responses.

We evaluated each method’s ability to recover from the extracted BOLD signals the

ground-truth temporal delays of the two hemodynamic responses. We conducted the

same simulations for three different temporal delays between the two hemodynamic re-

sponses. We examined the extracted BOLD signal by the three methods in terms of its

estimated Time To Peak (TTP) value, the time at Half the Maximum amplitude (HM)

at the rising edge of the BOLD signal, and the mean correlation of the BOLD signals

with their respective ground-truth hemodynamic responses. Again we reasoned that if

the Slice-Based method more accurately extracts the time course of the BOLD signal,

it would yield TTP, HM, and mean correlation values that more accurately reflect the

ground-truth signals than those estimated by the standard methods.

Finally, we examined real-world fMRI data collected from 30 participants performing

a slow event-related overt picture naming task. Previous research has revealed that

the picture naming task shows robust activity across a large area in the primary motor

cortex (e.g., Murtha et al., 1999; Price, 2012). We examined activity in three voxels
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across three adjacent slices in the left motor cortex that all showed strong involvement

in the task. We hypothesized that these adjacent voxels would sample a very similar

hemodynamic response. The question we had was therefore whether the three methods

could extract a coherent BOLD signal across the three adjacent voxels in the left motor

cortex. Specifically, we examined the interslice correlation between three BOLD signals

from the adjacent slices, as well as the number of peaks in the BOLD signal across the

three slices. We hypothesized that if the slice-based technique is less prone to temporal

distortions, it would yield a higher interslice correlation as well as a smaller number of

unique peaks than the standard methods.

Methods

Simulation 1 - Absolute timing of BOLD signal

100 simulations were performed in the software package R (v3.3.1). Each simulation took

the form of an fMRI imaging run in which a large piece of (fictitious) neural tissue was

repeatedly sampled at a number of different slice locations. Our simulation was set up

such that this neural tissue would generate a hemodynamic response that was identical

at each slice location. Each slice therefore samples the same hemodynamic response, and

this leads to the expectation that the extracted BOLD signal of slice should be highly

correlated. The question then is which of the three discussed techniques best recovers

the absolute signal, and for which technique the signal is most similar across the three

slices.

To simulate an fMRI imaging run, we generated a series of consecutive hemodynamic

responses on the basis of a number of presented stimuli. Specifically, 60 stimuli presented

at long 18 s intervals induced a series of hemodynamic responses that were modeled with

a double gamma function with default parameters using the neuRosim package (v0.2-12;
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Welvaert et al., 2011). The precise onsets of the stimuli were constructed to be in-phase

with the slice acquisition times determined by the fMRI parameters described below. The

long interval between stimulus onsets meant that the hemodynamic response came back

to baseline before the next stimulus onset. This long duration hemodynamic response

signal was generated at a very high temporal resolution and represents the ground-truth

hemodynamic response to each stimulus in our simulated fMRI imaging run. Finally, to

make the simulation more probabilistic we added some Ricean noise with sigma=0.1 to

the generated ground-truth hemodynamic response signal (Gudbjartsson & Patz, 1995).

This ground-truth hemodynamic signal was subsequently sampled in a standard fMRI

fashion. For the first simulation the TR was 3.0 s, and there were 3 slices. On each slice

there was only one voxel. We sampled each slice in a sequential fashion (1,2,3). This

means that each voxel will obtain a sample every 3 seconds, and that adjacent voxels (on

adjacent slices) will obtain a sample every 1 second. Note again that each slice samples

the same underlying hemodynamic response signal because we assumed that the same

hemodynamic response is present at all slice locations. This generated basic raw fMRI

data with a BOLD signal time series at three voxels across three adjacent slices. The

signal was then normalized to zero mean and unit standard deviation. This data formed

the basis of all further analyses.

Volume creation took place in the two different ways described above. In the standard

method volumes were created out of the three adjacent slices. It was assumed that each

slice was acquired at the same point in time which was determined by the middle slice.

This resulted in 362 volumes of three slices that were not slice time corrected. We then

created a second set of 362 volumes to which we applied the FSL slicetimer function.

This therefore led to a set of volumes that were slice time corrected. For the Slice-Based

method, volumes were created that contained slices acquired at the same point relative to

a stimulus. This resulted in a stimulus locked epoch of 18 volumes. Statistical extraction
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of the BOLD signal by the FIR and Slice-Based methods was performed on these data.

For the FIR methods, we constructed a design matrix with 6 basis functions (i.e., the

18 s epoch length divided by the TR of 3 s). To obtain a temporal resolution higher than

the TR and equal to the resolution obtained using the Slice-Based method, two additional

sets of 6 basis functions were added, yielding a total of 18 parameters in the design

matrix. Each of these parameter sets corresponded to a set of onsets that coincided with

a particular slice acquisition time. Each of the 18 basis functions attempted to capture

a single timepoint in the progression of the BOLD signal. Specifically, parameter values

were generated by a long sequence of zeroes and ones at various points in the timecourse

of the BOLD signal since stimulus onset. This same design matrix was used for the FIR

without STC and the FIR with STC methods. All statistical modeling was done using

the linear modeling (lm) function of R.

For the Slice-Based method, the BOLD signal was extracted by comparing the signal

between the baseline time point 1 and each subsequent time point in the epoched data.

As mentioned earlier, the baseline was chosen as the values of time point 1 across all

available slices. Modeling was performed using the same linear modeling function in R

as in the previous methods.

Finally, we repeated this modeling exercise at different temporal resolutions. It has

been argued that increasing the temporal resolution increases the number of parameters

in the FIR based method, and this has a negative impact on the statistical power of the

method (Lindquist et al., 2009). Here we were interested in seeing how increasing the

temporal resolution impacted the power in the FIR and Slice-Based methods. We will

define power here in terms of the maximum t-value detected in the time course of the

BOLD signal. In our simulations the temporal resolution can be increased by keeping

the TR equal while increasing the number of slices in the simulation, and by presenting

the stimuli in-phase with these slice acquisitions. Specifically, we increased the number
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of slices to 6 and 12, and adjusted the stimulus onsets to coincide with the new slice

acquisitions. This resulted in a TR/6 and TR/12 temporal resolution, respectively.

Simulation 2 - Relative timing of BOLD signal

Simulation 2 also involved 100 simulations. This simulation took the form of an fMRI

imaging run in which two (fictitious) pieces of neural tissue were repeatedly sampled.

Our simulations were set up such that each neural tissue produced a neural response

after the presentation of a stimulus. However, the hemodynamic response in the second

neural tissue was slightly delayed relative to the hemodynamic response in the first neural

tissue. Sampling of each piece of neural tissue was determined by assigning half the slices

to one neural tissue, and the other half to the other piece of tissue. We systematically

delayed the onset of the hemodynamic response in each neural tissue. This simulation

was intended to ascertain to what extent each of the three aforementioned techniques is

able to accurately recover the ground-truth temporal delay between the two generated

hemodynamic responses.

