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1 Abstract

2 1. In this study we propose an extension of the N-mixture family of models
3 that targets an improvement of the statistical properties of rare species abun-
4 dance estimators when sample sizes are low, yet typical size for tropical studies.
5 The proposed method harnesses information from other species in an ecological
6 community to correct each species’ estimator. We provide guidance to deter-
7 mine the sample size required to estimate accurately the abundance of rare
8 tropical species when attempting to estimate the abundance of single species.
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2
9 2. We evaluate the proposed methods using an assumption of 50-m radius
10 plots and perform simulations comprising a broad range of sample sizes, true
11 abundances and detectability values and a complex data generating process.
12 The extension of the N-mixture model is achieved by assuming that the de-
13 tection probabilities of a set of species are all drawn at random from a beta
14 distribution in a multi-species fashion. This hierarchical model avoids having
15 to specify a single detection probability parameter per species in the targeted
16 community. Parameter estimation is done via Maximum Likelihood.
17 3. We compared our multi-species approach with previously proposed multi-
18 species N-mixture models, which we show are biased when the true densities
19 of species in the community are less than seven individuals per 100-ha. The
20 beta N-mixture model proposed here outperforms the traditional Multi-species
21 N-mixture model by allowing the estimation of organisms at lower densities
2 and controlling the bias in the estimation.
23 4. We illustrate how our methodology can be used to suggest sample sizes
2% required to estimate the abundance of organisms, when these are either rare,
25 common or abundant. When the interest is full communities, we show how
2 the multi-species approaches, and in particular our beta model and estimation
27 methodology, can be used as a practical solution to estimate organism densities
28 from rapid inventory datasets. The statistical inferences done with our model
20 via Maximum Likelihood can also be used to group species in a community
30 according to their detectabilities.

n  Keywords: Maximum Likelihood estimation, Rare species, Sample Size Estimation,

» Community Abundance Models, Tropical Species, Hierarchical models, Data Cloning.
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s 1 Introduction

s Unbiased abundance and occupancy estimates are of paramount value for making in-
55 ferences about ecological processes and making sound conservation decisions (Hubbell,
s 2001; Leibold et al., 2004; Margules & Pressey, 2000). To date, quantitative ecologists
;7 have proposed several statistical methods to estimate species’ detection probabilities
ss and use these to correct occupancy or abundance estimates (Denes et al., 2015). Our
3 study was motivated by the attempt to use these novel models to estimate the abun-
w0 dance of rare species in tropical communities. In these communities, it is well-known
s that abundance distributions are typically characterized by long right tails with few
2 abundant species and many rare ones (Hubbell, 2001; Stratford & Robinson, 2005).
s Such high proportion of rare species in the overall community makes it very difficult
u to obtain enough detections during field surveys for appropriate estimation of both
55 abundance and detection probability for many, if not the majority of species. When
s we extensively tested via simulations these recent methodologies, we found persistent
s bias in estimates of low abundances that corresponded to abundance ranges previously
s not dealt with in temperate forest studies yet common in neotropical studies (see also
» Yamaura, 2013; Yamaura et al., 2016). As an answer to this problem, here we present
so0 an alternative, community-based abundance estimation approach that markedly im-
51 proves these estimates. Our method is widely applicable in communities marked by
2 patterns of rare abundance (Stratford & Robinson, 2005; Robinson et al., 2000) or
53 other ecological systems characterized by rare events (e.g. Seabloom et al., 2015).

54 In the single-species N-mixture, the model is used to estimate the abundance
s given imperfect detection (MacKenzie et al., 2002; Martin et al., 2005; Royle & Do-
ss razio, 2008). It uses spatially and temporally replicated counts in which the counts
s of species y are binomially distributed with N being the total number of individuals
ss available for detection and p the probability of detecting an individual of that species

5o (Royle, 2004). The model is hierarchical because the abundance N is assumed to be a
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s latent (i.e., unobserved), random process adopting a discrete probability distribution
o (e.g., Poisson). Inferences about the abundance of the species of interest therefore
s rely on estimating the detection probability and the underlying parameters of the
e3 distribution giving rise to N (Royle, 2004). Alternatively, multi-species models have
s« been proposed to deal with estimating the abundance and occupancy of species with a
es limited amount of detections (see Iknayan et al., 2014; Denes et al., 2015, for reviews).
s These models have the advantage of “borrowing information” from abundant species
&7 in the community to estimate parameters of rare ones (Zipkin et al., 2009; Ovaskainen
¢ & Soininen, 2011; Yamaura et al., 2016, 2011; Chandler et al., 2013; Barnagaud et al.,
oo 2014). Most of the research and advances in the proposition of multi-species models
70 has focused on estimating occupancy (Iknayan et al., 2014; Denes et al., 2015), even
7 though understanding the abundance and rarity of species is one of the main goals of
2 ecology (Yamaura et al., 2016; Hubbell, 2001; McGill et al., 2007).

73 In recent multi-species abundance models, both abundance and detection prob-
74 abilities are assumed to be normally distributed random effects at the logit or log
75 scales governed by a community’s “hyper-parameters” (Iknayan et al., 2014). For
7 these reasons, they have been named community abundance models because they
77 focus on describing the characteristics of the entire community from spatially and
7 temporally replicated counts or detections (Yamaura et al., 2011, 2012, 2016). The
70 main assumption behind the community abundance models is that groups of species
so in the community might share characteristics that make their abundance and de-
s tection probability likely to be correlated (Yamaura et al., 2011, 2012, 2016; Sauer
22 & Link, 2002; Barnagaud et al., 2014; Ruiz-Gutiérrez et al., 2010). These types of
&3 abundance community models have been useful for estimating diversity properties of
sa species assemblages while accounting for imperfect detection (Yamaura et al., 2011,
s 2012).

86 While the assumption of normally distributed logit-transformed random effects
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s7 for detection probabilities of species across the community is statistically convenient,
ss other probability distributions might have properties more directly related. Martin
o et al. (2011), for example, proposed a single-species abundance estimation model that
o allowed individuals within a species to vary in detection probability. They assumed
o1 that detection probabilities in a species were described by a beta distribution that
» naturally ranges between [0-1]. The latter assumption is convenient for community
03 abundance models as well, because it eliminates the need of the logit transforma-
o tion. Furthermore, Dorazio et al. (2013) showed that the beta distribution can be
os parametrized to reflect the mean detection probability among species and their de-
o gree of similarity making the two parameters that determine the shape of the beta
o7 distribution ecologically interpretable.

% In this study, we: (1) increase the simulation scenarios presented in Yamaura
o (2013) to provide a full baseline for the sampling design for ecologists who want to
w0 estimate the abundance of tropical organisms (or any system with rare occurrence
1 or detection difficulties) using N-mixture models, (2) propose an alternative multi-
102 species abundance model that uses a beta distribution for the random effects of detec-
103 tion probability instead of a normal distribution, (3) propose a maximum likelihood
e approach for multi-species abundance estimation using Data Cloning and (4) com-
105 pare our alternative multi-species abundance model to one previously proposed. Our
s study focuses on scenarios in which species have already been detected but the number
w7 of detections per species are insufficient to estimate detection-corrected abundances
s (i.e., low-abundance species). Our study does not focus on estimating the number
0o or identity of unseen species. Instead we point to alternative models developed to
o account for this type of uncertainty (e.g. Dorazio & Royle, 2005; Royle & Dorazio,
- 2008; Tingley & Beissinger, 2013).
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e 1.1 The Model

us  In the following section, after summarizing the widely used N-mixture models, we
us develop a multi-species model extension that allows a more accurate estimation of the
us abundance of rare species. Our approach differs from other multi-species abundance
ue estimation by assuming that detection probabilities in a community are the product
7 of a beta distribution instead of a logit transformation of normally distributed random
us effects.

119 According to an N-mixture model coded for one species, we let y;; be the
120 number of individuals for that species in the i spatially replicated sampling unit
121 and ;™ temporal replicate of the sampling unit. Let p be the individual detection
122 probability for that species. Finally, let n; be the fixed number of individuals available
123 for detection in the i*" sampling unit. If we assume that the counts are binomially

12s  distributed, the likelihood of the counts (y;;) for a given species is

£ ) HH( ) (1= p)m.

i=1 j=i
s fori=1,2,3...rand j =1,2,3...t, where r is the total number of spatial replicates
s sampled and ¢ is the number of times each spatial replicate was visited (Royle, 2004).
127 In bird studies, for example, a common method used to survey individual populations
s or communities is fixed-radius plots (Hutto et al., 1986; Bibby et al., 2000). In this
129 case, the researcher randomly locates 50-meter radius spatially replicated plots across
130 the study area that are visited at different times. From here on, we will make our
11 assumptions and definitions around this scenario in which 50-meter plots refer to
12 spatial replicates of the sampling area and visits refers to temporal replicates of the
133 count process in each plot. Also, in accord with conventions from bird literature, we
134 will name each 50-m radius plot as a point count.

