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A spatially resolved network spike in model neuronal cultures reveals
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We show that in model neuronal cultures, where the probability of interneuronal connection formation
decreases exponentially with increasing distance between the neurons, there exists a small number of spa-
tial nucleation centers of a network spike, from where the synchronous spiking activity starts propagating in
the network typically in the form of circular traveling waves. The number of nucleation centers, as well as
their spatial location, is unique and unchanged for a given realization of neuronal network but is different
for different networks. In contrast, if the probability of interneuronal connection formation is independent
of the distance between neurons, then the nucleation centers do not arise and the synchronization of spiking
activity during a network spike occurs spatially uniform throughout the network. Therefore one can conclude
that spatial proximity of connections between neurons is important for the formation of nucleation centers.
It is also shown that fluctuations of the spatial density of neurons at their random homogeneous distribution
typical for the experiments in vitro do not determine the location of the nucleation centers. The simulation
results are qualitatively consistent with the experimental observations.
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1. Introduction

In neuronal cultures, i.e., planar neuronal networks
grown in vitro from initially dissociated neurons of cere-
bral cortex or hippocampus, one can often detect spon-
taneous short-term (fractions of a second) repetitive
synchronization of neuronal spiking activity called a net-
work spike or a population burst [1, 2, 3, 4, 5]. This phe-
nomenon is thought to be related to epilepsy [6, 7] there-
fore both the origin and the properties of network spikes
are the subject of intensive studies. In a recent paper
[5] (see also [8]) it has been shown experimentally that
a typical network spike has a few steady spatial sources
- nucleation centers of traveling waves of synchronous
spiking activity. The causes of their occurrence have
not yet identified. As described in [5], the number and
location of the nucleation centers for different neuronal
cultures are different, but for the same neuronal culture
these remain practically unchanged during the observa-
tion period.

In this paper, by means of simulations, we inves-
tigated the spatial dynamics of network spikes in large
planar neuronal networks (50 thousand neurons, several
millions of interneuronal connections) that are compa-
rable to real neuronal cultures. It was suggested that
the probability peon(r) of an unidirectional connection
between two neurons decreases exponentially as a func-
tion of the distance r between them [9]. In fact, we have

generalized the results of the work [10], where the net-
work spikes occurred in a model neuronal network com-
posed of Leaky Integrate-and-Fire (LIF) neurons with
binomial distribution of interneuron connections and re-
laxational synaptic plasticity, for the case of spatially
dependent network topology, taking into account the
respective propagation delays of signals between neu-
rons.

We have found that (i) for the network of excitatory
neurons, uniformly distributed over the square area,
there is indeed a small number of nucleation centers of
a network spike from which the synchronous spiking ac-
tivity propagates farther typically in the form of circular
traveling waves. The number of nucleation centers, as
well as their spatial location, is unique and invariable for
a given implementation of the neuronal network, but is
different for different networks. Note that the nucleation
centers were not nested in fluctuations of spatial density
of neurons and the change in the function peon(r), un-
der certain conditions on the average values of network
parameters, did not lead to the disappearance of nu-
cleation centers. (ii) If the probability of formation of
interneuronal connection was not dependent on the neu-
rons’ location relative to each other, then the nucleation
centers did not arise - the synchronization of spiking
activity occurred spatially uniform throughout the net-
work. (iii) If the average number of outgoing synaptic
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connections per neuron in the network was sufficiently
large, then a drifting spiral wave could arise occasionally
during some network spikes.

The results obtained, in particular, the existence of
nucleation centers and the statistical regularities of their
occurrence, seem consistent with the spatial dynamics of
network spikes described in [5]. It is worth noting that
the dynamic transitions between the phases of asyn-
chronous and synchronous spiking activity of the net-
work could be related to phase transitions of either the
first (case (i)) or the second (case (ii)) kind, depending
on the degree of locality of the majority of interneuronal
connections.