In our first simulation we used 3 slices, meaning the first two slices covered the first

piece of tissue, and the other slice the second piece of tissue. In this first simulation

we systematically delayed the onset of the hemodynamic response in the second piece of

neural tissue by 1 TR, 2/3 TR and 1/3 TR. To evaluate how extraction of the relative

timing differences between three methods would function under different temporal reso-

lutions, we increased the number of slices from 3 to 6 in a second set of simulations. All

other aspects of Simulation 2 were identical to those of Simulation 1.

Real-world data - Picture Naming

Finally, we attempted to evaluate the three methods in the context of real-world data.

Although obviously we cannot know the ground-truth signal in these data, based on
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existing evidence we reasoned that picture naming should yield a similar hemodynamic

response in a large portion of motor cortex (e.g., Murtha et al., 1999; Price, 2012). We

then examined how well the three methods could extract coherent BOLD responses across

three adjacent slices in each participant’s left motor cortex.

Participants

Thirty native speakers of Spanish took part in the experiment (20 females, 10 males,

mean age around 22). Participants were students at the University of La Laguna, and

received course credit or were paid 10 Euro. Twenty-nine participants were right-handed.

The study was conducted in compliance with the declaration of Helsinki, and all par-

ticipants provided informed consent in accordance with the protocol established by the

Ethics Commission for Research of the university of La Laguna (Comité de Ética de la

Investigación y Bienestar Animal).

Experimental setup and procedure

Two stimuli were used in the task: First, an image which participants were asked to

name aloud, and second, a fixation cross (’+’) which indicated rest (see Figure 3 for an

overview). Twenty-seven pictures were selected from an image database that contained

standardized line-drawings that were normed on various aspects (Szekely et al., 2004).

Only those images were selected that had names that were consistently produced across

participants in the norming study (i.e., those with > 90% name-agreement).

Stimuli were presented in a slow event-related design, where a stimulus was presented

for 0.5 s followed by an ISI blank screen for 12 s plus an additional jitter period. The

duration of the jitter period was randomly chosen without replacement from a uniform

distribution of 36 times from 0 to 1855 ms in steps of 53 ms. This method of stimuli

presentation complies with the requiremens of the slice-based method (see Figure 2 for
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further details). Stimulus presentation was directly synchronized with the MRI machine.

The Experiment involved three consecutive runs. In each run, 36 stimuli were pre-

sented, of which half were pictures and half were rest. In each run, nine different pictures

were randomly selected and which were presented twice. Different pictures were selected

for each run, and all twenty-seven pictures were presented in the experiment. For each

run, the order of the stimuli was fully randomized on a by-participant basis. Stimulus

presentation was controlled by Neurobs Presentations (v14). Participants in the scanner

viewed the stimuli with MRI compatible goggles made by VisuaStim. These goggles

provide an image resolution of 800 by 600 pixels at 60 Hz.

MRI acquisition parameters

MR-images were acquired using a 3T Signa Excite scanner (General Electric, Milwau-

kee, WI, USA) using a standard transmit/receive 8 channel gradient head coil. Head

movement was strenuously avoided by fixating each participant’s head with spongepads

inside the coil. T2*-weighted images were obtained using standard Gradient Echo, Echo

Planar Imaging (EPI) sequences.

Each run started with 10 dummy volumes that allowed for steady-state tissue mag-

netization. Each volume contained 36 slices that were acquired top-down, axially and

interleaved. Slice thickness was 3.7 mm with 0.3 mm gap. The FOV was 256 x 256

mm, matrix size 64 x 64, resulting in 4 x 4 x 4 mm isometric voxels. TR was 1908 ms,

echo time (TE) 21.6 ms, and the flip angle 75◦. This unusual TR was chosen because it

was the fastest TR possible in the context of the other parameter settings and therefore

would generate the maximum amount of data. In addition, 1908 is a multiple of 36 and

this simplifies determining the slice acquisition times and stimulus presentation times.

In each run 255 volumes were collected and lasted 8 minutes and 6 seconds.

Separate high resolution T1-weighted images were acquired using the 3D FSPGR
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sequence: TI/TR/TE: 650/6.8/1.4 ms, flip angle = 12◦, 196 slices, slice thickness 1 mm,

matrix 256 x 256, voxel size = 1 x 1 x 1 mm.

Pre-processing

Data pre-processing was minimal, and avoided any potential for temporal distortion of

the signal (see also Discussion). First, spikes in the intensity values in the 4D datasets

were removed using AFNI’s 3dDespike tool with default settings (Cox, 1996). Next,

each 4D data set was motion corrected using FSL MCFLIRT, and low frequency drifts

were removed with a high pass filter at 0.01 Hz (Smith et al., 2004). No smoothing

was performed. Each data set was then slice time corrected using the FSL slicetimer

function. Note that the slice time corrected data set was only used to extract data for

the FIR with STC technique. Other techniques used the uncorrected data set.

BOLD signal extraction from left motor cortex

The minimally pre-processed datasets were then used to identify those voxels strongly

activated during the picture naming task. We used the standard FSL FEAT procedure

to detect activated voxels (Jenkinson et al., 2012). Precise picture naming onsets were

extracted from the participant-specific Presentation log files. The rest periods were not

explicitly modeled (Pernet, 2014). The expected HRF was modeled as a double gamma

function with default parameters. We included the temporal derivative in the design

matrix to ensure improved detection of signals that were slightly temporally delayed.

Statistical modeling was performed in the context of the GLM. We only analyzed the

first run of each participant.

We were specifically interested in three activated voxels on adjacent slices in each

participant’s left motor cortex. To identify these three voxels we first created a mask of

each participant’s left precentral gyrus using the lateralized Harvard-Oxford probabilistic
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atlas (Desikan et al., 2006). We manually removed any medial voxels included in the mask

(e.g., SMA, pre-SMA) such that the mask only covered the lateral areas of the brain.

Next we identified for each participant’s first run the voxel with the maximum t-value

in the masked signal detection map, which corresponds to the voxel with the maximum

t-value in the left motor cortex during the first run for a given participant. We then chose

the voxel directly above (+z) and below (-z) this maximally activated voxel, resulting in

thee voxels with the same x and y coordinates but differing z values (and therefore on

adjacent slices). Finally, we extracted the raw BOLD time series from each participant’s

motion corrected and temporally filtered data set at the three voxels identified by the

procedure described above. This set of three vectors for every participant formed the

input to the thee techniques described above.