135 The N-mixture model assumes that the number of individuals available for
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s detection in a point count is in fact unknown and random. Thus, this number is
137 considered to be a latent variable, modeled with a Poisson process with mean A. In
s what follows, \ is defined as the mean number of individuals per unit area, and we
1o will refer to it as the “density”. We will write N; ~ Pois (), where we have used the
o convention that lowercase letters such as n; denote a particular realization of the (cap-
1 italized) random variable N;. We note in passing that matrices will also be denoted
12 with a capital letter, but will be written in bold. To compute the likelihood function,
13 one then has to integrate the binomial likelihood over all the possible realizations of

s the Poisson process,

SIS H( Do g 0

i=1 n;=max(y,)

us  where y, is a vector of length r with the observed counts for that species for i*" point
us count. If the objective is to estimate the abundance of S species, the overall likelihood

w7 is simply written as the product of all the individual species’ likelihoods, 1i.e.,

—As )\nsi

r 0
“T1 3 H (") B3 (1 — py) Y €_n8i!s , (2)
s=1 i=1 ny=max(y_,) j=1
us  where y,, is a vector of length r with the observed counts for species s in the i*®
u point count, and both A = {\;,...,As} and p = {p1,...,ps} are vectors of length
1o 5. To avoid the proliferation of parameters one could assume that all the pg, s =
51 1,...,.5 come from a single probability model that describes the community-wide
152 distribution of detection probabilities (Yamaura et al., 2011, 2012, 2016; Sauer & Link,
153 2002; Barnagaud et al., 2014; Ruiz-Gutiérrez et al., 2010). In this case, each species’
15« detection probability can be modeled with a beta distribution. Let P, P, ..., Pg ~

155 Beta(a, ). The probability density function of the random detection probabilities is
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16 then g(Ps, 75) Fl—&ia—i_ﬂg)ps (1 - ps)ﬁil.

157 Following Dorazio et al. (2013), we parameterize the Beta distribution as
58 Beta(aw = 7p, f = 7(1 — D)) such that the parameters are related to biological pro-
159 cesses. Here, p is the mean detection probability among species in the community
o and 7 is a measurement of the similarity in detection probabilities (precision param-
61 eter; Dorazio et al., 2013). Note that p is equivalent to p in Dorazio et al. (2013)
12 parametrization but we avoid the use of y in this proposition to avoid confusions with

163 alternative models presented below. In this parametrization, the expected value and

16e variance of P are given by E[P]| = p; Var[P] = f%.
165 The overall likelihood function now integrates over all the realizations of the

16 community-wide detection probabilities Pj:

T

Lo, f) = /0

[ee) t )
e S
y.szg )nsi_ysij S
E | | — Ps
nsi!
i=max(y ) Jj=1

s=11i=1 ng
Zsi

(3)

17 The usefulness of specifying the likelihood in this way is that in the case in which many
168 species are rare, we can use the information on the abundant species to estimate the
160 detection probability, leaving the actual counts to estimate only the abundance of the
o species. Note that by integrating the beta process at the outmost layer of the model,
i we are following the sampling structure. When this approach is used and the integral
12 is tractable, the resulting distribution is a multivariate distribution with a specific
173 covariance structure (Sibuya et al., 1964). Thus, we expect our approach to result

s in a multivariate distribution of counts with a covariance structure arising naturally
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s from the sampling design and the assumed underlying beta process of detectabilities

s (see Table 1 for further description of the Beta N-mixture model).

w 1.2 Maximum Likelihood Estimation

s One drawback of the beta-N-mixture, and other models for multi-species abundance
179 estimation, is their computational complexity, which imposes a substantial numeri-
180 cal challenge for Maximum Likelihood (ML) estimation. This problem is not unique
111 to abundance estimation as it occurs in many other hierarchical models in ecology
182 (Lele & Dennis, 2009). For these reasons, parameter estimation in hierarchical mod-
153 els is usually performed under a Bayesian framework (Cressie et al., 2009). To date,
184 however, many numerical approximations for obtaining the Maximum Likelihood Es-
155 timates (MLEs) for hierarchical models have been proposed (de Valpine, 2012). The
155 “Data Cloning” (DC) methodology has proven to be a reliable approach to obtaining
1e7 MLEs, testing hypotheses, model selection, and unequivocally measuring the estima-
s bility of parameters for hierarchical models (Lele et al., 2010; Ponciano et al., 2012).
10 The method proposed by Lele et al. (2007, 2010) uses the Bayesian computational
o approach coupled with Monte Carlo Markov Chain (MCMC) to compute MLEs of
101 parameters of hierarchical models and their asymptotic variance estimates (Lele et al.,
192 2007). The DC protocol is advantageous as one only needs to compute means and
13 variances of certain posterior distributions.

104 Data Cloning proceeds by performing a typical Bayesian analysis on a dataset
15 that consists of k copies of the originally observed data set. In other words, to
16 implement this method, one has to write the likelihood function of the data as if one
17 had observed k identical copies of the data set. Then, Lele et al. (2007, 2010) showed
108 that as k grows large, the mean of the resulting posterior distribution converges on
109 the MLE. In addition, for continuous parameters such as A, p, and 7, the variance

20 covariance matrix of the posterior distribution converges to % times the inverse of the
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10

21 observed Fisher’s information matrix. Thus, the variance estimated by the posterior
202 distribution can be used to calculate Wald-type confidence intervals of the parameters
203 (Lele et al., 2007, 2010). The advantage of DC over traditional Bayesian algorithms is
24 that while in Bayesian algorithms the prior distribution might have influence over the
205 posterior distribution, in DC the choice of the prior distribution does not determine
206 the resulting estimates. In our case, the hierarchical statistical model for every species

207 SiIlSIl,Q,...,SiS

Ysi; ~ Binomial (Ny;, Ps) with pmf f(ys;;|Nsi = nsi, Ps = ps)  (Observation model),
Ny; ~ Pois (As) with pmf g(ng; As), (Process model for the abundance),

P,~Beta (pr, (1 — p)7) with pdf h(ps;p,7) (Process model for the detection probability),

08 wheres=1,2,...,5,i=1,2,...,rand 7 =1,2,...,t and pmf and pdf correspond to
200 the probability mass function and probability density functions respectively. Accord-
210 ing to our model, the values of A, Ag, ..., Ag are parameters to be estimated. MLE
a1 of our model parameters would then generate point estimates of these parameters. In
212 a Bayesian framework, however, parameters are random variables. Accordingly, the
213 values of A\, pand 7 would be modeled as random variables themselves that have a
2e posterior distribution (A, D, 7|Y1, Ya,...,Ys). The Bayesian point estimates would
25 typically be taken to be the posterior means or modes (although in a pure Bayesian
26 approach the object of inference is the entire posterior distribution). We mention
217 this Bayesian approach because, as we describe above, the DC methodology “tricks”
218 a Bayesian estimation setting into yielding the MLEs. For this model, the specifica-
210 tion of the Bayesian approach would require sampling from the following posterior

20 distribution:
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W(AaﬁaTaNH?NlQa“'aNST?P17P27"'7PS’Y17Y27"'7YS) X
S r t
TTTITI fweisl Noi = nsi, P = po)g(nass A)b(ps; B, 7) | (A B 7),
s=1i=1 j=1

21 where (A, P, 7) is the joint prior of the model parameters. Samples from an MCMC

22 of this posterior distribution would yield many samples of the parameters

Aaﬁ7T7N117N127"‘7NST7P17P27"'7PS'

23 In order to sample from the marginal posterior (A, p,7|Y1,Y2,...,Ys) one only
24 needs to look at the samples of the subset of A\, p, and, 7. The DC approach proceeds

25 similarly, except one needs to sample from the following posterior distribution:

