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Abstract1

1. In this paper we propose an extension of the N-mixture family of models2

that targets an improvement of the statistical properties of the rare species3

abundance estimators when sample sizes are low, yet of typical size in tropical4

studies. The proposed method harnesses information from other species in an5

ecological community to correct each species’ estimator. We provide guidance6

to determine the sample size required to estimate accurately the abundance7

of rare tropical species when attempting to estimate the abundance of single8

species.9
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2. We evaluate the proposed methods using an assumption of 50m radius10

plots and perform simulations comprising a broad range of sample sizes, true11

abundances and detectability values and a complex data generating process.12

The extension of the N-mixture model is achieved by assuming that the de-13

tection probabilities of a set of species are all drawn at random from a beta14

distribution in a multi-species fashion. This hierarchical model avoids having15

to specify a single detection probability parameter per species in the targeted16

community. Parameter estimation is done via Maximum Likelihood.17

3. We compared our multi-species approach with previously proposed multi-18

species N-mixture models, which we show are biased when the true abundances19

of species in the community are less than seven individuals per 100ha. The beta20

N-mixture model proposed here outperforms the traditional Multi-species N-21

mixture model by allowing the estimation of organisms at lower densities and22

controlling the bias in the estimation.23

4. We illustrate how our methodology can be used to suggest sample sizes24

required to estimate the abundance of organisms, when these are either rare,25

common or abundant. When the interest is full communities, we show how26

the multi-species approaches, and in particular our beta model and estimation27

methodology, can be used as a practical solution to estimate organism densities28

from rapid inventories datasets. The statistical inferences done with our model29

via Maximum Likelihood can also be used to group species in a community30

according to their detectabilities.31

Keywords: Maximum Likelihood estimation, Sample size estimation, Community32

Abundance Models, Tropical Species, Hierarchical models, Data cloning.33
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1 Introduction34

Unbiased abundance and occupancy estimates are of paramount value for making in-35

ferences about ecological processes and making sound conservation decisions (Hubbell,36

2001; Leibold et al., 2004; Margules & Pressey, 2000). To date, quantitative ecologists37

have proposed several statistical methods to estimate species’ detection probabilities38

and use these to correct the occupancy or abundance estimates (Denes et al., 2015).39

Our study was motivated by the attempt to use these novel models to estimate the40

abundance of rare species in tropical communities. In these communities, it is well-41

known that abundance distributions are typically characterized by long right tails42

with few abundant species and many rare ones (see Hubbell, 2001). Such high pro-43

portion of rare species in the overall community makes it very difficult to obtain44

enough detections during field censuses for appropriate estimation of both abundance45

and detection probability for many, if not the majority of tropical species. When46

we extensively tested via simulations these recent methodologies, we found persistent47

bias in estimates of low abundances that corresponded to abundance ranges previ-48

ously not dealt with in temperate forest studies yet common in neotropical studies49

(see also Yamaura, 2013; Yamaura et al., 2016). As an answer to this problem, in50

this study we present an alternative, community-based abundance estimation ap-51

proach that markedly improves these estimates. Our method is widely applicable in52

communities with similarly abundance patterns.53

The N-mixture models aim to tackling the problem of the bias in abundance54

estimation induced by species differences in detection probabilities (MacKenzie et al.,55

2002; Martin et al., 2005; Royle & Dorazio, 2008). It uses spatially and temporally56

replicated counts in which, the counts of species y are binomially distributed with N57

being the total number of individuals available for detection and p the probability of58

detecting an individual of that species (Royle, 2004). The model is hierarchical be-59

cause the abundance N is assumed to be a latent, random process adopting a discrete60
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probability distribution (e.g. Poisson). Inferences about the abundance of the species61

of interest therefore rely on estimating the detection probability and the underlying62

parameters of the distribution giving rise to N (Royle, 2004). N-mixture models were63

developed to estimate occupancy/abundance while accounting for imperfect detection64

of single species (Royle, 2004). Multi-species models have been proposed to deal with65

estimating the abundance and occupancy of rare species (see Iknayan et al., 2014;66

Denes et al., 2015, for a review). These models have the advantage to “borrow infor-67

mation” from abundant species in the community to estimate parameters of rare ones68

(Zipkin et al., 2009; Ovaskainen & Soininen, 2011; Yamaura et al., 2016, 2011; Chan-69

dler et al., 2013; Barnagaud et al., 2014). Most of the research and advances in the70

proposition of multi-species models has focused on estimating occupancy (Iknayan71

et al., 2014; Denes et al., 2015), even though, studying the abundance and rarity of72

species is one of the main focuses in ecology (Yamaura et al., 2016; Hubbell, 2001;73

McGill et al., 2007).74

In recent multi-species abundance models, both abundance and detection prob-75

abilities are assumed to be normally distributed random effects governed by the com-76

munity’s “hyper parameters” (Iknayan et al., 2014). For that reason they have been77

named community abundance models, because they focus in describing the charac-78

teristics of the entire community from spatially and temporally replicated counts or79

detections(Yamaura et al., 2012, 2011, 2016). The main assumption behind the com-80

munity abundance models is that groups of species in the community might share81

characteristics that make their abundance and detection probability to be correlated82

(Yamaura et al., 2011, 2012, 2016; Sauer & Link, 2002; Barnagaud et al., 2014; Ruiz-83