Specifically, we again examined the BOLD signals extracted from these three vox-

els in left motor cortex using the FIR without STC, FIR with STC, and Slice-Based

methods. The extraction was performed exactly as described above using the simulated

data. We examined the mean interslice correlation, the mean number of unique peaks,

the mean TTP, and the mean max t-value in the BOLD signal across the three slices for

all participants. We extracted the BOLD signal in these thee voxels in left motor cortex

at two temporal resolutions, the TR (1908 ms), and 1/2 TR (954 ms). We performed

statistical comparisons of these values on a by-participant basis.

Results

Simulation 1

Qualitatively, as can been seen in Figure 4, it seems that the Slice-Based method (right

most column) extracted the BOLD signals in closer correspondence with the ground-

truth signal (dashed line in all figures) than both the FIR methods. For the FIR without
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STC method (left most column), the pattern is that the three slices appear to be phase

shifted. This pattern is exactly what is expected under the standard volume creation

method when three slices sample the same hemodynamic response with a 1 s delay

(see Introduction). As also expected, this phase shift is reduced by the FIR with STC

method (middle column). A final observation is that the FIR based methods seem to

be detecting the BOLD signal with the same statistical significance as the Slice-Based

method, suggesting that the FIR based statistical modeling method is working well, and

that the problem in terms of temporal accuracy lies with the volume creation method.

These qualitative impressions were further confirmed in quantitative analyses of the

simulation data. At the lowest temporal resolution (top row Figure 4), the correlation

between the ground-truth signal and the mean detected signal across all slices was higher

for the Slice-Based method (r̄1 = 0.996), than for the FIR without STC (r̄1 = 0.862),

and FIR with STC (r̄1 = 0.917), suggesting an improved accuracy of around 16% for

the Slice-Based method relative to the FIR without STC method. Note that we do

not report any detailed statistics here due to the largely deterministic nature of the

simulations which led to all reported numerical differences here to be highly statistically

significant. In addition, the Slice-Based method revealed a more similar extracted BOLD

signal across the three slices. The mean interslice correction for the Slice-Based method

was significantly higher (r̄2 = 0.993) than for the FIR without STC (r̄2 = 0.816), and

FIR with STC (r̄2 = 0.986), suggesting a 21% improvement in accuracy for the Slice-

Based method. Note that this improved accuracy was preserved with increasing temporal

resolutions (the rows of Figure 4). Specifically, the correlation with the ground-truth

signal increased by 22% and 27% for the TR/6 and TR/12 temporal resolutions in the

Slice-Based method. Similarly, the interslice correlation increased by 18% and 17% for

the TR/6 and TR/12 temporal resolutions for the Slice-Based method.
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Simulation 2

A visual impression of Figures 5 and 6 suggested that the Slice-Based method was also

superior in detecting the relative timing of the two ground-truth hemodynamic responses

(dashed lines). This seemed to be the case independently of their temporal delay, and

independently of the temporal resolution. For example, although the FIR without STC

technique (top left, Figure 5) seemed to extract a hemodynamic response for the slices

1 and 2 (red and green lines) that seemed to arise earlier than the second hemodynamic

response for slice 3 (blue), neither the absolute nor the relative timing of these two

hemodynamic responses seemed to be correct, and the relative timing seemed increasingly

incorrect with increasing temporal resolution (top left Figure 6). By contrast, the Slice-

Based technique seemed to accurately capture both the absolute and relative timing.

Quantitatively, at a temporal resolution of TR/3 and a ground-truth temporal delay

of 3 time units (see top row Figure 5), the Slice-Based method detected a mean difference

of the HM value between the first and the second BOLD signal of exactly 3 (4 for the

first, 7 for the second signal), and 3.1 for TTP (6.2 for the first, 9.3 for the second

signal). The mean correlation with the first ground-truth signal was 1, while the mean

correlation with the second ground-truth signal was 0.99, suggesting a mean accuracy of

99.5%. The FIR without STC method detected a mean difference of the HM value of 1.5,

and a mean difference of 1.6 for the TTP value. The correlation with the mean ground

truth signal was 0.865, suggesting a 86.5% accuracy. Finally, the FIR with STC method

detected a mean difference of the HM value of 2.8, and a mean difference of 2.8 for the

TTP value. The correlation with the mean ground truth signal was 0.918, suggesting a

91.8% accuracy.

These accuracy values remained constant for decreasing temporal delays. At 2 and

1 units delay (middle and bottom rows of Figure 5), the Slice-Based method was 99.5%

accurate, while the FIR without STC and the FIR with STC were 86.6% and 91.2%
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accurate, respectively.

However, the accuracy values for the FIR based methods severely changed with in-

creasing temporal resolution caused by a poor correlation with the second ground-truth

signal. At a temporal resolution of TR/6 and a temporal delay of 3 units (see top row

Figure 6), accuracy for the FIR without STC dropped to 57.9%, and to 67.1% for the

FIR with STC. The Slice-Based method was 90.6% accurate. At 2 temporal units delay,

the FIR without STC method slightly increased to 66.2% accurate, the FIR with STC

method was 74.9% accurate, and the Slice-Based method was 95.7% accurate. Finally,

at 1 unit temporal delay, the FIR without STC was 66.2% accurate, the FIR with STC

was 81.8% accurate, and the Slice-Based method was 98.7% accurate.

Picture Naming data

Figure 7 provides an overview of the extracted BOLD signals for the three techniques in

the three voxels in left motor cortex for three representative participants from a single

imaging run with 18 picture naming stimuli. The visual impression of this figure is

that the Slice-Based method yielded BOLD signals across adjacent slices that are more

similar than those of the other two methods. In addition, it appeared that the BOLD

signals extracted by the Slice-Based method had fewer unique peaks than those of the

other methods. Figure 8 relied on the same data but BOLD signals are now extracted

at twice the temporal resolution (0.5 TR versus 1 TR). Here we saw a similar pattern

where the Slice-Based method yielded smoother signals that appeared similar across the

three slices. A final observation was that the maximum t-values appeared lower for the

Slice-Based method than for the other methods.

As can be seen in Figures 9 and 10, these visual impressions were largely confirmed

by statistical comparisons. For the standard TR resolution (see Figures 7 and 9, panel

A), the mean interslice correlation across all 30 participants differed between the Slice-
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Based method and the FIR without STC method (t(29) = 4.65, p < 0.001), suggesting

higher mean interslice correlations in the Slice-Based method (0.83 vs 0.69). In addition,

the interslice correlation for Slice-Based method differed from the FIR with STC method

(t(29) = 6.63, p < 0.001), indicating higher interslice correlations in the Slice-Based

method (0.83 vs 0.35). Finally, the interslice correlation differed between the FIR without

STC and FIR with STC (t(29) = 5.00, p < 0.001), revealing a higher interslice correlation

in FIR without STC than with STC (0.69 vs 0.35).