W(AaﬁaTa N117N12>~"7NST7P17P27"'>pS’Y1aY27"'aYS)(k) X

S r k

t
H H f(sij|Nsi = nsi, Ps = ps)g(nsi; As)(ps; B, 7) | (AP, 7),
s=1i=1 j=1

2 The notation *) on the left side of this equation does not denote an exponent but the
27 number of times the data set was “cloned”. On the right hand side, however, k is an
2 exponent of the likelihood function based on the original data (i.e. un-cloned data;
2 L(y®) = L(y)*). The MLEs of \, p, and, 7 are then simply obtained as the empirical
2z average of the posterior distribution 7(), 7, 7[Y1, Y, ..., Yg)® and the variance of

2 the estimates are given by % times the variance of this posterior distribution.
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» 2 Methods

» 2.1 Estimation for Single Species

24 'To determine the minimum sample size required for accurate estimation of the abun-
255 dance of tropical species, we used a series of simulations in which we varied the
26 number of point counts (r), visits to point counts (¢; 50 meter fixed radius), density
27 (mean number of individuals) in a 100 ha plot (), and detection probability (p).
233 Point counts were assumed to be randomly located in a 100-ha plot. We varied r be-
20 tween 5 and 50, t between 2 and 20, A = 1,2,3,4,5,7,10, 15, 25,40, 55,65, 75, 85, 100
20 and p between 0.1 and 0.9. Even though we assumed that A was at a scale of indi-
21 viduals/100ha, because of the sampling area and design, the actual estimates are in
22 individuals/0.78-ha. Thus, in this section and throughout out the rest of the sections,
23 we estimated A = individuals/0.78 — ha and extrapolate the estimates by applying
24 AQ0O—ha = 100*3"%. For the latter, A\jgo_ne represents the density of an individual
us  species s in a 100-ha plot and \g7s_p, represents the density of a species in a point
us count with area of 0.78 ha. The area of the point counts corresponds with the area of
27 a H0-m radius circular plot calculated as x50 = 7854 m? ~ 0.78 ha. For each combi-
xs  nation of parameters, we simulated 170 data sets and estimated \g73_n, and p using
a9 equation 1. In each simulation, we computed the relative bias of the abundance esti-
0 Mmate by using, bias = ’A\f’\, where ) is the MLE for a particular data set and A is the
»s1 true value of the parameter. Finally, we retained the mean bias for each combination
»2  of model parameters. We considered an acceptable bias to be lower than 0.1, which
3 1s a 10% difference between the estimate and the true population density. All of the
254 simulations were performed using R statistical software v.3.0.2 (R Core Team, 2013)
»s  and MLE by maximizing the likelihood of eq (1) using the optim function with the
6 Nelder-Mead algorithm. The R code used for simulations and maximum likelihood

7 estimation is presented in the Appendix B.
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x 2.2 Assessing the Beta N-mixture Model performance

0 To assess the Beta N-mixture Model performance we followed three steps: (1) bias
20 benchmark assessment, (2) comparisons with other community abundance models
2 and (3) examples using real data. For bias benchmark assessment (section 2.2.1) we
x2  simulated 1500 data sets under the Beta N-mixture model, computed the MLEs of
%3 our model parameters each time, and then examined the distribution of the MLEs.
s The objective of this approach was to determine if the average of the distribution
s of MLEs approaches the true parameter values and if the variability around those
x6 estimates is small. In reality, data come from a much more complex process involving
7 many variables and quantities. Therefore, in the comparison with other community
28 abundance models (section 2.2.2), we tested the robustness of our model by simulating
%0 data from a complex, spatially explicit data-generating process, which is different from
o0 the Beta N-mixture model. For this comparison, we simulated 500 datasets and then
on - estimated the density and detection probabilities using our model. We compared the
o2 performance of our model wvis-a-vis a previously proposed multi-species abundance
23 model (Yamaura et al., 2016). From here on, we refer to Yamaura et al. (2016)’s
o approach as the Normal N-mixture model. Finally, in the example using real data
25 (section 2.2.3) we estimated the density of 26 species of neotropical dry forest birds
a6 using a previously unpublished dataset. The objective of this step was to illustrate the
a7 use of our model with a realistic scenario and compare the outcome of the estimates

o7s - with the Normal N-mixture model.

a9 2.2.1 Bias benchmark assessment

20 To evaluate the bias of the Beta N-mixture model, we simulated species counts (Yy)
2 in a 100-ha plot sampled using 25, point counts visited three times each. We as-
22 sumed that the community was composed of 15 species, each one with a different

23 density varying between 1 and 100 individuals/100ha (Ag9_p. = 1,2,3,4,5,7,10, 15,
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e 25,40, 55,65,75,85,100). In the latter vector each value of Ajgp_p, represents the den-
25 sity of a single species in the 100-ha plot. In each simulation we drew N;; individuals
26 in each point count from a Poisson distribution with mean A(g.78—pa)s = W
27 Note that even though N;; are the realized number of individuals from the Poisson
258 distribution with mean A 78—na)s, these quantities are unobserved because the counts
20 Ysi; depend on the detection process. For this simulation, as in the general specifi-
20 cation of the model, sub-index i refers to the spatial replication (i = 1,2,3,...,r),
21 sub-index j refers to the temporal replication of the counts (j = 1,2,3,...,t) and
202 the sub-index s refers to the species for which abundance is being modeled (s =
203 1,2,3,...,5; see section 1.1 for definitions). We then simulated the detection process
204 Using a binomial distribution with parameters Ng;; and ps. We varied mean detec-
205 tion probability by assuming p = 0.25,0.5,0.75 and 7 = 4.5 (E[P] = 0.25, 0.5, 0.75;
206 Var[P] = 0.03, 0.04, 0.03). Even though the variance seems small, the 2.5% and
207 97.5% quantiles of the three distributions range over a large portion of the [0,1] inter-
208 val (quantiles 2.5 and 97.5: low = (0.01,0.68); mid = (0.1,0.89); high = (0.31,0.98)).
20 For each type of community we simulated 500 data sets, and estimated A\, p and 7
s0 using DC. To determine the number of clones required for accurate estimation of the
s MLEs of As, p and 7 we used one randomly generated data set and estimated the
32 parameters cloning the data sequentially from 1 to 64 times (Lele et al., 2010). This
303 procedure allowed us to determine an adequate number of clones to get convergence
s0s  of the k'™ posterior mean to the MLEs. We used rjags v. 4.2.0 (Plummer, 2014) with
ss two Markov chains allowing each chain to run for 20000 generations sampling every

306 20 generations and discarded the first 1000 iterations. For each type of community

(Estimated—True)
True

w7 and each simulation we estimated the relative bias (bias = )in Ag, P

ss and 7.
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0 2.2.2 Comparison to other community abundance models

s There are two essential differences between the Beta and Normal N-mixture models.
su  First, Beta models treat density (A, the mean number of individuals per sampling
a2 unit) as a fixed effect instead of random. As a result, the Normal N-mixture model
us has an extra hierarchy level than our model (Table 1). Both are hierarchical stochastic
s models where the binomial sampling model is the first hierarchy level in which the
us  realized, but unobserved, abundances (the N’s) and the detection probabilities are
s6 the inner hierarchies. In both models, N ~ Poisson(\). The Normal N-mixture
a1z model includes an additional level and assumes that the parameters A governing the
a8 realized abundances N also come from a stochastic process governed itself by hyper-
si9  parameters. In the Beta model however, A\ does not have any hierarchy and one A for
320 each species is estimated. The second difference between our model and the Normal N-
;1 mixture model is the distributional assumption giving rise to detection probabilities.
2 In our model p, are assumed to be P ~ Beta(7p, 7(1 —P)) and in the Normal model,

2 Py = oy Where R ~ N (i, 0%), which gives a Johnson’s SB distribution between

TFe(—0rs)
2 0 and 1. Besides these two model differences, Yamaura et al. (2016) used a Bayesian
15 approach to fit their hierarchical model, whereas we used the MLE method. Much
26 discussion exists regarding the merits of each inferential approach for hierarchical
27 models in Ecology (see for instance Lele & Dennis, 2009; Cressie et al., 2009). Here
»s  we limit ourselves to comparing the results from Yamaura et al. (2016)’s estimation
39 approach, which is widely used as the benchmark of a known method in the literature,
10 to our approach. Table 1 presents a comparison of the statistical models’ structures.
331 To compare the performance of the Normal and Beta N-mixture models we
s simulated 500 data sets under a spatially explicit model that had a different structure
13 from the models evaluated (Table 1). For each data set we fitted the Normal and

s Beta N-mixture models and compared the posterior mean and mode estimates of

135 the Normal N-mixture with the MLEs of the Beta N-mixture model (see Figure


https://doi.org/10.1101/073577

bioRxiv preprint doi: https://doi.org/10.1101/073577; this version posted April 7, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