2. Materials and methods

Neuronal Network Model. A mathematical
model of the neuronal network comprised of three main
components: (I) the model of a neuron, (II) synapse
model describing the interaction between neurons, and
(III) algorithm for generating the network topology. By
default, the network consisted of 80% excitatory and
20% inhibitory neurons. The values of parameters for
the neuron and synapse models, including the param-
eters of normal distributions (standard deviations of
which by default were taken equal to 1/2 of the av-
erage values), do not differ essentially from those used
in article [10] (see [11]).

As a neuron model, the standard LIF-neuron has
been used. Subthreshold dynamics of the transmem-
brane potential V of such a neuron is described by the
equation

TmdV/dt = Viest — V(1) + (Lsyn(t) + Ing) Ry (1)

where V.5 is the neuron’s resting potential, 7,,, is the
characteristic time for relaxation of V' to V,.cs, Ry, is the
electrical resistance of the neuron’s membrane, Iy, (t) is
the total incoming synaptic current, which, as a function
of time ¢, depends on the choice of the dynamic model of
a synapse and the number of incoming synapses, I is a
constant "background" current, the magnitude of which
varies from neuron to neuron by a normal distribution.
Note that the background currents are required in or-
der to initiate and sustain a spontaneous asynchronous
spiking activity of the network.

When the transmembrane potential reaches a
threshold value Vi, = V(tsp), it is supposed that the
neuron emits a spike, then V abruptly drops to a
specified value Vyeset, Viest < Vieset < Vin, and retains
this value during the period of refractoriness 7., then
the dynamics of the potential is again described by the

equation (1). The result of the LIF-neuron dynamics is
a sequence of spike generation moments {tg;), tg)), S

If a neuron has the value of I that exceeds a critical
value I. = (Vi — Viest)/ R, then this neuron is a pace-
maker, i.e., it is able to emit spikes periodically, with the
period Atsp, = Tref + T In[(Ipg — 1)/ (Ing — Ic)], where
I, = (Vieset — Viest)/Rm, in the absence of incoming
signals from other neurons.

IT. A single contribution to the incoming synaptic
current in the TUM model [10] is determined by the
formula

Iayn(t) = A - y(1), (2)
where A is the maximum amplitude of synaptic current,
the sign and magnitude of which depend on the type of
pre- and postsynaptic neurons (i.e., whether the neuron
is excitatory or inhibitory), and y(t) is a dimensionless
parameter, 0 < y < 1, the dynamics of which is deter-
mined by the following system of equations:

dz/dt = 2/ Trec —u -2 - 0(t — tsp),
dy/dt = —y/mr+u-x-6(t — tsp), (3)
dz/dt =y/11 — 2/ Trec,

where x, y, and z are the fractions of synaptic resources
in the recovered, active and inactive state, respectively,
r+y+ 2 =1, Tree, 71 are the characteristic relax-
ation times, t,, is the moment of spike generation at
the presynaptic neuron (the signal propagation delay
between neurons is not taken into account in the origi-
nal model [10]), 6(...) is the Dirac delta function, w is
the fraction of recovered synaptic resource used to trans-
mit the signal across the synapse, 0 < v < 1. For the
outgoing synapses of inhibitory neurons, the dynamics
of u is described by the equation

du/dt = —u/Trecit + U - (1 —u) - 0(t — tsp),  (4)

where Tyq¢i is the characteristic relaxation time, and
0 < U < 1 is a constant parameter. For the out-
going synapses of excitatory neurons, u remains con-
stant and equals to U. In the numerical simulations
the constants A and U, as well as all the characteristic
relaxation times (except for 7;7) in the synaptic current
model, were normally distributed, i.e., each synapse had
its own unique values of these parameters.

III. We used the binomial and spatially-dependent
distributions of interneuron connections. In the case
of "binomial" network topology, we set a constant
probability peon of the formation of unilateral synaptic
connection between two neurons, independent of their
spatial coordinates. Then in the network of N neu-
rons the number m of outgoing connections of a neu-
ron is described by the binomial distribution P(m) =
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w7 (1= Ppeon) N 717™, where 0 < m < N — 1, with
mean value m = peon (N — 1).