Similarly, the mean number of unique peaks (see Figures 7 and 9, panel B) differed

between the Slice-Based method and the FIR without STC method (t(29) = 4.00, p <

0.001), suggesting a lower mean number of unique peaks for the Slice-Based compared

to the FIR without STC method (1.5 vs 2 peaks). Furthermore, the mean number of

peaks differed between the Slice-Based method and the FIR with STC method (t(29) =

5.75, p < 0.001), indicating a lower number of mean peaks for the Slice-Based than the

FIR with STC method (1.5 vs 2.3). Finally, the mean number of peaks differed between

the FIR with and without STC (t(29) = 2.34, p < 0.03), yielding a lower mean number

of peaks in the FIR without STC method (2 vs 2.3).

The mean TTP value (see Figures 7 and 9, panel C) also differed between Slice-

Based and the FIR with STC method (t(29) = 2.81, p < 0.009), suggesting an earlier

TTP for the Slice-Based compared to the FIR with STC method (4.28 vs 4.60 s). Other

comparisons did not reach significance.

Finally, the mean maximum t-value in the time course of the BOLD signal (see

Figures 7 and 9, panel D) differed between the Slice-Based and the FIR without STC

methods (t(29) = 6.83, p < 0.001), suggesting a higher t-value for the FIR without STC

than the Slice-Based method (6.60 vs 8.60). Similarly, the FIR without STC differed

from the FIR with STC method (t(29) = 4.78, p < 0.001), indicating a higher t-value

for the FIR without STC than for the FIR with STC method (8.60 vs 6.76). Other
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comparisons did not reach significance.

A similar pattern of results was found for the high temporal resolution data (see

Figures 8 and 10). The mean interslice correlations (see Figures 8 and 10, panel A)

differed between the Slice-Based and the FIR with STC method (t(29) = 5.66, p < 0.001),

indicating a higher mean interslice correlation for the Slice-Based method (0.66 vs 0.34).

Similarly, the correlation differed between FIR without STC and the FIR with STC

methods (t(29) = 4.75, p < 0.001), pointing to a higher mean interslice correlation for

the FIR without STC method (0.62 vs 0.34).

The mean TTP (see Figures 8 and 10, panel C) differed between the Slice-Based and

the FIR without STC method (t(29) = 3.55, p < 0.002), indicating again an earlier TTP

for Slice-Based method (4.2 vs 4.74). Other comparisons did not reach significance.

Finally, the mean maximum t-value (see Figures 8 and 10, panel D) differed between

the Slice-Based and the FIR without STC method (t(29) = 6.10, p < 0.001), suggesting

higher maximum t-values for the FIR without STC method (7.09 vs 5.54). In addition,

the maximum t-value differed between FIR with and without STC (t(29) = 4.16, p <

0.003), indicating a higher t-value for the FIR without STC (7.09 vs 5.75).

Discussion

In the current study we evaluated a new framework for fMRI data analysis called Slice-

Based fMRI. The main purpose of the Slice-Based framework is to improve the temporal

accuracy by which the fMRI BOLD signal can be extracted from the data. The frame-

work relies on two core principles. First, it relies on a new method of volume creation.

Specifically, instead of the standard method of time-shifting slices into whole-brain vol-

umes, the Slice-Based method creates volumes in which all slices are acquired at the same

time point relative to a presented stimulus (see Figures 1 and 2). Second, the method
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relies on a non-standard statistical modeling approach to BOLD signal extraction. In

particular, whereas the standard method relies on a time-series approach in which a sin-

gle GLM is fitted to the data from an entire imaging run, the Slice-Based method relies

on a time point-by-time point approach in which separate statistical models are fitted at

each time point in epoched stimulus locked data. We have used simulated data to com-

pare the performance of the Slice-Based and standard methods in terms of their abilities

to recover the absolute timing of a ground-truth signal, and in terms of their abilities

to recover the relative time course properties of two temporally delayed ground-truth

signals. Real-world data was used to assess the expected similarity of BOLD signals

on three adjacent slices in left motor cortex during a language production task with 30

participants. Our results provide evidence that the Slice-Based method improves the

temporal accuracy by which the BOLD signal can be extracted from the data. In this

discussion section we touch upon a number of relevant issues.

Impact of volume creation method

In Simulation 1, we tested the situation in which a large patch of (fictitious) neural tissue

generated a series of uniform ground-truth hemodynamic responses when exposed to a

series of consecutively presented stimuli in a slow event-related design. This large patch

of tissue was covered by a number of slices that sampled the hemodynamic response in a

standard sequential fMRI fashion. We compared the Slice-Based technique against two

standard methods for BOLD signal extraction: FIR without STC and FIR with STC. In

this first simulation, we were interested in two issues: First, how well do the standard and

Slice-Based methods extract the absolute time course of the hemodynamic response, and

second, is the BOLD signal extracted between the slices similar as would be expected?

The data revealed that the FIR without STC method detected the ground truth signal

with approximately 82% accuracy, and the FIR with STC with approximately 87% accu-
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racy. The Slice-Based method detected the ground-truth signal with approximately 99%

accuracy. In addition, the interslice correlation for the FIR without STC was 83%, and

for the FIR with STC 98%. The Slice-Based method detected the interslice correlation

with 99% accuracy.

How can these differences in temporal accuracy between the three methods be ex-

plained? Consider, for example, the findings displayed in the top-row of Figure 4. Here

only three slices were used and the estimated ground-truth signal is represented by the

dashed line. In the FIR without STC method (top left), the BOLD signals extracted

across the three slices appear shifted in time, where the first slice (red line) appears later

than the second slice (green line) which in turn appears later than the third slice (blue

line). This state of affairs can be explained by the properties of the standard volume

creation method. Recall that in this method, volumes are created by time shifting slices

to a given reference slice. This means that at any time point in this epoch, slices within

a volume were not acquired at the same moment in time. Thus, at time point 1, data

for slice 1 was acquired 1 s earlier than that of reference slice 2, and data for slice 3

was acquired 1 s later than that of reference slice 2. The same is true for the other time

points. These temporal inaccuracies reveal themselves as phase shifts of the BOLD signal

for the respective slices in the epoch. This explains the temporal inaccuracy of the FIR

without STC method.

The FIR with STC method is designed to alleviate these phase shifts caused by the

volume creation method (Henson et al., 1999; Sladky et al., 2011). This method works

by reversing the phase shift of the signals to become more in line with an arbitrarily

chosen reference slice. In the FSL slicetimer function, the reference slice is by default the

middle slice in the series. The effect of the STC function can be clearly seen by comparing

the signals from the FIR without STC (left column) to those extracted in the FIR with

STC method (middle column). Specifically, it can been seen that whereas the green line
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(middle slice, reference) is not adjusted, the red and blue signals are adjusted to become

more like the green reference signal. Note that here the middle slice was a good choice for

a reference slice because it increased the mean correlation with the ground-truth signal.