16

s 2). For each simulation, we randomly drew 30 A(100—ha)s from a gamma distribution
w7 with parameters o = 0.65, § = 0.033 and excluded Ay100—nq) values smaller than 1
138 individuals/100 ha, resulting in a community of 27 species. The gamma distribution
;30 used is the best fit of an observed species abundance distribution of a neotropical
10 bird assemblage that was gathered using field-intensive methods (Robinson et al.,
s 2000). We then randomly drew from a Poisson distribution with mean A(190—pa)s, the
s number of individuals of the s'" species (N,) present in the 100-ha plot. We located
ss  each individual randomly across the plot and then randomly placed 25 point counts
ss in the 100-ha plot that were separated by at least 150 meters. Finally, we obtained
us  species-specific detection probability (ps) from a uniform distribution between 0 and
us 1. To obtain the counts y,;;, we drew the number of individuals detected in a point
sz count from a binomial distribution using the number of individuals in point counts n;;
us  and the individual’s detection probability p,. We repeated the detection process three
uo  times to generate three temporal replicates of the sampling process. The R-function
0 to simulate the described process is presented in Appendix B.

351 For each of the simulated data sets we estimated A(.73—na)s, P and 7 under the
32 Beta N-mixture model using ML estimation with DC (Lele et al., 2007). We used
53 the variance-covariance matrix of the posterior distribution of A 78—pa)s, P and 7 to
3¢ estimate Wald-type confidence intervals for each parameter (Lele et al., 2007, 2010).
355 Models were built and analyzed using rjags (Plummer, 2014) with 2 chains, with
36 20,000 iterations in each chain and retained the parameter values every 20 genera-
37 tions after a burn-in period of 1000 generations. After initial parameter estimation,
s we sampled the posterior distribution given the estimated parameters to obtain the
10 realized values of p, given the data. For the Normal N-mixture model we performed
w0 Bayesian parameter estimation using rjags and ran the analysis using 2 chains, with
1 H0,000 iterations and retained parameters values every 20 generations after a burn-in

sz of 10,000 generations. Even though the Normal N-mixture model is fully specified
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33 by the mean and variance of the abundance and detection processes (see Yamaura
30 et al., 2016), the Beta N-mixture model has no stochastic hierarchy over A; thus, for
s comparisons of the two models we retained the mean and mode of A(g.78—nq)s. Because
w6 Ps 1S also a random variable with an additional level of hierarchy in the Normal N-
7 mixture model, we also retained the mean and mode of the posterior distribution of
s P, resulting from Bayesian estimation. Once we obtained the estimates of A(g.78—na)s,

30 we extrapolated this estimate to A(100—na)s as described in sections 2.1 and 2.2.1.

s 2.2.3 Example Using Real Data

sn Finally, we used a data set that consisted of 94 point counts located in three dry
s forest patches in Colombia. Each point count was replicated three times from Jan-
sr3 uary 2013 to July 2014. From this data set, we selected the understory insectivore
s species that forage in foliage (Karr et al., 1990; Parker III et al., 1996) to meet the
ss requirement of the Beta N-mixture model of correlated detection probabilities among
ars  species. In total, we estimated the abundance of 26 species using both the Beta and
s7 Normal N-mixture models. We are aware that it is likely that the closed population
ss assumption for this data set might not hold, but it is unlikely that populations of
;9 species have changed drastically from one year to another during these years. The
;0 point counts were performed in three different forest patches in the upper Magdalena
ss1 Valley of Central Colombia. To maximize the sample size for abundance estima-
;2 tion, we aggregated the point counts into a single data set, such that the inferences of
;3 species abundances are made for the entire region instead of the particular patch. The
s three forest patches were separated by less than 150 km and were located within the
s Magdalena Valley dry forest region. Because they are in the same habitat type, the
s structural variables of the forest are similar and thus it is unlikely that the detection
;7 probabilities vary among patches as well as the abundance of species, allowing us to

s aggregate the data. Bayesian and ML estimation for the Normal and Beta N-mixture
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0 models, respectively, were performed in the same way as described previously. In
s0 order to evaluate the effect of the prior distributions on the estimates of the Nor-
s mal N-mixture model, we also estimated the parameters of the Normal N-mixture
52 using ML estimation through DC. Taking advantage of the ML estimation of the
33 Normal and Beta N-mixture model, we further performed model selection following
;¢ Ponciano et al. (2009)’s procedure to compute the difference in Akaike’s Information
05 Criterion (AAIC) between the two models. For model selection we assumed the null
s model to be the Beta N-mixture model and the alternative the Normal N-mixture.
o AAIC = —2In (%) +2(dy — dy), where Lo, Lo are the maximized likelihoods and
s dg, d, are the number of parameters of the Beta and Normal N-mixture models re-
309 spectively model. Note that a AAIC < —2 would provide strong evidence in favor
wo of the Beta N-mixture model, in contrast a AAIC > 2 would provide support in
w1 favor of the Normal N-mixture model. R code and jags models used are presented in

w2 Appendix B

« 3 Results

o 3.1 Estimation for Single Species

ws  We found that the required minimum sample size needed for accurate estimation of
ws the density of tropical organisms decreased when both A and p (Figure 1) were in-
w7 creased. For the sample sizes evaluated, there was no combination of point counts and
aws replicates that allowed the estimation of densities with less than 7 individuals/100ha
w0 using single-species N-mixture models (Figure A1l). In the 7 ind/100ha threshold, the
a0 effort required is very high. For example, for species with a probability of detection
a1 of 0.5 the required sample size to obtain a bias lower than 0.1 is around 50 points
a2 and more than 6 replicates of each point count or around 40 point counts with more

a3 than 10 replicates (Figure 1,A1). As )\ increases the sample size required to estimate
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aa  appropriately the density of species decreases.

as 3.2  Assessing the Beta N-mixture Model performance
a6 3.2.1 Bias Benchmark assessment

a7 We found that the parameters of the Beta N-mixture model were fully identifiable
ss because the relative magnitude of the first eigenvalue of the parameter variance-
a9 covariance matrix decreased very similarly at a rate of 1/k (eigenvalue = —0.07 4+
no 1.02(1/k); r* = 0.98). This result also identified that 20 clones were enough to
a1 guarantee convergence to the MLEs. The Beta model tended to slightly overestimate
a2 the density of rare species and underestimate the density of abundant species but this
w23 tendency decreased with increasing detection probability (Figure A2), as suggested
w22 by the slopes estimated by the relationship between estimated and true A. The
w5 relationship for p = 0.25 was =58+ 0.7\, for p = 0.5 was A =4+ 0.9\ and for
w6 p = 0.75 was A = 3.3+ 0.95)\. The bias decreased (approximately) as a function of
2 the true value of A according to the equation bias(\) = —0.45(5 + 7.5) for p = 0.25,
2 and bias(A) = —0.26(5 + 5.6) for p = 0.5 and bias(A) = —0.2(3 + 5) for p = 0.75.

429 Assuming that a 10% bias in the estimation is acceptable, the minimum X that
a0 the model is able to estimate is 13 - 17 individuals/100 ha regardless of the detection
s probability. It is noteworthy, however, that a bias of 100% in the low-abundance end
a2 has little effects on the ecological interpretation of the estimates. Thus, if one sets
s bias in the abundance estimates to 100% (left hand side in the bias functions above),
s¢  the model is able to predict the density of species with 3 - 5 individuals/100 ha.

435 The beta N-mixture model also performs well in estimating the distribution
w6 of the community’s detection probability (Figure A3). The distribution of p for the
.7 simulations is almost centered in the true value of p. There is a slight overestimation
s of p when p = 0.25 (Figure A3). The model tends to underestimate Vgr[\P], but

s  estimates it to be similar across the different types of simulations (Figure A3).
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w 3.2.2 Comparison to other community abundance models

a1 The beta N-mixture model performed better than the Normal model in estimating the
a2 abundance and detection probability of rare species. Whereas the posterior means and
a3 modes of the Normal model were biased towards species with abundances lower than
se 4 individuals/100 ha, MLEs of the Beta model were not (Figure 3). Furthermore, we
ws found that the posterior means tended to be more biased than the posterior mode in
ws estimating A (Figure 3). The opposite seems to be true for the detection probabilities

w7 p. Both the posterior mode and mean underestimated p for rare species (Figure 4).