Gutiérrez et al., 2010). These type of abundance community models have been useful84

for estimating diversity properties of the species assemblages while accounting for85

imperfect detection (Yamaura et al., 2011, 2012).86

While the assumption of normally distributed logit transformed random effects87

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 16, 2016. ; https://doi.org/10.1101/073577doi: bioRxiv preprint 

https://doi.org/10.1101/073577


5

for detection probabilities of species across the community is statistically convenient,88

other probability distributions might have properties that relate more directly. For89

example, (Martin et al., 2011) proposed a single species abundance estimation model90

that allowed individuals within a species to vary in detection probability. They as-91

sumed that detection probabilities in a species were described by a beta distribution92

which naturally ranges between [0-1]. The latter assumption is convenient for com-93

munity abundance models as well, because it eliminates the need of the logit trans-94

formation. Further more, (Dorazio et al., 2013) showed that the beta distribution can95

be parametrized to reflect the mean detection probability among species and their96

degree of similarity making the two parameters that determine the shape of the beta97

distribution ecologically interpretable.98

In this study, we: (1) increase the simulation scenarios presented in Yamaura99

(2013) to provide a full baseline for the sampling design for ecologists that want to100

estimate the abundance of tropical organisms using N-mixture models, (2) propose101

and alternative multi-species abundance model that uses a beta distribution for the102

random effects of detection probability instead of a normal distribution and (3) pro-103

pose a maximum likelihood approach for multi-species abundance estimation using104

data cloning (4) compare our alternative multi-species abundance model to one of the105

previously proposed ones.106

1.1 The Model107

In the following section, after summarizing the widely used N-mixture models, we108

develop a multi-species model extension that allows a more accurate estimation of the109

abundance of rare species. Our approach differs from other multi-species abundance110

estimation by assuming that detection probabilities in a community are product of111

a beta distribution instead of a logit transformation of normally distributed random112

effects.113
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Using an N-mixture model, we usually let yij be the number of individuals114

for a given species in the i − th sampling unit (a point count) and j − th replicate115

of the sampling unit (or visit to the point count). Let p be the individual detection116

probability for that species. Finally, let ni be the fixed number of individuals available117

for detection in the i− th sampling unit. If we assume that the counts are binomially118

distributed, the likelihood of the counts (yij) for a given species is119

L(yij;ni, p) =
r∏
i=1

t∏
j=i

(
ni
yij

)
pyij(1− p)ni−yij .

for i = 1, 2, 3 . . . r and j = 1, 2, 3 . . . t, where r is the total number of point counts120

sampled and t is the number of times each point count was visited (Royle, 2004).121

The N-mixture model assumes that the number of individuals available for122

detection is in fact unknown and random. Thus, such number is considered to be a123

latent variable, modeled with a Poisson process with mean λ (the mean number of124

individuals per sampling unit). From here on, we write Ni ∼ Pois (λ), where we have125

used the convention that lowercase letters such as ni denote a particular realization126

of the (capitalized) random variable Ni. To compute the likelihood function, one127

then has to integrate the binomial likelihood over all the possible realizations of the128

Poisson process,129

L(yij;λ, p) =
r∏
i=1

∞∑
Ni=max(yi)

t∏
j=1

(
Ni

yij

)
pyij(1− p)Ni−yij e

−λλNi

Ni!
, (1)

where yi = {yi1, yi2, . . . , yit}. If the objective is to estimate the abundance of S130

species, the overall likelihood is simply written as the product of all the individual131

species’ likelihoods,i.e.,132

L(ysij;λ, p) =
S∏
s=1

r∏
i=1

∞∑
Nsi=max(ysi)

t∏
j=1

(
Nsi

ysij

)
pysijs (1− ps)Nsi−ysij e

−λsλNsi
s

Nsi!
, (2)
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where ysij is a three dimensional array of dimensions r × t × S, and both λ =133

{λ1, . . . , λS} and p = {p1, . . . , pS} are vectors of length S. In what follows, we will134

refer to the nsi’s as the latent, realized abundance and to the mean abundances,135

the λs’s simply as the “abundances”. To avoid the proliferation of parameters one136

could assume that all the ps come from a single probability model that describes the137

community-wide distribution of detection probabilities (Yamaura et al., 2011, 2012,138

2016; Sauer & Link, 2002; Barnagaud et al., 2014; Ruiz-Gutiérrez et al., 2010). These139

community-wide detection probabilities can be modeled with a beta distribution in140

which we let Ps ∼ Beta(α, β). The probability density function of the random detec-141

tion probabilities is then g(ps;α, β) = Γ(α+β)
Γ(α)Γ(β)

pα−1
s (1− ps)β−1.142

Following (Dorazio et al., 2013), we parameterize the Beta distribution as143

Beta(α = τp, β = τ(1 − p)) such that the parameters are related to biological pro-144

cesses. Here, p is the mean detection probability among species in the community145

and τ is a measurement of the similarity in detection probabilities (Dorazio et al.,146

2013).147

The overall likelihood function now integrates over all the realizations of the community-148

wide detection probabilities Ps:149

L(ysij;λ, p, τ) =

∫ 1

0

S∏
s=1

r∏
i=1

∞∑
Nsi=max(ysi)

t∏
j=1

(
Nsi

ysij

)
pysijs (1− ps)Nsi−ysij e

−λsλNsi
s

Nsi!

× Γ(α + β)

Γ(α)Γ(β)
pα−1
s (1− ps)β−1dps.