However, it should be clear that this choice cannot be a-priori known, and hence, it is not

obvious that STC will necessarily lead to a better detection of the actual ground-truth

signal. If for example, the third slice (blue line) were chosen as a reference slice, the

mean correlation would have decreased.

Thus, signal detection in the standard method is hampered by the volume creation

method, and may be further hampered by the STC function. No such problems arise

in the Slice-Based method. This is because in the Slice-Based method, each volume in

the epoch contained slices that were all sampled at the same moment in time relative a

presented stimulus. Thus, at time point 1 in the epoch of the Slice-Based method (top

right), data for slice 1 was acquired at exactly the same moment in time relative to the

presentation of the stimulus as the data for slice 2 and slice 3. This method therefore

avoids phase shifts in the signal among the slices, and leads to highly consistent signals

across the three adjacent slices. This particular method of volume creation also means

that no STC is necessary for the Slice-Based data. In turn this leads to a highly accurate

detection of the absolute time course of the signal, and to a high degree of interslice

correlation. This is the case even under conditions of reduced power such as when the

temporal resolution is increased (middle and bottom row Figure 4).

In Simulation 2, we tested the situation in which two (fictitious) neural patches gener-

ated two ground-truth hemodynamic responses. As before, the hemodynamic responses

were generated by a series of presented stimuli, simulating a slow event-related fMRI

imaging run. Crucially, these two hemodynamic responses were systematically tempo-

rally delayed. The two neural tissues were sampled by a set of adjacent slices. Our

question was whether the standard and Slice-Based methods were able to recover the
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ground-truth temporal delays from the sampled BOLD signals. The data revealed that

the FIR without STC method detected the ground truth temporal delays with approxi-

mately 74% accuracy, and the FIR without STC with approximately 83% accuracy. The

Slice-Based detected the ground-truth temporal delays with approximately 97% accuracy.

The reason why the standard methods do not work well in Simulation 2 is the same

as for Simulation 1. The volumes at each time point in the epoch contain slices that

were not all acquired at the same moment in time (see Figure 5). As explained above,

this introduces phase shifts in the sampled signal and produces temporal distortions. In

turn this leads to a poor recovery of the ground-truth temporal delays in the standard

FIR without STC and with STC. By contrast, given that in the Slice-Based method

each volume in the epoch contains slices that were sampled at the same moment in time

relative to a presented stimulus, no temporal distortions occur. In turn this leads to the

accurate detection of the ground-truth temporal delays, and to a high mean correlation

with the time course of the two absolute signals. Note that both simulations were tested

under conditions of increasing temporal resolution, and that the Slice-Based maintained

high accuracy under such conditions.

Finally, we evaluated the standard and Slice-Based methods using real-world data

(see Figure 7). Specifically, we obtained fMRI data from 30 participants in a picture

naming task. Previous research has demonstrated that picture naming strongly relies

on activity in motor cortex (Murtha et al., 1999; Price, 2012). Assuming a similar

hemodynamic response in the portion of left motor cortex covered by three adjacent

slices, we asked the question of whether the three different techniques would be able to

detect consistent neural activity in the three adjacent slices. Our data revealed that the

interslice correlation was significantly higher in the Slice-Based method compared to the

other two methods. In addition, the mean number of unique peaks in the signal across

the three slices was consistently lower for the Slice-Based method than for the standard
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method. We found this result with a temporal resolution of the TR and with an increased

temporal resolution at 0.5 TR. This therefore suggests that the Slice-Based method also

extracts more consistent BOLD signals using real-world data.

The data presented in this report therefore reveal the limitations of the standard

method of volume creation and the required STC function. Combining the accuracy

values across all simulations, the FIR without STC detected the ground-truth signal with

mean accuracy of 76% (0.24 sd), and the FIR with STC 86% (sd 0.14). By contrast,

the Slice-Based method detected the ground-truth signals with an accuracy of 98% (sd

0.05). Thus, these data reveal that the Slice-Based method is about 22% more accurate,

and an order of magnitude more precise (smaller variance). For researchers interested in

extracting temporally accurate BOLD signals, the Slice-Based method offers a promising

alternative. We will discuss future applications of the method further below.

Impact of statistical method

The Slice-Based method not only differs from the standard method in terms of how

volumes are created, but also in terms of how the statistical modeling of the fMRI data

takes place. Were these two aspects confounded in the current results? We believe

not, given that the FIR basis functions of the standard method extracted the BOLD

signals with high statistical confidence. This means that the standard statistical methods

revealed a correct representation of the BOLD signal, and that the temporal inaccuracies

were introduced by the volume creation method. In other words, our results cannot be

taken as evidence that the method of statistically extracting the BOLD signal using FIR

basis functions was the reason for the temporal inaccuracy. The temporal accuracy in

the fMRI data is primarily determined by the volume creation method.

That being said, the statistical methods of extracting the BOLD signal did differ sub-

stantially between the two methods. It is therefore worthwhile to further explain these
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differences, and their implications for the interpretation of the results. Specifically, we

will argue that whereas the standard method yields effects of variables that reflect corre-

lations between the stimulus presentation scheme and the observed data, the Slice-Based

approach yields effects of variables that directly reflect differences in the fRMI signal

intensity values. These differences have important consequences for the interpretation of

the results.

As mentioned in the Introduction, in the standard method, BOLD signal extraction

relies on a time-series approach where data is fitted with a GLM (e.g., Bandettini et

al., 1993; Friston et al., 1994; Lindquist et al., 2009). In the design matrix of the GLM,

independent variables such as the FIR basis functions used in the current study represent

the time when a particular stimulus is present and absent (Dale, 1999; Josephs et al.,

1997; Serences, 2004). These time-varying variables are then fitted against the BOLD

fluctuations measured at each voxel. Effects of such variables therefore represent the

degree to which the stimulus presentation scheme (present and absent) correlated with

the observed data across time. For example, in the context of the current picture naming

experiment, a high t-value in a given voxel reflects a high degree of (partial) correlation

between the temporal patterning of turning on and off the picture stimulus and the

temporal increases and decreases in the observed BOLD signal intensities.