«w 3.3 Example Using Real Data

w  We present the estimates of A for both models in Table 2. The resulting estimates of
s0 the densities were very similar for both Beta and Normal N-mixture models (Table 2,
s Figure A4, Figure A5). The confidence intervals of the Beta N-mixture and Normal
2 N-mixture overlapped for every species (Table 2). The differences in the estimates are
ss3 slightly higher for rare species when estimated using the Normal N-mixture model.
s The Beta model estimated p = 0.26(0.2,0.3) and 7 = 13.5(11.9,15). The normal
ss model estimated p = —1.22(—1.5,—1) and o = 0.2(0.01,0.6) or a mean detection
6 probability of p = 0.23(0.18,0.27) (Figure A5). The estimates of A from the Normal
ss7 N-mixture model obtained by Bayesian estimation were indistinguishable from the
ss ones obtained from MLE (Figure A4). We found AAIC = —328.6 suggesting that
w0 the Beta N-mixture model is a much better fit for the counts of birds in the dry forest

wo of the Magdalena Valley than the Normal N-mixture model.

« 4 Discussion

w2 Our results involve three major findings. First, single species N-mixture models

w3 require a high number of spatial and temporal replicates for accurate estimation of
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w4 the abundance of tropical organisms (Figure 1, see also Yamaura, 2013). Second,
ws  we found that the MLEs of a wide range of abundances computed using the Beta
ws  N-mixture model have good statistical properties. Among these is a low relative bias
s of the parameters (p and \); our approach led to unbiased estimates of the density of
ss rare species with 1-3 individuals/100 ha (Figure 3, Figure A2). And third, we show
w0 that the MLEs of the Beta N-mixture model parameters have lower biases than the
a0 estimates provided by Yamaura et al. (2016)’s Normal N-mixture model (Figures 3,4)
anand that in real scenarios the Beta N-mixture model fits the data better.

ar2 N-mixture models have been proven to be useful in scenarios where species are
w3 abundant (e.g. Royle, 2004; Joseph et al., 2009). If the objective were to estimate the
a2 abundance of a single species, our simulations provide a guide to the sampling effort
w5 required. Published databases (e.g. Parker III et al., 1996; Karr et al., 1990) include
a6 estimates of abundance of many neotropical species, which could provide general
a7 guidelines to researchers in the field about the approximate A\ and the approximate
a5 sample sizes needed to correctly estimate abundance using N-mixture models.

a79 For rare species, the solution is to use the community abundance models. Our
w0 study and Yamaura et al. (2016) provide two examples of how to apply the estimation
w1 of the abundance to a set of species. Our approach has the additional advantage of
s providing estimates with low bias even for species with low density and low detection
w3 probabilities. For example, for communities with p = 0.25, the mean bias for species
s« with one individual /100 ha is around 700% (Figure A2). This number sounds extreme
5 but it only increases the abundance from one to seven individuals/100ha having little
w6 effect on the ecological inferences drawn from the model. Furthermore, estimating the
s7 parameters of the Beta N-mixture model using a larger set of species in the community
ws  apparently corrects this bias. Our simulation under a more complex model shows that
w0 the Beta N-mixture model has almost no bias in estimating the density of species

w0 close to 1 individual/100 ha (Figure 3). The bias correction demonstrates that the
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w1 larger the community, the less biased the estimates are likely to be. The latter is
w2 particularly convenient for tropical communities that are likely to have high species
w03 richness increasing the amount of information available to estimate the parameters
a0 for the entire community.

495 In comparison with other community abundance models (i.e. Yamaura et al.,
ws 2016), the Beta N-mixture model has lower bias in both A and p. It is unknown how-
w7 ever, why the bias toward rare species arises, because an exponential transformation
w8 of a normal distribution predicts a high number of rare species. The same scenario
a0 arises with p because the logit transformation of the normal distribution is more flex-
s0 ible than the beta distribution (Hafley & Schreuder, 1977). One explanation is that
s the extra level of hierarchy required by performing the transformations of the normal
sz distribution influences estimates. Another possibility is that the prior distribution se-
s03 lected to perform the Bayesian estimation affects the location of the posterior means
sa  and modes. Our results, however, point to the former explanation rather than the
sos latter, because the mean and mode of the Bayesian posterior distributions of A, were
s indistinguishable from the MLEs in the real data set (Figure A4). Although in this
so7 case, prior distributions of parameters do not seem to affect the estimates, in general,
ss prior elicitation in Bayesian analysis of hierarchical models is difficult (Lele & Den-
so0 nis, 2009). In a Bayesian analysis of hierarchical models, it is important to validate
s the inference of these computer-intensive techniques through simulations to test the
su  properties of posterior distributions (Dorazio, 2016; Taper & Ponciano, 2016).

512 One little-explored issue in the estimation of abundances using complex hier-
si3 archical models fitted via a Bayesian approach, is assessing when prior distributions
siu - affect the estimates of model parameters. Different uninformative priors can produce
si5  different posterior distributions that alter the inferences drawn from the model (Lele
sis & Dennis, 2009). In particular, the use of different priors in the estimation of the

si7 - probability of the detection parameter in a binomial distribution has been shown to
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sis  have strong effects on the posterior distribution (Tuyl et al., 2008). The latter is of
s19  particular interest for community abundance estimation because the counts used to
s20 estimate abundance in community models are assumed to be binomially distributed.
sz Strong effects from the priors might not occur in cases where the data are so extensive
s22  that the information contained in the samples overshadows the information provided
s23 by the priors. Without extensive simulations, however, it is difficult to known if this
s is the case. Maximum Likelihood estimation via DC (Lele et al., 2010) can be started
s with any prior distribution for the model parameters (as long as their support makes
26 biological and mathematical sense) and converge to the same estimates (Lele et al.,
s2r 2007). Also, the DC approach has the advantage that one can easily assess parameter
s2s identifiability for hierarchical models and determine when the model has too many hi-
s20 erarchy levels. Here, we demonstrated that all the Beta N-mixture model parameters
s are identifiable using Lele et al. (2010)’s approach.

531 Because our model is essentially identical to any N-mixture model, it can be
s adapted to any underlying distribution of abundances, although computational com-
533 plications might arise in parameter estimation. Ecological inferences can be made by
s3¢ incorporating covariates into the abundance process as previously suggested (Joseph
s35 et al., 2009; Yamaura et al., 2011, 2012). For example, when sampling along environ-
s35 mental gradients, the density of species (A) might change as a function of the gradient.
s37  In this case, A might be estimated as a linear combination of the variables changing
s along the gradient. The detection process can also depend on variables influencing
s  the overall detectability of species (Dorazio et al., 2013). One can assume that the de-
ss0  tection probability distribution is a function of the functional groups or microhabitat
s and other species’ intrinsic characteristics that might be evolutionarily constrained
s (Yamaura et al., 2011, 2012; Ruiz-Gutiérrez et al., 2010). Model selection compar-
se3 ing models with and without abundance and detection covariates can be useful for

s« inferring ecological mechanisms underlying the abundance of species (Joseph et al.,
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ses 2009). In this case, ML estimation through DC is an extremely useful procedure
ss because it allows model selection through traditional information criteria (Ponciano
sav et al., 2009). In the Beta N-mixture model, the assumption of the correlated behav-
sis ior can be tested by comparing it to a regular N-mixture model, and because the
ss0  main difference is in the assumptions underlying detection probability, it allows us to
ss0 make inferences about ecological similarity among species. Our simulations described
ss1 in section 2.2.2, however, use a uniform distribution for p, to generate the count
ss2 data with which parameters were estimated. Such a model violates the assumption
53 of correlated detection probabilities, but the flexibility of the beta and logit-normal
s« distributions allow us to estimate the parameters underlying the species’ counts.

555 The estimates of the density of the understory insectivores of the upper Mag-
sss  dalena Valley show few differences between the Beta and Normal N-mixture mod-
ss7 els, except for the density of rare species (Table 2). Although the differences seem
sss negligible at first glance, they make a big difference in the fit of the model. The
sso AAIC suggested that the Beta model is by far a better fit than the Normal model
soo for this data set, even when accounting for the larger number of parameters of the
ss1  Beta model. Appropriately estimating the abundance of extremely rare species has a
sz disproportionate effect on the fit of the models evaluated.