(3)

The usefulness of specifying the likelihood in this way is that in the case in which many150

species are rare, we can use the information on the abundant species to estimate the151
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detection probability, leaving the actual counts to estimate only the abundance of the152

species. Note that by integrating the beta process at the outmost layer of the model,153

we are following the sampling structure. When this approach is used and the integral154

is tractable, the resulting distribution is a multivariate distribution with a specific155

covariance structure (Sibuya et al., 1964). Thus, we expect our approach to result156

in a multivariate distribution of counts with a covariance structure arising naturally157

from the sampling design and the assumed underlying beta process of detectabilities.158

1.2 Maximum Likelihood Estimation159

One drawback of the beta-N-mixture and other models for multi-species abundance160

estimation is their computational complexity, which imposes a substantial numerical161

challenge for Maximum Likelihood (ML) estimation. Such problem is not unique to162

abundance estimation but to many other hierarchical models in ecology (Lele & Den-163

nis, 2009). For those reasons, parameter estimation in hierarchical models is usually164

performed under a bayesian framework (Cressie et al., 2009). To date however, many165

numerical approximations for obtaining the Maximum Likelihood Estimates (MLEs)166

for hierarchical models have been proposed (de Valpine, 2012). The “Data Cloning”167

methodology has proven to be a reliable approach to obtain the MLEs, hypothesis168

testing and model selection, as well as unequivocally measuring the estimability of169

parameters for hierarchical models (Lele et al., 2010; Ponciano et al., 2012). The170

method proposed by Lele et al. (2007, 2010) uses the Bayesian computational ap-171

proach coupled with Monte Carlo Markov Chain (MCMC) to compute Maximum172

Likelihood Estimates (MLE) of parameters of hierarchical models and their asymp-173

totic variance estimates (Lele et al., 2007). The advantage of using the data cloning174

protocol is that one only needs to compute means and variances of certain posterior175

distributions.176

Data Cloning proceeds by performing a typical Bayesian analysis on a dataset177
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that consists of k copies of the originally observed data set. In other words, to imple-178

ment this method, one has to write the likelihood function of the data as if, one had179

observed k identical copies of the data set. Then, Lele et al. (2007, 2010) show that as180

k grows large, the mean of the resulting posterior distribution converges to the MLE.181

In addition, for continuous parameters as λ, p, and τ , the variance covariance matrix182

of the posterior distribution converges to 1
k

times the inverse of the observed Fisher’s183

information matrix. Thus, the variance estimated by the posterior distribution can184

be used to calculate Wald-type confidence intervals of the parameters (Lele et al.,185

2007, 2010). The advantage of data cloning over traditional Bayesian algorithms is186

that while in Bayesian algorithms the prior distribution might have influence over the187

posterior distribution, in data cloning the choice of the prior distribution does not188

determine the resulting estimates. In our case, the hierarchical model is189

Y ∼ Binomial (N,P) = f(y|N = n,P = p) (Observation model),

N ∼ Pois (λ) = g(N;λ) (Process model),

P ∼ Beta (pτ, (1− p)τ) = h(P; p, τ) (Process model).

N and P are latent variables which are products of a stochastic process given by190

the Poisson and Beta distributions respectively. Furthermore, λ, and p, τ are seen as191

random variables themselves that have a posterior distribution π(λ, p, τ |Y). A typical192

Bayesian approach would sample from the following posterior distribution:193

π(λ, p, τ,N,P|Y) ∝ [f(y|N = n,P = p)g(N;λ)h(P; p, τ)]π(λ, p, τ),

where π(λ, p, τ) is the joint prior of the model parameters. This approach would yield194

many samples of the vector (λ, p, τ,N,P) and in order to sample from the marginal195
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posterior π(λ, p, τ |Y) oneneeds to look at the samples of the subset of λ, p, and, τ .196

The data cloning approach proceeds similarly, except one needs to sample from the197

following posterior distribution:198

π(λ, p, τ,N,P|Y)(k) ∝ [f(y|N = n,P = p)g(N;λ)h(P; p, τ)]k π(λ, p, τ).

The notation (k) on the left side of this equation does not denote an exponent but199

the number of times the data set was ”cloned”. On the right hand side, however, k200

is an exponent of the likelihood function. The MLEs of λ, p, and, τ are then simply201

obtained as the empirical average of the posterior distribution π(λ, p, τ |Y)(k) and202

the variance of the estimates are given by 1
k

times the variance of this posterior203

distribution.204

2 Methods205

2.1 Estimation for Single Species206

To determine the minimum sample size required for accurate estimation of the abun-207

dance of tropical species, we used a series of simulations where we varied the number208

of plots (r), visits to plots (t), mean number of individuals in a 100 ha plot (λ)209

and detection probability (p). We varied r between 5 and 50, t between 2 and 20,210

λ = 1, 2, 3, 4, 5, 7, 10, 15, 25, 40, 55, 65, 75, 85, 100 and p between 0.1 and 0.9. For each211

combination of parameters, we simulated 170 data sets and estimated λ and p using212

equation 1. In each simulation, we computed the relative bias of the abundance esti-213

mate by using, bias = λ̂−λ
λ

, where λ̂ is the MLE for a particular data set and λ is the214

true value of the parameter. Finally, we retained the mean bias for each combination215

of model parameters. We considered an acceptable bias to be lower than 0.1, which216
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is a 10% difference between the estimate and the true population density. All of the217

simulations were performed using R statistical software v.3.0.2 (R Core Team, 2013)218

and maximum likelihood estimation by maximizing the likelihood of eq (1) using the219

optim function with the Nelder-Mead algorithm. The R code used for simulations220

and maximum likelihood estimation is presented in the Appendix C.221

2.2 Assessing the Beta N-mixture Model performance222

To assess the Beta N-mixture Model performance we followed three steps: First, we223

simulated 1500 data sets under the model, compute the ML estimates of our model224

parameters each time, and then examine the distribution of the MLEs. The objective225

of this approach was to evaluate if the average of the distribution of ML estimates226

gets at the true parameter values and also, if the variability around those estimates227

is small. In a reality, data come from a much more complex process involving many228

variables and quantities. Therefore, we also tested the robustness of our model by229

simulating data from a complex, spatially explicit data-generating process. To do230

that, we simulated 500 datasets under a spatially-explicit model (see description be-231

low) and then estimated the abundances and detection probabilities using our model.232

We compared the performance of our model vis-à-vis a previously proposed multi-233

species abundance model (Yamaura et al., 2016). From here on, we refer to Yamaura234

et al. (2016)’s approach as the Normal N-mixture model. Finally, the third step of235

our performance assessment consisted in estimating the abundance of 26 species of236

neotropical dry forest birds using a perviously non-published dataset. The objective237

of this step was to illustrate the use of our model with a realistic scenario.238