By contrast, in the time point-by-time point approach used by the Slice-Based frame-

work, independent variables represent Time with generally two levels (e.g., baseline vs

another timepoint in the epoch). An effect of a variable in this type of model represents

the degree to which the fMRI signal intensities statistically differ between the two levels

of the Time variable. For example, in the current picture naming experiment, a high

positive t-value at a given voxel and at a given time point indicates that fMRI signal

intensities were higher at that time point compared to the baseline values. In our exper-

iment, baseline values corresponded to the fMRI signal intensities observed during time
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point 1. Thus, there is a difference in interpretation of the extracted BOLD signal by

the standard and Slice-Based methods. Whereas in the standard time-series approach

the individual t-values indicate the degree of (partial) correlation between the stimulus

presentation scheme and the observed BOLD fluctuations across the whole imaging run,

the t-values in the time point-by-time point approach directly index differences in mea-

sured fMRI signal intensity values between a particular time point in the epoch and the

baseline.

The implication of such differences in the statistical modeling methods of fMRI data

are currently not well understood. Further research is clearly required. We are currently

investigating this issue in terms of the following questions. First, does basic signal de-

tection differ between the time-series and time point-by-time point approaches? What

is the effect of using different types of baselines within a time point-by-time point ap-

proach (Stark & Squire, 2001)? Can time point-by-time point approaches be applied to

blocked designs? Is prewhitening less of an issue in time point-by-time point approaches

(e.g., Woolrich et al., 2001)? Can the time point-by-time point approach more easily

accommodate new modeling techniques that can handle more complex random effect

structures (LME; e.g., Bates, 2005; Pinheiro & Bates, 2000)? Questions such as these

should elucidate the exact role of these types of analyses for fMRI research.

Impact of pre-processing

Current fMRI data analysis packages offer a wide range of different pre-processing options

to minimize the impact of noise on statistical modeling. For example, current standard

pre-processing tools include, among others, temporal filtering, motion correction, and

spatial smoothing. What impact do the different kinds of pre-processing options have

on the time course of the BOLD signal extracted by the Slice-Based method? We have

investigated this issue to some extent using the data from the picture naming experiment.
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Note that the data as they were presented above were minimally pre-processed, meaning

that only temporal filtering and motion correction tools were applied to the raw data.

No smoothing was applied. To examine the impact of various types of pre-processing

we created two additional data sets: One in which the raw data was only temporally

filtered, and one in which the data was temporally filtered, motion corrected, and 2D

smoothed at 5 mm FWHM. We will refer to these three additional data sets as the

no, minimally, and maximally pre-processed data sets, respectively. Note that we did

not apply any 3D smoothing because this would change signal intensities across slices

which would directly affect the temporal accuracy of the signal. All pre-processing tools

came from FSL (Jenkinson et al., 2012). We compared these three data sets in terms of

the interslice correlation (IC), number of unique peaks (UP), time to peak (TTP), and

maximum t-value (MAXT).

We found that the IC differed between the no pre-processing and the maximally

pre-processed set (t(29) = 2.94, p < 0.007), indicating increased interslice correlation

in the maximally pre-processed data set compared to the no pre-processing set (0.83

vs 0.89). In addition, the UP differed between the no and the minimally pre-processed

set (t(29) = 2.41, p < 0.03) due to a lower number of peaks in the latter set (1.6 vs

1.5). Similarly, the UP differed between the minimally and the maximally preprocessed

set (t(29) = 2.25, p < 0.04) due to a lower number of peaks in the latter set (1.5 vs

1.4). The TTP differed between the no and the minimally pre-processed set (t(29) =

2.28, p < 0.03) indicating a later TTP in the minimally pre-processed set (4.1 vs 4.3

s). Furthermore, the maximum t-value of the BOLD time course differed between the

not pre-processed and the maximally pre-processed data sets (t(29) = 5.13, p < 0.001)

indicating higher t-values in the maximally pre-processed set (6.5 vs 7.5). Finally, the

maximum t-value differed between the minimally and the maximally pre-processed data

sets (t(29) = 3.97, p < 0.001), indicating increased t-values in the latter set (6.6 vs 7.5).
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These analyses show that different types of pre-processing tools impacted various

measures associated with the time course of the BOLD signal extracted with the Slice-

Based method. However, it is important to point out that these analyses do not show

the impact of pre-processing on the temporal accuracy of the extracted BOLD signal. In

other words, although it is clear that pre-processing tools impacted the time course of

the extracted BOLD signal, it remains unclear whether such pre-processing tools actually

improve or hamper the temporal accuracy of the BOLD signal extracted with the Slice-

Based method. Determining this relationship between different types of pre-processing

tools and the Slice-Based method goes beyond the goals of the current study. Future

studies that rely on simulated ground-truth signals should be able to resolve this issue.

Implications

The Slice-Based framework for fMRI data analysis has the ability to extract BOLD signals

for the whole-brain with a high temporal accuracy and at a very high temporal resolution.

The method has implications for at least three different fields of research. First, in event-

related fMRI studies, extracted BOLD signals for different stimulus conditions may be

used to make inferences about the underlying neural processes (e.g., Friston et al., 1998;

Josephs et al., 1997; Toni et al., 1999). For such studies, extracting a more temporally

accurate and higher temporal resolution BOLD signal may enable more fine grained

comparisons. Similarly, the improved accuracy and temporal resolution of the Slice-

Based method may lead to more accurate functional connectivity maps in task-based

functional connectivity studies (Biswal et al., 1995; Rissman et al., 2004). However,

both these types of studies should be aware of the limitations of using the BOLD signal

to index neural activity. Although many studies now show that BOLD signals index

localized neural activity in the brain, the precise dynamics of the BOLD signal has been

shown to vary across different regions of the brain, and even within the same region across
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different participants (e.g., Logothetis & Wandell, 2004). In addition, a substantial body

of research has examined the limits to which experimentally induced temporal delays in

neural activity can be recovered from the observed fMRI BOLD signal (e.g., Formisano

& Goebel, 2003; Katwal et al., 2013; Kim et al., 1997; Kruggel & von Cramon, 1999;

Menon et al., 1998; Menon, 2012; Miezin et al., 2000; Ollinger et al., 2001). Thus,

although the Slice-Based method can extract BOLD signals at a theoretical maximum

temporal resolution that is on the order of tens of milliseconds, researchers should also

be aware of the limitations of using the dynamics of the BOLD signal as a proxy for the

dynamics of neural activity.

Finally, the current results have implications for studies of the mechanisms underlying

neuro-vascular coupling (Attwell & Iadecola, 2002; Hillman, 2014; Logothetis & Wandell,

2004; Uludağ & Uğurbil, 2015). These studies have relied on the BOLD signal to examine

the impact of neural activity on vascular changes. These studies have often relied on

optical imaging methods to study the temporal dynamics of the BOLD signal (e.g.,

Chen et al., 2011; Peppiatt et al., 2006). Optical imaging does not have the temporal

resolution limitations that are common to MRI. However, optical imaging studies are

limited to the study of BOLD signals in the superficial vasculature of the cortex due

to the low penetrating depth of light used in the optical techniques. By contrast, the

Slice-Based technique permits the simultaneous extraction of highly accurate and high

temporal resolution BOLD signals from both cortical and subcortical areas of the brain.