563 The abundance of more common species with higher numbers of detections in
see our dataset might be a little higher than in other published data sets (Karr et al.,
s 1990). There are two possible reasons for this overestimation. First, when the mean
sss detection probability of the species is low, our simulations showed that the Beta
ss7 model overestimated the true abundance of species (Figure A3). Second, the data
ses  presented here comes from the dry forests of the Magdalena valley. Even though this
ss0  ecosystem has lower species richness than wet forests, the biomass of the community
s0  does not change (Gomez et al. unpublished data). Populations of most species might

s be higher than in wet forests from which most of the abundance data for neotropical
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s2 birds has been collected (Terborgh et al., 1990; Thiollay, 1994; Robinson et al., 2000;
s3 Blake, 2007).

574 The categorical abundance estimates from Parker III et al. (1996) compared
si5 to the estimates using both Beta and Normal models are similar. In particular, Table
s 2 shows that for most of the species that are categorized as common (C) and fairly
sz common (F) by Parker III et al. (1996), the models estimate abundances to be greater
ss than 30 individuals/100 ha. The most exciting result is the appropriate estimation of
so - extremely rare species (e.g., Dromococcyz phasianellus), which the models accurately
ss0  estimate as being rare with only 1 or 2 detections in the entire data set. These are
ss1  the species that are not well estimated by the single-species models.

582 One of the caveats of our model is that it does not take into account unseen
se3 species (i.e., species present in the study area that are not detected during the survey).
ssa  Some solutions have been suggested in a multi-species framework that would allow
sss  the estimation of at least the number of unseen species for appropriate description
sss  of the community (Dorazio & Royle, 2005; Tingley & Beissinger, 2013). Such solu-
se7  tions estimate the number of unseen species using occupancy modeling, but to our
sss  knowledge there are no solutions available when modeling the abundance of species.
ss0  We emphasize, however, that a reasonable first step towards the objective of accu-
s rately estimating tropical species abundance distributions is to properly estimate the
s abundance of species that have been detected at least once.

502 Our simulations have pushed the limits of community abundance models by
s3 simulating species with lower yet realistic abundances than any other simulation (see
s« Yamaura et al., 2016). We hope that our results encourage tropical ecologists to
505 Use community abundance hierarchical models as a means to adequately estimate the
so6 abundance of full communities. In the recent North American Ornithological congress
so7  (August 2016), two of us (JPG and SKR) participated in a discussion in which it

s became evident that tropical ornithologists are currently facing strong publishing
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se0 challenges because abundance estimating techniques have not explicitly targeted es-
0 timation in a setting such as the tropics with very low abundances of the majority
so1 of the species and sparse counts. Unlike temperate forests, the number of species is
sz typically very high in the tropics, but counts of individuals per species are very low.
o3 Even though our approach was developed using birds as a study system, our results
s suggest that it is possible to obtain reasonable estimates of the density of all of the
s0s species in a community of different taxonomic groups (e.g. mammals, insects, plants,
s fungi, bacteria). For example, in modeling disease ecology, it has been documented
s7 that abundance patterns in natural parasite communities is determined by host popu-
s lation densities, making host abundance estimation a crucial step to understand rare
s00 disease dynamics (Arneberg et al., 1998, e.g. ebola or avian influenza). Unbiased
s10 estimation of abundances using these hierarchical models should enable researchers
s to build more accurate species abundance distributions and thus seek a better under-

s standing of the mechanisms governing biodiversity patterns (McGill et al., 2007).

« D Acknowledgements

s1a We would like to thank the farm owners Cesar Garcia, Hacienda los Limones and Con-
s1s  stanza Mendoza for allowing us to perform bird counts in their properties. G.Burleigh,
s B.Loiselle, D.Steadman, P.Shirk, associate editor and three anonymous reviewers pro-
sz vided useful comments for the development of the model and improvement of the
s1s  manuscript. This work was supported by the National Institutes of Health Grant
s0 IROIGM117617-01 to JKB (PI) and JMP (Co-PI).

2 6 Author Contributions

s21 JPG and JMP conceived the ideas and designed methodology; JPG collected the data;

s22 JPG and JMP analyzed the data; JPG and JMP led the writing of the manuscript.


https://doi.org/10.1101/073577

bioRxiv preprint doi: https://doi.org/10.1101/073577; this version posted April 7, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

27

e23 OKR and JKB contributed critically to the drafts and gave final approval for publi-

62+ cation.

» References

e Arneberg, P., Skorping, A., Grenfell, B. & Read, A.F. (1998) Host densities as deter-
627 minants of abundance in parasite communities. Proceedings of the Royal Society of

628 London B: Biological Sciences, 265, 1283—1289.

20 Barnagaud, J.Y., Barbaro, L., Papaix, J., Deconchat, M. & Brockerhoff, E.G. (2014)
630 Habitat filtering by landscape and local forest composition in native and exotic

631 new zealand birds. FEcology, 95, 78-87.

22 Bibby, C.J., Burgess, N.D., Hill, D.A. & Mustoe, S. (2000) Bird Census Techniques.

633 Elsevier, second edition edition.

e3¢« Blake, J.G. (2007) Neotropical forest bird communities: a comparison of species rich-

635 ness and composition at local and regional scales. The Condor, 109, 237-255.

s3s  Chandler, R.B., King, D.I., Raudales, R., Trubey, R., Chandler, C. & Arce Chavez,
637 V.J. (2013) A small-scale land-sparing approach to conserving biological diversity

638 in tropical agricultural landscapes. Conservation Biology, 27, 785-795.

s20 Cressie, N., Calder, C.A., Clark, J.S., Hoef, J.M.V. & Wikle, C.K. (2009) Accounting
640 for uncertainty in ecological analysis: the strengths and limitations of hierarchical

641 statistical modeling. Fcological Applications, 19, 553-570.

s> de Valpine, P. (2012) Frequentist analysis of hierarchical models for population dy-

643 namics and demographic data. Journal of Ornithology, 152, 393—408.

s Denes, F.V.| Silveira, L.F. & Beissinger, S.R. (2015) Estimating abundance of un-


https://doi.org/10.1101/073577

bioRxiv preprint doi: https://doi.org/10.1101/073577; this version posted April 7, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

28

645 marked animal populations: accounting for imperfect detection and other sources

646 of zero inflation. Methods in Ecology and FEvolution, 6, 543-556.

s Dorazio, R.M. (2016) Bayesian data analysis in population ecology: motivations,

648 methods, and benefits. Population Ecology, 58, 31-44.

s0 Dorazio, R.M., Martin, J. & Edwards, H.H. (2013) Estimating abundance while ac-
650 counting for rarity, correlated behavior, and other sources of variation in counts.

651 Ecology, 94, 1472-1478.

2 Dorazio, R.M. & Royle, J.A. (2005) Estimating size and composition of biological
653 communities by modeling the occurrence of species. Journal of the American Sta-

654 tistical Association, 100, 389-398.

s Hafley, W. & Schreuder, H. (1977) Statistical distributions for fitting diameter and

656 height data in even-aged stands. Canadian Journal of Forest Research, 7, 481-487.

sz Hubbell, S.P. (2001) The unified neutral theory of biodiversity and biogeography, vol-

658 ume 32. Princeton University Press, Princeton, NY.