In the case of spatially-dependent network topology,
point neurons were uniformly distributed over a square
area L x L of unit size (L = 1). The probability of
formation of unilateral connection between each pair of
neurons depended on the distance r between them ac-
cording to the formula [9]

pcon(r) = Be_r/)\a (5)

where A\ is the characteristic connection length, ex-
pressed in units of L. The constants B and A, for sim-
plicity, were chosen independent of the types of pre- and
postsynaptic neurons, in particular, it was taken B =1,
A = const for all combinations of types of neurons.

Note two essential circumstances: first, since the
square area is a convex set of points, and the interneuron
connections were modeled by segments of straight lines,
we did not take into account the edge effects when creat-
ing the network. Secondly, despite the fact that peon ()
reaches its maximum at r = 0, the distribution of the
lengths of interneuronal connections is zero at r = 0 and
reaches its maximum at the point r =~ A, provided that
A < 0.1. One can show this straightforwardly by finding
the probability density P(r) to detect two neurons at a
distance r from each other,

2T'(7T—4’I“—|—T2), r<1,

P(r) = { 4r- (2arcsin(1/r) +2v/r2 —1—...  (6)
—r/2—1%/2-1), 1 <r<V?2,
V2
such that /P(r)dr =1 [11, 12, 13, 14]. The distribu-
0

tion of interneuronal connection lengths is given by the
product peon (r)P(r) (Fig. 1, upper graph), cp. [15]. In
turn, the average number of interneuron connections in
the network of N neurons is

V2
NeonX) = NN = 1) [ peon(r)P0)r, (1)
0
so that the corresponding probability for the binomial
distribution can be found as peon, = Neon(A)/ (N (N —1))
(Fig. 1, lower graph). The approximate analytical ex-
pression for the function Ncop(A) is given in [11].

The delays resulting from the propagation of spikes
along the axons were calculated by the formula [16]

Tdel = Tdel,min T T/vspv (8)

where 74.; is the total propagation delay of a spike along
the axon of length 7, Tgei min is the minimal axonal delay
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Figure 1. Upper graph: The probability density P(r)
to find two neurons, whose spatial coordinates are at
random uniformly distributed in the square L x L, at
a distance r from each other. Inset: normalized distri-
bution of the interneuronal connection lengths for the
network of 10 thousand neurons at A = 0.1 (see (5)) and
the corresponding product peon(r)P(r). Lower graph:
Functional dependence Ncon () obtained (i) by direct
simulation of the networks of N = 10* neurons (thick
blue curve) and (ii) with the use of the approximate
analytical expression of Eq. (7) (thin red curve).

the same for all synapses, and v, is the constant speed
of spike propagation along the axon [11]. Note that the
distribution of axonal delays (8) is also determined by
the product peon(r)P(r).

3. Results

Article [10] lists the parameter values for the TUM
model at which the regime of repetitive network spikes
occurs in simulations (Fig. 2). This regime is charac-
terized by a broad distribution of intervals between sub-
sequent network spikes (in [17, 18] it is shown that the
distribution of increments of these intervals may be ap-
proximated by the Levy distribution). It is this regime
("TUM regime") we have obtained and examined for the
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Figure 2. Spiking activity of the "binomial" neuronal
network of 500 LIF-neurons (80% excitatory, 20% in-
hibitory; 6.4% pacemaker neurons) with normal dis-
tribution of the background currents (see the inset at
right). LEFT: Raster plot (top) and spiking activity
averaged over 2 ms and normalized to the total num-
ber of neurons (bottom). Network spikes are the verti-
cal stripes in the raster and the peaks on the activity
plot. X(t) is the network-averaged fraction of synap-
tic resources in the recovered state. RIGHT: The same
quantities for a single network spike.

case of spatially-dependent network topology. It is im-
portant to note that this occurs only in relatively narrow
region of values of the average number m = peon (N — 1)
of outgoing connections per neuron. In particular, keep-
ing unchanged other parameters of the simulations, for
the networks of excitatory neurons the TUM-regime oc-
curred in the range 30 < m < 90 (see Fig. 3). If the
network comprises 20% inhibitory neurons, this range
is expanding, 30 < m < 150. For planar networks with
a large number of neurons (40-50 thousand) uniformly
distributed over a square area, the parameter A, which
determines the probability (5) of interneuronal connec-
tion formation, was typically set so that the average
number of outgoing connections per neuron was inside
this range, near its lower boundary for the sake of con-
serving computing resources.