This may therefore permit a more general view of of how vascular responses are affected

by neural activity.

Relationship with previous studies

Previous studies in fMRI data analysis have suggested that the temporal resolution of the

BOLD signal may be improved by so-called jittering of stimulus presentations (e.g., Dale,
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1999; Josephs et al., 1997; Price et al., 1999; Toni et al., 1999). In these studies, stimuli

are presented at variable time intervals along the course of the experiment. This method

of stimulus presentation then allows for FIR basis functions to extract a higher temporal

resolution BOLD signal. In the current study, stimulus presentation is also jittered since

stimulus presentation must be in-phase with the slice acquisitions. However, the novel

aspect of the current study is not that the temporal resolution of the BOLD signal can

be improved by a jittered stimulus presentation method. Instead, the novel aspect of the

current study lies in the different method of creating whole-brain volumes. A primary

requirement of this new method of creating whole-brain volumes is that stimuli must

be presented in-phase with the slice-acquisitions (See Figure 2). This volume creation

method then leads to whole-brain volumes that contain slices that are all acquired at

the same point in time relative to a presented stimulus. A by-product of this method

is that the volumes are available at a much higher temporal resolution. Thus, although

previous studies have improved the temporal resolution of the BOLD signal by using

jittered stimulus presentation, these studies relied on the standard method of volume

creation, and therefore, as we have attempted to show in the current study, extracted

BOLD signals at a poor temporal accuracy. The novel aspect of the current study

is therefore not the improved temporal resolution through the jittered presentation of

stimuli, but rather the improved temporal accuracy and temporal resolution of BOLD

signal extraction due to the novel method of volume creation.

Limitations

The slice-based method currently has several limitations. First, the method requires the

presentation of a large number of stimuli. Increasing the temporal resolution essentially

means distributing a number of collected datapoints across an increasingly larger number

of timepoints. This means that in order to attain a sufficient level of statistical power,
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a sufficiently large number of datapoints are required. This can be achieved by increas-

ing the number of stimuli per participant, or by increasing the number of participants

per experiment and doing group-based analyses. The number of available datapoints

also immediately bears on the issue of the maximum attainable temporal resolution,

because at very large number of timepoints (i.e., a very high temporal resolution), in-

sufficient data may be available for fitting a given statistical model. By lowering the

number of timepoints (i.e., a lower temporal resolution), more datapoints per timepoint

are available, enabling the fitting of statistical models. Thus, overall, the higher temporal

resolution available in the slice-based method requires more stimuli per participant, and

more participants per experiment.

Another limitation is that the slice-based framework requires more statistical tests

than the standard time-series approach. In the Slice-Based framework, a statistical

model is fitted to each voxel in the brain, at each timepoint. This means that the

number of statistical tests that is performed in the slice-based approach is equal to the

number of relevant voxels in the brain times the number of timepoints in the epoch. The

large number of statistical tests raises concerns about the issue of multiple comparisons.

Although in the current study we did not employ sophisticated correction techniques,

we intent to implement more sophisticated corrections in future implementations of the

method. One possibility is to expand the current cluster-correction techniques to work

with 4D data. Another is to expand methods developed for electrophyiological data to

work with fMRI data (Guthrie & Buchwald, 1991; Maris & Oostenveld, 2007).

Conclusions

To conclude, a well known limitation of the fMRI technique is that fMRI BOLD signals

are extracted from the data with poor temporal accuracy and temporal resolution. We

have shown that these aspects of fMRI data are in part due to the volume creation
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method used in current fMRI data analytic approaches. To address these limitations, we

have proposed a new Slice-Based data analytic framework that improves the temporal

accuracy and temporal resolution of the fMRI BOLD signal. The new framework achieves

this improved accuracy and resolution by creating whole-brain volumes that contain slices

that are all acquired at the same time point relative to a presented stimulus, and by using

non-standard statistical modeling techniques to extract the BOLD signal. We have shown

that the new method is more accurate and more precise than the currently available FIR

standard methods in the context of both simulated and real-world data. Because this is

a new technique, our evaluation was necessarily limited and there are many outstanding

questions. However, we think the new technique provides a new alternative to the analysis

of fMRI data and may improve our understanding of the neural activity and its associated

vascular changes in both health and disease.
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Figures

Figure 1: Current standard method for creating whole-brain volumes from raw fMRI
data. Panel A shows an imaging run where a set of three slices are sequentially sampled
at well defined points in time. Panel B reveals the same data, reorganized to illustrate
that at no sampled time point information from the whole-brain is available, requiring
data transformation. Panel C shows the standard solution, where slices are time-shifted
to new positions in time (arrows indicate shift direction), using the middle slice as an
arbitrary referent. Panel D shows the final transformed data, where whole-brain volumes
are available every TR. Note how the final volumes contain slices acquired at different
points in time, and how time points where data was sampled are no longer used.

48

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 5, 2016. ; https://doi.org/10.1101/073437doi: bioRxiv preprint 

https://doi.org/10.1101/073437
http://creativecommons.org/licenses/by-nc-nd/4.0/


Slice-based fMRI

Figure 2: Slice-based method for creating whole-brain volumes from raw fMRI data.
Panel A shows an imaging run where again three slices are sampled sequentially. Three
stimuli S1, S2, and S3 of the same experimental class are presented during the run. Panel
B shows that these stimuli are presented in-phase with slice acquisitions: S1 is presented
in-phase with acquisition of slice 1, S2 with slice 2, and S3 with slice 3. Panel C shows
how whole-brain volumes are created. Slices acquired at the same point in time relative
to the onset of a stimulus can be combined (e.g., those highlighted in red and magenta).
Panel D shows the final transformed data, where whole-brain volumes are available that
only contain slices that are acquired at the same moment in time relative to a presented
stimulus, and where whole-brain volumes are available at the sampling frequency (here
TR/3).
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Figure 3: Temporal structure of the picture naming task used in the experiment. Stimuli
consisted of either a picture or a fixation point that was presented for 0.5 s. Each stimulus
presentation was followed by a blank screen that lasted for 12 s plus an additional jitter
period. The jitter period was randomly selected without replacement from a uniform
distribution of times that coincided with the slice acquisition times and ranged from 0
to 1855 ms in steps of 53 ms (see text for further details). Participants were instructed
to name aloud presented pictures and remain quiet (i.e., rest) for presented fixation
points. The order of stimuli presentation was fully randomized, and was different for
every participant.
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Figure 4: Detection of the absolute timing of a single ground-truth signal (black dotted
line). The same signal is sampled by several adjacent slices (colored lines). Examples from
signal extraction using the FIR method without STC (left column), with STC (middle
column) and the Slice-Based method (right column) at a temporal resolution of the TR
divided by 3 (top-row), by 6 (middle row), and by 12 (bottom row). X-axis represent time
in arbitrary units, and y-axis represents t-values obtained from model fitting using the
FIR and slice-based methods. Figure titles list the mean correlation between the ground-
truth signal and the signal from each slice (r̄1), and the mean interslice correlation (r̄2)
across all simulations. Each row contains data from a single simulation. Note how the
slice-based method more accurately extracts the absolute timing of the BOLD signal (see
text for further details).