0 Hutto, R.L., Pletschet, S.M. & Hendricks, P. (1986) A fixed-radius point count

660 method for nonbreeding and breeding season use. The Auk, 103, 593 — 602.

s lknayan, K.J., Tingley, M.W., Furnas, B.J. & Beissinger, S.R. (2014) Detecting diver-
662 sity: emerging methods to estimate species diversity. Trends in ecology € evolution,

663 29, 97-106.

s« Joseph, L.N., Elkin, C., Martin, T.G. & Possingham, H.P. (2009) Modeling abun-
665 dance using n-mixture models: the importance of considering ecological mecha-

666 nisms. Ecological Applications, 19, 631-642.

sv Karr, J.R., Robinson, S.K., Blake, J.G., Bierregaard Jr, R.O. & Gentry, A. (1990)


https://doi.org/10.1101/073577

bioRxiv preprint doi: https://doi.org/10.1101/073577; this version posted April 7, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

29

668 Birds of four neotropical forests. A.H. Gentry, ed., Four neotropical rainforests, pp.

669 237-269. Yale University Press New Haven, Connecticut.

s0  Leibold, M.A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J.M., Hoopes,
en  M.F., Holt, R.D., Shurin, J.B., Law, R., Tilman, D. et al. (2004) The metacom-
672 munity concept: a framework for multi-scale community ecology. FEcology letters,

o 7, 601-613.

e Lele, S.R. & Dennis, B. (2009) Bayesian methods for hierarchical models: are ecolo-

675 gists making a faustian bargain. Ecological Applications, 19, 581-584.

e Lele, S.R., Dennis, B. & Lutscher, F. (2007) Data cloning: easy maximum likelihood
677 estimation for complex ecological models using bayesian markov chain monte carlo

678 methods. Ecology letters, 10, 551-563.

e Lele, S.R., Nadeem, K. & Schmuland, B. (2010) Estimability and likelihood inference
680 for generalized linear mixed models using data cloning. Journal of the American

681 Statistical Association, 105, 1617-1625.

2 MacKenzie, D.I., Nichols, J.D., Lachman, G.B., Droege, S., Andrew Royle, J. & Lang-
683 timm, C.A. (2002) Estimating site occupancy rates when detection probabilities are

684 less than one. FEcology, 83, 2248-2255.

s Margules, C.R. & Pressey, R.L. (2000) Systematic conservation planning. Nature,
e 405, 243-253.

sz Martin, J., Royle, J.A., Mackenzie, D.I., Edwards, H.H., Kery, M. & Gardner, B.
s (2011) Accounting for non-independent detection when estimating abundance of
689 organisms with a bayesian approach. Methods in Ecology and FEvolution, 2, 595—

690 601.


https://doi.org/10.1101/073577

bioRxiv preprint doi: https://doi.org/10.1101/073577; this version posted April 7, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

30

sor  Martin, T.G., Wintle, B.A., Rhodes, J.R., Kuhnert, P.M., Field, S.A., Low-Choy,
o2 S.J., Tyre, A.J. & Possingham, H.P. (2005) Zero tolerance ecology: improving
693 ecological inference by modeling the source of zero observations. Fcology letters, 8,

604 1235-1246.

ss  McGill, B.J., Etienne, R.S., Gray, J.S., Alonso, D., Anderson, M.J., Benecha, H.K.,
696 Dornelas, M., Enquist, B.J., Green, J.L., He, F., Hurlbert, A.H., Magurran, A.E.,
607 Marquet, P.A., Maurer, B.A., Ostling, A., Soykan, C.U., Ugland, K.I. & White,
698 E.P. (2007) Species abundance distributions: moving beyond single prediction the-

699 ories to integration within an ecological framework. Ecology letters, 10, 995-1015.

20 Ovaskainen, O. & Soininen, J. (2011) Making more out of sparse data: hierarchical

701 modeling of species communities. Fcology, 92, 289-295.

2 Parker III, T., Stotz, D. & Fitzpatrick, J. (1996) Ecological and distributional
703 databases for neotropical birds. D. Stotz, J. Fitzpatrick, T. Parker III &
704 D. Moskovits, eds., Neotrpical birds: ecology and conservation. University of

705 Chicago Press, Chicago.

6 Plummer, M. (2014) rjags: Bayesian graphical models using MCMC. R package

707 version 3-13.

s Ponciano, J.M., Burleigh, J.G., Braun, E.L. & Taper, M.L. (2012) Assessing param-
700 eter identifiability in phylogenetic models using data cloning. Systematic biology,

0 61, 955-972.

1 Ponciano, J.M., Taper, M.L., Dennis, B. & Lele, S.R. (2009) Hierarchical models in

7

-

712 ecology: confidence intervals, hypothesis testing, and model selection using data

—

713 cloning. FEcology, 90, 356-362.

+ R Core Team (2013) R: A Language and Environment for Statistical Computing. R

7

iy

715 Foundation for Statistical Computing, Vienna, Austria.


https://doi.org/10.1101/073577

bioRxiv preprint doi: https://doi.org/10.1101/073577; this version posted April 7, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

31

76 Robinson, W.D., Brawn, J.D. & Robinson, S.K. (2000) Forest bird community struc-
717 ture in central panama: influence of spatial scale and biogeography. FEcological

718 Monographs, 70, 209-235.

70 Royle, J.A. (2004) N-mixture models for estimating population size from spatially

720 replicated counts. Biometrics, 60, 108-115.

= Royle, J.A. & Dorazio, R.M. (2008) Hierarchical modeling and inference in ecology:
722 the analysis of data from populations, metapopulations and communities. Academic

723 Press, San Diego, CA.

7 Ruiz-Gutiérrez, V., Zipkin, E.F. & Dhondt, A.A. (2010) Occupancy dynamics in a
725 tropical bird community: unexpectedly high forest use by birds classified as non-

726 forest species. Journal of Applied Ecology, 47, 621-630.

27 Sauer, J.R. & Link, W.A. (2002) Hierarchical modeling of population stability and

728 species group attributes from survey data. Fcology, 83, 1743-1751.

720 Seabloom, E.W., Borer, E.T., Gross, K., Kendig, A.E., Lacroix, C., Mitchell, C.E.,
70 Mordecai, E.A. & Power, A.G. (2015) The community ecology of pathogens: coin-

731 fection, coexistence and community composition. Ecology letters, 18, 401-415.

7 Sibuya, M., Yoshimura, I. & Shimizu, R. (1964) Negative multinomial distribution.

733 Annals of the Institute of Statistical Mathematics, 16, 409-426.

7 Stratford, J.A. & Robinson, W.D. (2005) Gulliver travels to the fragmented tropics:
735 geographic variation in mechanisms of avian extinction. Frontiers in Fcology and

736 the Environment, 3, 85-92.

77 Taper, M.L. & Ponciano, J.M. (2016) Evidential statistics as a statistical modern

738 synthesis to support 21st century science. Population Ecology, 58, 9-29.


https://doi.org/10.1101/073577

bioRxiv preprint doi: https://doi.org/10.1101/073577; this version posted April 7, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

32

79 Terborgh, J., Robinson, S.K., Parker III, T.A., Munn, C.A. & Pierpont, N. (1990)
740 Structure and organization of an amazonian forest bird community. FEcological

741 Monographs, 60, 213-238.

72 Thiollay, J.M. (1994) Structure, density and rarity in an amazonian rainforest bird

743 community. Journal of Tropical Ecology, 10, 449-481.

72¢  Tingley, M.W. & Beissinger, S.R. (2013) Cryptic loss of montane avian richness and

745 high community turnover over 100 years. Ecology, 94, 598 — 6009.

16 Tuyl, F., Gerlach, R. & Mengersen, K. (2008) A comparison of bayes—laplace, jeffreys,

747 and other priors: The case of zero events. The American Statistician, 62, 40-44.

7s Yamaura, Y. (2013) Confronting imperfect detection: behavior of binomial mixture
749 models under varying circumstances of visits, sampling sites, detectability, and

750 abundance, in small-sample situations. Ornithological Science, 12, 73 — 78.

75 Yamaura, Y., Andrew Royle, J., Kuboi, K., Tada, T., Ikeno, S. & Makino, S. (2011)
752 Modelling community dynamics based on species-level abundance models from de-

753 tection/nondetection data. Journal of applied ecology, 48, 67-75.

s« Yamaura, Y., Kéry, M. & Royle, J.A. (2016) Study of biological communities sub-
s ject to imperfect detection: bias and precision of community n-mixture abundance

756 models in small-sample situations. Ecological Research, 31, 289-305.