2.2.1 Bias benchmark assessment239

To evaluate the bias of the Beta N-mixture model, we simulated species counts in a240

100 ha quadrant sampled using 25, 50 meter circular plots visited three times each.241
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We assumed that the community was composed by 15 species with mean number of242

individuals/100 ha of λ = 1, 2, 3, 4, 5, 7, 10, 15, 25, 40, 55, 65, 75, 85, 100. In the latter243

vector each value of λ represents the abundance of a single species. In each simulation244

we drew Nij individuals in each plot from a Poisson distribution with mean λi. We245

then simulated the detection process using a Binomial distribution with parameters246

Nij and pi. We varied mean detection probability by assuming p = 0.25, 0.5, 0.75 and247

τ = 4.5 (E[p] = 0.25, 0.5, 0.75;Var[p] = 0.03, 0.04, 0.03). Even though the variance248

seems small, the 2.5% and 97.5% quantiles of the three distributions range over a249

large portion of the [0,1] interval (quantiles 2.5 and 97.5: low = (0.01,0.68); mid =250

(0.1,0.89); high = (0.31,0.98)). For each type of community we simulated 500 data251

sets, and estimated λi, p and τ using data cloning. To determine the number of clones252

required to accurately get to the Maximum Likelihood Estimates of λi, p and τ we253

used one randomly generated data set and estimated the parameters cloning the data254

sequentially from 1 to 64 times (Lele et al., 2010). This allowed us to determine an255

adequate number of clones to get convergence of the k − th posterior mean to the256

MLEs. We used rjags v. 4.2.0 (Plummer, 2014) with two Markov chains allowing257

each chain to run for 14000 generations sampling every 10 generations and discarded258

the first 4000 iterations. For each type of community we estimated the relative bias259

((Estimated-True)/True) in λi, p and τ .260

2.2.2 Comparison to other community abundance models261

There are two essential differences between the Beta and Normal N-mixture models.262

The first one is that the Beta model treats abundance (the mean abundance, that263

is, see definition of the λ parameters above) as a fixed effects instead of random. As264

a result, the Normal N-mixture model has an extra hierarchy level than our model.265

Both models are hierarchical stochastic models where the binomial sampling model266

is the first hierarchy level, then, in both, the realized abundances (the N ’s) and the267

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 16, 2016. ; https://doi.org/10.1101/073577doi: bioRxiv preprint 

https://doi.org/10.1101/073577


13

detection probabilities are the inner hierarchies. The Normal N-mixture model goes268

one more level and assumes that the parameters λ governing the realized abundances269

N also come from a stochastic process governed itself by hyper-parameters. The270

second difference between our model and the Normal N-mixture model is the dis-271

tributional assumption giving rise to detection probabilities. In our model ps are272

assumed to be ps ∼ Beta(τp, τ(1−p)) and in the Normal model, ps = 1
1+e(−(ri))

where273

ri ∼ Norm(µ, σ2) which gives a Johnson’s SB distribution between 0 and 1. Besides274

these two model differences, Yamaura et al. (2016) use a Bayesian approach to fit275

their hierarchical model, while we use the method of Maximum Likelihood estima-276

tion. Much discussion exists regarding the merits of each inferential approach for277

hierarchical models in Ecology (see for instance Lele & Dennis, 2009; Cressie et al.,278

2009). Here we limit ourselves to compare the results from Yamaura et al. (2016)’s279

estimation approach, taken as the benchmark of a known method in the literature,280

to our approach. Note that using data cloning, one could compute the Maximum281

likelihood estimates of the model parameters in Yamaura et al. (2016)’s model, and282

their associated properties but doing so is outside the scope of our study.283

We simulated 500 data sets under a spatially explicit model and for each data284

set we fitted the Normal N-mixture model then compared the posterior mean and285

mode estimates with the MLEs for the model proposed here (see Figure 2). For each286

simulation, we randomly drew 30 λi from a gamma distribution with parameters α =287

0.65, β = 0.033 and excluded λi values smaller than 1 individuals/100 ha, resulting in288

a community of 27 species. The gamma distribution used is the best fit of an observed289

species abundance distribution of a neotropical bird assemblage that was gathered290

using field intensive methods (Robinson et al., 2000). Following, we randomly drew291

from a poisson distribution with mean λi the number of individuals of the i−th species292

(Ni) present in a 100 hectares plot. We located each individual randomly across the293

plot and following, we randomly placed 25 circular plots with a radius of 50 meters294
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in the 100 ha plot that were separated by at least 150 meters. Finally, we obtained295

species specific detection probability (pi) from a uniform distribution. To obtain the296

counts, we drew the number of individuals detected in a 50 meter-radius plot from297

a Binomial distribution using the number of individuals in each 50 m plot Nij and298

the individual’s detection probability pi. We repeated the detection process three299

times to generate three temporal replicates of the sampling process. The R-function300

to simulate the described process is presented in Appendix C.301

For each of the simulated data sets we estimated λi, p and τ under the Beta N-302

mixture model using maximum Likelihood estimation with Data Cloning (Lele et al.,303

2007). We used rjags (Plummer, 2014) to build the model and run the analysis with304

2 chains, with 15000 iterations in each chain and retained the parameter values every305

10 generations after a burn-in period of 4000 generations. After initial parameter306

estimation, we sampled the posterior distribution given the estimated parameters to307

obtain the realized values of pi given the data. For the Normal N-mixture model308

we performed bayesian parameter estimation using rjags and ran the analysis using309