51

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 5, 2016. ; https://doi.org/10.1101/073437doi: bioRxiv preprint 

https://doi.org/10.1101/073437
http://creativecommons.org/licenses/by-nc-nd/4.0/


Slice-based fMRI

FIR NO STC
HM=(3.5,5);  TTP=(5.6,7.2)

1 4 7 10 13 16

−
5

0
5

10
15

20
25

30
t−

va
lu

es
te

m
p.

 r
es

. =
 T

R
/3

, s
ig

na
l 3

 u
ni

ts

FIR STC
HM=(3,5.7);  TTP=(5.5,8.3)

1 4 7 10 13 16

−
5

0
5

10
15

20
25

30

SLICE−BASED
HM=(4,7);  TTP=(6.3,9.3)

1 4 7 10 13 16

−
5

0
5

10
15

20
25

30

HM=(3.5,4);  TTP=(5.7,6.2)

1 4 7 10 13 16

−
5

0
5

10
15

20
25

30
t−

va
lu

es
te

m
p.

 r
es

. =
 T

R
/3

, s
ig

na
l 2

 u
ni

ts

HM=(3,5);  TTP=(5.5,7.3)

1 4 7 10 13 16

−
5

0
5

10
15

20
25

30
HM=(4,6);  TTP=(6.3,8.3)

1 4 7 10 13 16

−
5

0
5

10
15

20
25

30

Time units

HM=(3.5,3);  TTP=(5.6,5.2)

1 4 7 10 13 16

−
5

0
5

10
15

20
25

30
t−

va
lu

es
te

m
p.

 r
es

. =
 T

R
/3

, s
ig

na
l 1

 u
ni

t

Time units

HM=(3,3.9);  TTP=(5.5,6.3)

1 4 7 10 13 16

−
5

0
5

10
15

20
25

30

Time units

HM=(4,5);  TTP=(6.2,7.2)

1 4 7 10 13 16

−
5

0
5

10
15

20
25

30

Figure 5: Detection of the relative timing of two ground-truth signals (black dotted
lines) whose relative onsets are delayed by 1 TR (top-row), 2/3 TR (middle row), or 1/3
TR (bottom row). Examples from signal extraction using the FIR method without STC
(left column), with STC (middle column) and the Slice-Based method (right column) at
a fixed temporal resolution of the TR divided by 3. Each row contains data from a single
simulation. Figure titles list the mean timepoint at which the curve reaches Half of the
Maximum amplitude (HM), the mean Time To Peak (TTP), and the mean correlation
of the extracted BOLD signal for the first and second ground-truth signal (r̄1) across
all simulations. Note how the slice-based method more accurately extracts the relative
timing of the two BOLD signals.
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Figure 6: Detection of the relative timing of two asynchronized ground-truth signals
(black dotted lines) across several slices (colored lines) at a fixed temporal resolution of
TR/6. Each row contains data from a single simulation. Again note how the slice-based
method more accurately detects the relative timing of the two BOLD signals.
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Figure 7: Method comparison using real data from left motor cortex activity obtained
using the picture naming task. BOLD signal extracted using the FIR method without
Slice Time Correction (left column), with Slice Time Correction (middle column) and
the Slice-Based method (right column) at a fixed temporal resolution of the TR (1908
ms). Signals are extracted from three voxels that appear on adjacent slices (see legend)
in the left motor cortex in three representative subjects (top, middle, and bottom row
for subjects 17, 23, and 24, respectively). Figure titles list the interslice correlation (r̄2),
the mean number of Unique Peaks (UP), and the mean Time To Peak (TTP) for the
extracted signals in the graph. Note how the slice-based method yields more temporally
coherent signals from adjacent slices.
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Figure 8: Method comparison using real data from left motor cortex activity obtained
using the picture naming task. BOLD signal extracted using the FIR method without
Slice Time Correction (left column), with Slice Time Correction (middle column) and
the Slice-Based method (right column) at a fixed temporal resolution of 1/2 TR (954
ms). Other aspects identical to those used to obtain Figure 7. Note how despite an
obvious drop in statistical power due to the reduced number of data points available per
time point, the slice-based method yields more temporally coherent signals from adjacent
slices.
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Figure 9: Graphical presentation of the overall relationship of the extracted BOLD sig-
nals from three adjacent slices covering the left motor cortex. The relationship was as-
sessed using the mean inter slice Pearson Correlation (A), mean number of Unique Peaks
(B), mean Time To Peak (C), and mean Max t-value (D) for the FIR, FIR with Slice
Time Correction, and Slice-Based methods. Mean values obtained from 30 participants
performing the picture naming task at TR resolution (1908 ms). The slice-based method
yields improved inter-slice correspondence, suggesting improved temporal accuracy. See
text for details.

56

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 5, 2016. ; https://doi.org/10.1101/073437doi: bioRxiv preprint 

https://doi.org/10.1101/073437
http://creativecommons.org/licenses/by-nc-nd/4.0/


Slice-based fMRI

FIR FIR STC SLICE−BASED

A

M
ea

n 
P

ea
rs

on
 C

or
re

la
tio

n

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

*
*

*

FIR FIR STC SLICE−BASED

B

M
ea

n 
U

ni
qu

e 
P

ea
ks

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

*

FIR FIR STC SLICE−BASED

C

Method

M
ea

n 
T

im
e 

To
 P

ea
k

0
1

2
3

4
5

6

*
*

FIR FIR STC SLICE−BASED

D

Method

M
ea

n 
M

ax
. t

−
va

lu
e

0
2

4
6

8
10

*
*

Figure 10: Graphical presentation of the overall relationship of the extracted BOLD
signals from three adjacent slices covering the left motor cortex. The relationship was
assessed using the mean inter slice Pearson Correlation (A), mean number of Unique
Peaks (B), mean Time To Peak (C), and mean Max t-value (D) for the FIR, FIR with
Slice Time Correction, and Slice-Based methods. Mean values obtained from 30 partici-
pants performing the picture naming task at 0.5 TR resolution (954 ms). The slice-based
method yields improved inter-slice correspondence, suggesting improved temporal accu-
racy. See text for details.
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