77 Yamaura, Y., Royle, J.A., Shimada, N., Asanuma, S., Sato, T., Taki, H. & Makino,
s 5. (2012) Biodiversity of man-made open habitats in an underused country: a class
759 of multispecies abundance models for count data. Biodiversity and Conservation,

760 21, 1365-1380.

e1 Zipkin, E.F., DeWan, A. & Andrew Royle, J. (2009) Impacts of forest fragmentation


https://doi.org/10.1101/073577

bioRxiv preprint doi: https://doi.org/10.1101/073577; this version posted April 7, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

33

762 on species richness: a hierarchical approach to community modelling. Journal of

763 Applied Ecology, 46, 815-822.


https://doi.org/10.1101/073577

bioRxiv preprint doi: https://doi.org/10.1101/073577; this version posted April 7, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

34
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Model Data Statistical Model
Y11 Y12 o Y Yij ~ Bin(nia p)
S N; ~ Pois(A
Single-Species Y = | P21 i ’ ()
: : o A parameter (fixed)
Yrl Yr2 0 Yrt p parameter (fixed)
Beta Model
Ysij ~ Bin(nsia ps)
Ny; ~ Pois(As)
Yiin Yiae o Ui A1, Az, ..., Ag parameter (fixed)
v _ y17271 yl,i,j : P1,P2,--.,Ps ~ Beta(pv T)
1 - . .
Yl Yir2 -0 Yirt Normal Model
Ysij ~ Bin(nsia ps)
Y211 Y212 " Y21t )
X Ng; ~ Pois()\)
Y221 Y25
Multi-Species Y, = . . ! At Az, Ag ~ exp(N(pa, 04))
D2, - -, s ~ logit(N (puy, o
yZ,r,l yQ,r,Q e y2,r,t Pr.p2 bs & ( (:up p)
Ys11 Ysi2 0 Yslt Model for simulation
Yo — Ys21 Usij -0 Ysij ~ Bif.l(nsi; Ds)
: R Ny; ~ Pois(\s)
ys,hl ys,'r,Q s ys,r,t )\1, )\2, ce )\S ~ Gamma(a = (.65
, 5 =0.033)

P1,P2,---,P5 ™~ Unlf(o, 1)

Table 1: Summary of single and multi-species models used in this study. We also
describe the model used to generate the simulated data for comparison between the
multi-species models. y represents the observed counts, N the random variable of
unobserved number of individuals n available for detection in plot 7, p the detection
probability, and A the density of species s.
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Yamaura model Beta model

Species Det Parker 97.5% Mean 2.5% 97.5% MLE 2.5%
Atalotriccus pilaris 83 F 97.3 145.2  206.1  71.3 122.8 174.3
Basileuterus rufifrons 104 C 146.4 208.6 300.9 111.2 204.3 297.3
Campylorhynchus griseus 7 C 5.0 14.5 30.1 0.0 11.2 22.5
Cantorchilus leucotis 3 C 2.9 10.3 241 0.0 8.2 19.5
Cnemotriccus fuscatus 31 F 39.3 67.0 1109 243 67.2 110.2
Contopus cinereus 2 F/P 1.7 7.8 19.8 0.0 5.2 13.4
Cymbilaimus lineatus 4 F 4.1 12.9 28.8 0.0 11.3  25.0
Dromococcyx phasianellus 1 U 0.8 5.5 15.8 0.0 2.5 7.7

Elaenia flavogaster 67 C 1079 162.8 260.6  85.7  192.3 298.8
Euscarthmus meloryphus 26 C 28.1 49.8 81.0 17.3 443  T1.3
Formicivora grisea 172 C 2254  315.0 433.1 172.6 279.0 3854
Hemitriccus margaritaceiventer 106 C 104.2 1616 2314  83.6 1244 165.1
Henicorhina leucosticta 28 F 37.7 65.8 113.6  20.9 70.9 121.0
Hylophilus flavipes 144 C 236.1  344.8 580.2 134.1 4458 7T57.5
Leptopogon amaurocephalus 23 F 27.0 49.1 83.4 15.1 47.1 79.2
Myrmeciza longipes 64 C 81.2 121.6 1789  60.1 111.6  163.1
Myrmotherula pacifica 1 F 0.8 5.5 154 0.0 2.5 7.5

Pheugopedius fasciatoventris 83 F 114.0 164.2 2372 859 157.3  228.7
Poecilotriccus sylvia 69 F 89.2 135.3 201.7 619 125.4  189.0
Ramphocaenus melanurus 5 F/P 3.8 12.3 27.3 0.0 9.7 20.9
Synallazis albescens 1 C 0.8 5.6 15.6 0.0 2.5 7.5

Thamnophilus atrinucha 93 C 124.1 1771 2516  91.9 162.7 233.6
Thamnophilus doliatus 192 C 269.2  369.7 516.5 211.2  345.7 480.2
Todirostrum cinereum 51 C 63.2 97.6 1443  46.9 89.5 1322
Tolmomyias sulphurescens 80 F 110.8  162.1 2404  80.8 157.1  233.3
Troglodytes aedon 26 C 25.6 45.8 74.3 15.7 38.5  61.3

Table 2: Estimates for understory insectivorous birds in the dry forest of the Mag-
dalena Valley Colombia. Estimates are in individuals/100 ha. Det shows the number
of detections of each species in the data set. We present the Upper and Lower values
of the confidence interval for the Beta N-mixture model and credible interval for the
Normal N-mixture model. Parker refers to the abundance category in the Parker I1I
et al. (1996) database. U= Uncommon, C = Common, F= Fairly Common, F/P =
Fairly common but with patchy distribution.
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Figure 1: Mean bias in mean number of individuals per 100 ha A (bias = ’\/\;’\)

for a range of point counts, number of replicates, and true parameter values to for
mid low and high abundances and detection probabilities (A = 7,25,65,100 and
p = 0.2,0.5,0.8). Colors in each panel represent the bias from low (blue) to high
(red). The color scale is presented in the right. We selected a threshold for acceptable
bias in estimation of abundance of 0.1 which isocline is presented as a white line in
each of the panels. The results for the entire set of simulations are presented in a
similar figure in appendix A
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Figure 2: Graphic representation of the sampling design used to simulate the 500
count datasets of a community consisting of 27 species. We assumed the plot 20 be
100 ha (1 km?) and circular sampling point to be of 0.78 ha (~ 0.008 km?). We show
the true abundances in the plot represented by colors in the scale bar
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Figure 3: Relative bias in the estimated value of A ((Estimate-True)/True) for both
the Beta and Normal N-mixture model for 500 simulations of count data, for a com-
munity consisting of 27 species. We show the boxplots of the 500 posterior means and
modes for the Normal model and the 500 Maximum Likelihood Estimates (MLEs) for
the Beta model based on the same simulated data sets. The mean true abundances
for each of the 27 species varied from 1 to 98 individuals/100 ha. Because there are
27 true abundances in the community the figure shows one boxplot for each species
in the community.
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Figure 4: Relative bias in the estimated value of ps ((Estimate-True)/True) as a
function of the true abundance for both the Beta and Normal N-mixture model for
500 simulations of count data, for a community consisting of 27 species. We show
the boxplots of the 500 posterior means and modes for the Normal model and the
500 Maximum Likelihood Estimates (MLEs) for the Beta model based on the same
simulated data sets. The mean true abundances for each of the 27 species varies
from about 1 to 98 individuals/100 ha. Because there are 27 true abundances in the
community the figure shows one boxplot for each species in the community.
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Figure Al: Mean bias in mean number of individuals per 100 ha A (bias = )‘;—)‘)

for a range of point counts, number of replicates, and true parameter values to for
mid low and high abundances and detection probabilities (A = 7,25,65,100 and
p = 0.2,0.5,0.8). Colors in each panel represent the bias from low (blue) to high
(red). The color scale is presented in the right. We selected a threshold for acceptable
bias in estimation of abundance of 0.1 which isocline is presented as a white line in
each of the panels.
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Figure A2: Boxplot showing the distribution of A using Beta N-mixture model, show-
ing the location of the true value of \.
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Normal and Beta N-mixture models (right)
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Figure A5: Probability distribution of the p, estimated by the Beta (black) and
Normal (gray) N-mixture models for a 26 species community in the dry forest of
the Magdalena River Valley in Colombia. Dotted lines represent the upper and lower
curves based on the 95% confidence intervals of the parameters estimated by the mod-
els. Johnson’s SB distribution is the logit transformation of the normal distribution
used to estimate detection probabilities.
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« B R Code

s Appendix B contains the source codes necessary for estimating abundance using the
70 Beta and Normal N-mixture models. It is based on bugs specification of the model,
770 R functions for abundance estimation using N-mixture model are also provided in the
m  code. The data to the three steps of the Beta N-mixture validation are separated in
72 different .RData files. The data sets for the 1500 simulations with hi, mid and low
773 p are saved in the bias.RData. The 500 data sets simulated under the complicated
772 model used to compare the Beta and Normal N-mixture model along with the A and p
75 used in each simulation are saved under the comparison.RData. The real count data
776 from the point counts performed in central Colombia are saved in the file real. RData.
777 The entire code is saved in the Gomez_ et_al code.R from which all of the analysis
s of this paper can be easily replicated. The only step for which we did not save
779 the simulated data was the bias estimation of the single species N-mixture model
70 because of the large number of simulations performed. Using the code and function
7 provided, however, the reader should be able to reproduce the simulations and the

2 bias estimation.
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