2 chains, with 50000 iterations and retained parameters values every 20 generations310

after a burn-in of 10000 generations. In the latter case, we retained the mean and311

mode of λi, pi for comparison with the beta N-mixture model.312

2.3 Example Using Real Data313

Finally, we used a data set that consisted of 94 point counts, located in three dry314

forest patches in Colombia. Bayesian and Maximum likelihood estimation for the315

Normal and Beta N-mixture models respectively were performed in the same way as316

described in the previous section. Details of the sampling procedure the R code and317

jags models used are presented in the Appendix (Appendix B, C)318
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3 Results319

3.1 Estimation for Single Species320

We found that the required minimum sample size needed to accurately estimate the321

abundance of tropical organisms decreased with increasing both λ and p (Figure 1).322

For the sample sizes evaluated, there is no combination of point counts and replicates323

that allows the estimation of abundances with less than 7 individuals/100ha using324

single species N-mixture models (Figure A1). In the 7 ind/100 ha threshold, the325

effort required is very high. For example, for species with a probability of detection326

of 0.5 the required sample size to obtain a bias lower than 0.1 is around 50 points327

and more than 6 replicates of each point count or around 40 point counts with more328

than 10 replicates (Figure 1,A1). As λ increases the sample size required to estimate329

appropriately the abundance of species decreases.330

3.2 Assessing the Beta N-mixture Model performance331

3.2.1 Bias Benchmark assessment332

We found that the parameters of the Beta N-mixture model are fully identifiable since333

the relative magnitude of the first eigenvalue of the parameter variance-covariance ma-334

trix decreased very closely at a rate of 1/k (eigenvalue = −0.066 + 1.019(1/k); r2 =335

0.98). This result also identified that 20 clones were sufficiently large to guarantee336

convergence to the MLEs. The Beta model tends to slightly overestimate the abun-337

dance of rare species and underestimate the abundance of abundant species but this338

tendency decreases with increasing detection probability (Figure A2). This is ev-339

idenced by the slopes estimated by the relationship between estimated and true λ.340

The relationship for p = 0.25 resulted was λ̂ = 5.8+0.7λ, for p = 0.5 was λ̂ = 4+0.9λ341

and for p = 0.75 was λ̂ = 3.3 + 0.95λ. The bias decreased (approximately) as a func-342

tion of the true value of λ according to the equation bias(λ) = −0.45( 1
λ

+ 7.5) for343

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 16, 2016. ; https://doi.org/10.1101/073577doi: bioRxiv preprint 

https://doi.org/10.1101/073577


16

p = 0.25, and bias(λ) = −0.26( 1
λ

+ 5.6) for p = 0.5 and bias(λ) = −0.2( 1
λ

+ 5) for344

p = 0.75.345

Assuming that a 10% bias in the estimation is acceptable, the minimum λ that346

the model is able to estimate is 13 - 17 individuals/100 ha irrespective of the detection347

probability. It is noted however, that a bias of 100% in the low abundance end has348

little impact over the ecological interpretation of the estimates. Thus, if one sets bias349

in the abundance estimates to 100% (left hand side in the bias functions above) the350

model is able to predict the density of species with 3 - 5 individuals/100 ha.351

The beta N-mixture model also performs well in estimating the distribution352

of the community’s detection probability (Figure A3). The distribution of p for the353

simulations is almost centered in the true value of p. There is a slight overestimation354

of p when p = 0.25 (Figure A3). The model tends to underestimate V̂ar[p], but355

estimates it to be similar across the different types of simulations (Figure A3).356

3.2.2 Comparison to other community abundance models357

The beta N-mixture model performed better than the Normal model in estimating the358

abundance and detection probability of rare species. While the posterior means and359

modes of the Normal model were biased towards species with abundances lower than360

4 individuals/100 ha, Maximum Likelihood Estimates of the Beta model were not361

(Figure 3). Furthermore, we show that the posterior means tended to be more biased362

than the posterior mode in estimating λ (Figure 3). The opposite seems to be true363

for the detection probabilities p. Both, the posterior mode and mean underestimated364

p for rare species (Figure 4).365

3.3 Example Using Real Data366

We present the estimates of λ̂ for both models in Table 1. The estimates of the367

abundances resulted very similar for both Beta and Normal N-mixture models. The368
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confidence intervals of the Beta N-mixture and Normal N-mixture overlapped for ev-369

ery species (Table 1). The differences in the estimates are slightly higher for rare370

species when estimated using the Normal N-mixture model. The Beta model es-371

timated p = 0.26(0.2, 0.3) and τ = 13.5(11.9, 15). The normal model estimated372

µ = −1.22(−1.5,−1) and σ2 = 0.2(0.01, 0.6). The latter result translates in mean373

detection probability across species of p̂ = 0.23(0.18, 0.27).374

4 Discussion375

Our results can be discussed around three main findings. The first one is that most376

tropical species are too rare to estimate with single species N-mixture models and377

a typical sample size in tropical studies. Single species N-mixture models require a378

high number of spatial and temporal replicates to accurately estimate the abundance379

of tropical organisms (Figure 1, see also Yamaura, 2013). The second one is that380

we found that the MLEs of a wide range of abundances computed using the beta381

N-mixture model have good statistical properties. Among these properties is a low382

relative bias of the quantities we estimate (the detectabilities and the mean abun-383

dances). Our approach leads to unbiased estimates of the abundance of extremely384

rare species with 1-3 individuals/100 ha (Figure 3, Figure A2). Third, we show that385

the MLEs of the Beta N-mixture model parameters have lower bias than the estimates386

provided by Yamaura et al. (2016)’s Bayesian fitting of the Normal N-mixture model387

(Figures 3,4).388

N-mixture models have been proven to be useful in scenarios where species389

are abundant (e.g. Royle, 2004; Joseph et al., 2009). If the objective of the study is390

to estimate the abundance of a single species correcting for its detection probability,391

then our simulations are a guide to the sampling effort required. Published databases392

(e.g. Parker III et al., 1996; Karr et al., 1990), include estimates of abundance of393
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many neotropical species, which could provide general guidelines to researchers in the394

field about the approximate λ they are dealing with and thus the approximate sample395

sizes needed to correctly estimate the abundance using N-mixture models.396

For rare species, the solution is to use the community abundance models. Our397

study and Yamaura et al. (2016) provide two examples of how to apply the estimation398

of the abundance to a set of species. Our approach has the additional advantage that399

it provides estimates with low bias even for species with low abundance and detection400

probabilities. For example, for communities with p = 0.25, the mean bias for species401

with one individual/100 ha is around 700% (Figure A2). This number sounds extreme402

but it only increases the abundance from one to seven individuals/100ha having little403

effect over the ecological inferences drawn from the model. Furthermore, estimating404

the parameters of the Beta N-mixture model using a larger set of species in the405

community seems to correct this bias. For example, our simulation under a more406

complex model, shows that the Beta N-mixture model has almost no bias in estimating407

the abundance of species close to 1 individual/100 ha (Figure 3). The bias correction408

demonstrate that the larger the community is, the less biased the estimates are likely409

to be. The latter is particularly convenient for tropical communities that are likely to410

have high species richness increasing the amount of information available to estimate411

the parameters of the entire community.412

In comparison to other community abundance models, and specifically to the413

one in Yamaura et al. (2016), the Beta N-mixture model has lower bias in both λ̂ and414

p. It is unknown however, why the bias of rare species arises, since an exponential415

transformation of a normal distribution predicts a high number of rare species. The416

same scenario arises with p since the logit transformation of the normal distribution is417

more flexible than the beta distribution (Hafley & Schreuder, 1977). One explanation418

is that the extra level of hierarchy required by performing the transformations of the419

normal distribution has an influence over the estimates. Another possibility is that420
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the prior distribution selected to perform the bayesian estimation affects the location421

of the posterior means and modes. This result only highlights the fact that prior422

elicitation can be the most difficult step in a bayesian analysis of a hierarchical model,423

given that the parameters for which priors need to be specified are by definition424

un-observable. Because of these difficulties, and as (Dorazio, 2016) and (Taper &425

Ponciano, 2016) state, in a Bayesian analysis of a hierarchical models, it is important426

to carefully validate the inference of these computer-intensive techniques by means of427

extensive simulations that combine frequentist ideas to test the properties of posterior428

modes or means of a Bayesian analysis.429

One little-explored issue of the estimation of abundances using complex hier-430

archical models fitted via a bayesian approach, is assessing if and when prior distribu-431

tions affect the estimates of the model parameters. As Lele & Dennis (2009) mention,432

different un-informative priors can produce different posterior distributions that alter433

the inferences drawn from the model. In particular, the use of different priors in the434

estimation of the probability of the detection parameter in a binomial distribution435

has been shown to have strong effects on the posterior distribution (Tuyl et al., 2008).436

The latter result is of particular interest for community abundance estimation since437

the counts used to estimate abundance in community models are assumed to be bi-438

nomially distributed. It is important to recognize that strong effects from the priors439

might not occur in cases where the data is so extensive and complete that the infor-440

mation contained in the samples widely overshadows the information provided by the441

priors. However, without extensive simulations it is difficult to known if such is the442

case. To carry Maximum Likelihood estimation via Data Cloning (Lele et al., 2010)443

one essentially tricks a bayesian algorithm into computing the Maximum Likelihood444

estimates but notably, this procedure can be started with any prior distribution for445

the model parameters (as long as their support makes biological and mathematical446

sense) and always converge to the same estimates (Lele et al., 2007). Also, the data447
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cloning approach has the advantage that one can easily assess parameter identifia-448

bility for hierarchical models and determine when the model has too many hierarchy449

levels. Here, we demonstrated that all the beta N-mixture model parameters are450

identifiable using Lele et al. (2010)’s approach. Finally, we speculate that Normal451

N-mixture model, when specified with one less hierarchy, could very well lead to un-452

biased estimates similar to ours. If so, then this would imply that the information in453

the data “swamps” the diffuse priors specified by these authors by default.454

Because our model is essentially identical to any N-mixture model, it can be455

adapted to any underlying distribution of abundances. For example, the Poisson456

distribution used to model the mean number of individuals can be replaced by any457

other distribution that relaxes the homogeneity assumption (e.g. Negative Binomial458

or Zero Inflated Poisson). In addition, ecological inferences can be made by incorpo-459

rating covariates of the abundance process in the model as previously suggested with460

N-mixture models (Joseph et al., 2009; Yamaura et al., 2011, 2012). The detection461

process can also depend on variables influencing the overall detectability of species by462

making the parameters of the beta distribution a function of the covariates (Dorazio463

et al., 2013). One can assume that the detection probability distribution is a function464

of variables such as the functional groups or to the microhabitat used for foraging465

and other species’ intrinsic characteristics that might be evolutionarily constrained466

(Yamaura et al., 2011, 2012; Ruiz-Gutiérrez et al., 2010). Model selection comparing467

models with and without abundance and detection covariates can be useful for infer-468

ring ecological mechanisms underlying the abundance of species (Joseph et al., 2009).469

In the beta N-mixture model, the assumption of the correlated behavior can be tested470

by comparing it to a regular N-mixture model, and because the main difference is471

in the assumptions underlying detection probability, it allows us to make inferences472

about ecological similarity among species in the same guild, habitat or functional473

group. We note however, that our simulations shown above were performed using a474
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uniform distribution for pi. Such model clearly violates the assumption of correlated475

detection probabilities, but the flexibility of the beta and logit-normal distributions476

allow to estimate with high confidence the parameters underlying the species’ counts.477

The estimates of the abundance of the understory insectivores of the upper478

Magdalena Valley show little difference between the beta N-mixture and and Normal479

N-mixture models relies on the estimation of the abundance of rare species (Table 1).480

It is worth noting that the abundance of more common species with higher numbers481

of detections in our dataset might be a little bit higher than in other published data482

sets (Karr et al., 1990). There are three possible reasons for this. First, when the483

mean detection probability of the species is low, our simulations showed that the484

beta-mixture model overestimated the true abundance of species (Figure A3). The485

second reason is more ecological: the data presented here comes from the dry forests486

of the Magdalena valley. Even though this ecosystem is a less species rich than487

wet forest ecosystems, the biomass of the community does not change (Gomez et488

al. unpublished data). This means that the populations of most species tend might489

be higher than in wet forests from which most of the abundance data for neotropical490

birds have been collected (Terborgh et al., 1990; Thiollay, 1994; Robinson et al., 2000;491

Blake, 2007). Third, it is also possible that rare species do not have to sing much492

to defend their territories because they have few neighbors. Common species, on the493

other hand, face a constant threat of territorial intrusion and may have to sing more.494

The categorical abundance estimates from Parker III et al. (1996) compared to the495

estimates using both Beta and Normal N-mixture models are similar. In particular,496

Table 1 shows how most of the species that are categorized as common (C) and497

fairly common (F) by Parker III et al. (1996), the models estimate abundances to498

be larger than 30 individuals/100 ha. In our opinion, the most exciting result is499

the appropriate estimation of extremely rare species (e.g. Dromococcyx phasianellus)500

which the models accurately estimate them as rare with only 1 or 2 detections in the501
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entire data set. In these species are for which the single species N-mixture models502

have particular problems estimating because of the lack of information.503

Our simulations have pushed the limits of community abundance models by504

simulating species with lower abundance than any other simulation (see Yamaura505

et al., 2016). We hope that our results encourage tropical ecologists to use commu-506

nity abundance hierarchical models as a means to adequately estimate the abundance507

of full communities. In the recent North American Ornithological congress (August508

2016), two of us (JPG and SKR) participated in a wide, round table discussion where509

it was evident that tropical ornithologists are currently facing strong publishing chal-510

lenges because so far, abundance estimating techniques have not explicitly targeted511

estimation in a setting like the tropics: with very low abundances and sparse counts.512

Unlike temperate forests, where these methodologies have been widely used, in the513

tropics the species number is typically very large, but the counts per species very514

low. Our results, although worked out using birds as a study system, suggest that it515

is possible to have a reasonable estimates of the density of all of the species in the516

community for this particular scenario and different taxonomic groups (e.g. mam-517

mals, insects, plants, fungi, bacteria). Unbiased estimation of abundances using these518

hierarchical models will hopefully enable building more accurate species abundance519

distributions, which in turn can be extremely useful for understanding the mecha-520

nisms governing biodiversity patterns (McGill et al., 2007)521
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6 Tables652

Yamaura model Beta model
Species Det Parker 97.5% Mean 2.5% 97.5% MLE 2.5%
Atalotriccus pilaris 83 F 97.3 145.2 206.1 71.3 122.8 174.3
Basileuterus rufifrons 104 C 146.4 208.6 300.9 111.2 204.3 297.3
Campylorhynchus griseus 7 C 5.0 14.5 30.1 0.0 11.2 22.5
Cantorchilus leucotis 3 C 2.9 10.3 24.1 0.0 8.2 19.5
Cnemotriccus fuscatus 31 F 39.3 67.0 110.9 24.3 67.2 110.2
Contopus cinereus 2 F/P 1.7 7.8 19.8 0.0 5.2 13.4
Cymbilaimus lineatus 4 F 4.1 12.9 28.8 0.0 11.3 25.0
Dromococcyx phasianellus 1 U 0.8 5.5 15.8 0.0 2.5 7.7
Elaenia flavogaster 67 C 107.9 162.8 260.6 85.7 192.3 298.8
Euscarthmus meloryphus 26 C 28.1 49.8 81.0 17.3 44.3 71.3
Formicivora grisea 172 C 225.4 315.0 433.1 172.6 279.0 385.4
Hemitriccus margaritaceiventer 106 C 104.2 161.6 231.4 83.6 124.4 165.1
Henicorhina leucosticta 28 F 37.7 65.8 113.6 20.9 70.9 121.0
Hylophilus flavipes 144 C 236.1 344.8 580.2 134.1 445.8 757.5
Leptopogon amaurocephalus 23 F 27.0 49.1 83.4 15.1 47.1 79.2
Myrmeciza longipes 64 C 81.2 121.6 178.9 60.1 111.6 163.1
Myrmotherula pacifica 1 F 0.8 5.5 15.4 0.0 2.5 7.5
Pheugopedius fasciatoventris 83 F 114.0 164.2 237.2 85.9 157.3 228.7
Poecilotriccus sylvia 69 F 89.2 135.3 201.7 61.9 125.4 189.0
Ramphocaenus melanurus 5 F/P 3.8 12.3 27.3 0.0 9.7 20.9
Synallaxis albescens 1 C 0.8 5.6 15.6 0.0 2.5 7.5
Thamnophilus atrinucha 93 C 124.1 177.1 251.6 91.9 162.7 233.6
Thamnophilus doliatus 192 C 269.2 369.7 516.5 211.2 345.7 480.2
Todirostrum cinereum 51 C 63.2 97.6 144.3 46.9 89.5 132.2
Tolmomyias sulphurescens 80 F 110.8 162.1 240.4 80.8 157.1 233.3
Troglodytes aedon 26 C 25.6 45.8 74.3 15.7 38.5 61.3

Table 1: Estimates for understory insectivorous birds in the dry forest of the Mag-
dalena Valley Colombia. Estimates are in individuals/100 ha. Det shows the number
of detections of each species in the data set. Parker refers to the abundance category
in the Parker III et al. (1996) database. U= Uncommon, C = Common, F= Fairly
Common, F/P = Fairly common but with patchy distribution.
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7 Figures653
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Figure 1: Mean bias in mean number of individuals per 100 ha λ for a range of point
counts, number of replicates, and true parameter values to for mid low and high
abundances and detection probabilities (λ = 7, 25, 65, 100 and p = 0.2, 0.5, 0.8). The
grayscale in each panel represent the bias from low (light gray) to high (black). The
color scale is presented in the right. We selected a threshold for acceptable bias in
estimation of abundance of 0.1 which isocline is presented as a black line in each of
the panels. The results for the entire set of simulations are presented in a similar
figure in appendix A

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 16, 2016. ; https://doi.org/10.1101/073577doi: bioRxiv preprint 

https://doi.org/10.1101/073577


31

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Study Area

West−East distance (Kms)

N
o
rt

h
−

S
o
u
th

 d
is

ta
n
c
e
 (

K
m

s
)

0
9

1
0
7

Figure 2: Graphic representation of the sampling design used to simulate the 500
count datasets of a community consisting of 27 species. We assumed the plot 20 be
100 ha (1 km2) and circular sampling point to be of 0.78 ha (∼ 0.008 km2). We show
the true abundances in the plot represented by colors in the scale bar
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Figure 3: Relative bias in the estimated value of λ ((Estimate-True)/True)) for both
the Beta and Normal N-mixture model for 500 simulations of count data, for a com-
munity consisting of 27 species. We show the boxplots of the 500 posterior means and
modes for the Normal model and the 500 Maximum Likelihood Estimates (MLEs) for
the Beta model based on the same simulated data sets. The mean true abundances
for each of the 27 species varied from 1 to 98 individuals/100 ha. Because there are
27 true abundances in the community the figure shows one boxplot for each species
in the community.
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Figure 4: Relative bias in the estimated value of p ((Estimate-True)/True) as a
function of the true abundance for both the Beta and Normal N-mixture model for
500 simulations of count data, for a community consisting of 27 species. We show
the boxplots of the 500 posterior means and modes for the Normal model and the
500 Maximum Likelihood Estimates (MLEs) for the Beta model based on the same
simulated data sets. The mean true abundances for each of the 27 species varies
from about 1 to 98 individuals/100 ha. Because there are 27 true abundances in the
community the figure shows one boxplot for each species in the community.
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A Supplementary Figures654
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Figure A1: Mean bias in mean number of individuals per 100 ha λ for range of point
counts, number of replicates, and true parameter values to for low, mid and high
abundances and detection probabilities (λ = 7, 25, 65, 100 and p = 0.2, 0.5, 0.8). The
grayscale in each panel represent the bias from low (light gray) to high (black). The
color scale is presented in the right. We selected a threshold for acceptable bias in
estimation of abundance of 0.1, which is the isocline presented as a black line in each
of the panels.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 16, 2016. ; https://doi.org/10.1101/073577doi: bioRxiv preprint 

https://doi.org/10.1101/073577


36

0
5

1
0

1
5

2
0

1 4 10 40 75

0
5

1
0

1
5

1 4 10 40 75

0
5

1
0

1
5

2
0

2
5

1 4 10 40 75

True Abundance (λ)

R
e
la

ti
v
e

 B
ia

s
 i
n

 E
s
ti
m

a
te

d
 A

b
u

n
d
a

n
c
e
 (

λ^
)

p = 0.25 p = 0.5 p = 0.75

Figure A2: Boxplot showing the distribution of λ̂ using Beta N-mixture model, show-
ing the location of the true value of λ.
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Figure A3: Boxplots showing the distribution of Ê[p] and V̂ ar[p] as a function of the
true mean detection probability E[p] with which data was simulated.
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B Bird sampling in the dry forests of the Mag-655

dalena Valley656

Each point count was replicated three times from January 2013 to July 2014. From657

this data set, we selected the understory insectivore species that forage over foliage658

(Karr et al., 1990; Parker III et al., 1996) to meet the requirement of the Beta N-659

mixture model of correlated detection probabilities among species. In total, we es-660

timated the abundance of 26 species using both the Beta and Normal N-mixture661

models. We are aware that it is likely that the closed population assumption for this662

data set does not necessarily hold, but it is unlikely that populations of species have663

changed drastically from one year to another during these years. The point counts664

were performed in three different forest patches in the upper Magdalena valley in Cen-665

tral Colombia. To maximize the sample size for abundance estimation, we lumped the666

point counts into a single data set, such that the inferences of species abundances are667

made for the entire region instead of the particular patch. The three forest patches668

were separated by less than 150 km and were located within the Magdalena valley669

dry forest. Because they are in the same habitat type, the structural variables of the670

forest are similar and thus it is unlikely that the detection probabilities vary among671

patches as well as the abundance of species, allowing us to lump the data together.672
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C R Code673

Appendix B contains the source codes necessary for estimating abundance using the674

Beta and Normal N-mixture models. It is based on bugs specification of the model,675

R functions for abundance estimation using N-mixture model are also provided in the676

code. The data to the three steps of the Beta N-mixture validation are separated in677

different .RData files. The data sets for the 1500 simulations with hi, mid and low678

p are saved in the bias.RData. The 500 data sets simulated under the complicated679

model used to compare the Beta and Normal N-mixture model along with the λ and p680

used in each simulation are saved under the comparison.RData. The real count data681

from the point counts performed in central Colombia are saved in the file real.RData.682

The entire code is saved in the Gomez et al code.R from which all of the analysis683

of this paper can be easily replicated. The only step fro which we did not save684

the simulated data was the bias estimation of the single species N-mixture model685

because of the large amount of simulations performed. Using the code and function686

provided however, the reader should be able to reproduce the simulations and the687

bias estimation.688
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