In the TUM-regime, a network spike in the net-
work of excitatory neurons uniformly distributed in the
square area starts in one of a few (usually 3-4) spa-
tial centers - primary nucleation centers, from which
the synchronous spiking activity propagates through the
network in the form of a circular traveling wave, accom-
panied by the activation of more numerous secondary
nucleation centers (Fig. 4). A spatial profile of the net-
work spike emerging in the nucleation center is shown
in Fig. 5.
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Figure 3. A: The phase diagram of the occurrence prob-
ability for the regime of aperiodically repetitive network
spikes (TUM-regime) in the "binomial" networks of ex-
citatory neurons. N is the number of neurons in the
network, P.o,, is the probability of interneuronal con-
nection formation. Each pixel of the diagram displays
the relative number of realizations of a neuronal net-
work with given values of N and P.on (in total, there
were b such trials) for which the TUM-regime was ob-
served. B: Examples of averaged (over 3 ms) spiking
activity of the network of N = 500 excitatory neurons
at Peon = 0.03, 0.1, 0.22.

The primary nucleation centers are determined at
the initial stage of a network spike by their invariable
spatial arrangement (Fig. 5, right graph). The evalu-
ation of their number, obviously, depends on the simu-
lation time since the network spikes occur randomly in
one of them. According to our observations (in total,
12 simulations of the same type and 14 various modifi-
cations were performed), the number of primary nucle-
ation centers ceases to increase after 10-15 sequentially
passed network spikes. We therefore conclude that it
remains the same for a given realization of the neuronal
network, being different for different networks. Note
that the average frequency of generating network spikes
for the networks of 40 thousand excitatory neurons is
in the order of magnitude of 1 Hz, provided that the
simulation time-step is 0.1 ms and the simulation time
is 10 s. Inhibitory neurons, in their turn, generally (i)
decrease the average frequency of network spike occur-
rence, (ii) increase the variability of both the amplitude
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Figure 4. Upper graph: Averaged (over 2 ms) spiking activity of the network of 50 thousand neurons at A = 0.01. After
the first 10 seconds of the simulation the inhibitory neurons (20% of the total) are blocked, i.e. do not participate in
spiking dynamics of the network, in order to obtain a clear picture of the propagation of synchronous spiking activity
from the smallest number of nucleation centers. Lower graph: LEFT: Network activity (top) and raster (bottom) during
the network spike marked by the arrow in the upper graph. RIGHT: Snapshots of the instantaneous spatial activity of
neurons for the corresponding moments of the network spike. Blue dots depict neurons and red dots highlight spiking
neurons. Each frame corresponds to the area L x L. On the frame C it is seen that in addition to the primary nucleation
center (frame A) three secondary centers become active. The simulation parameters are described in details in [7].

and duration of a network spike, and (iii) increase the
number of nucleation centers.

Interestingly, if the average number of outgoing
synaptic connections per neuron is sufficiently large (i.e.,
parameter A in Eq. (5) is relatively large), then a drift-
ing spiral wave can arise during some network spikes
(Fig. 6), given that most of the network spikes still start
with circular traveling waves propagating from the sta-
tionary nucleation centers. (In total, three such spirals
occurred in two of five identical simulations at A = 0.04
with relative frequencies 1/12 and 2/10, respectively.)

4. Discussion

A theory for the origin of the nucleation centers of
network spikes, enabling prediction of the number and
location of primary nucleation centers without carrying
out the dynamic simulations, is currently absent. We
have excluded the influence of fluctuations of the spa-
tial distribution density of neurons by placing the neu-
rons strictly periodically in the nodes of a square lattice

- the nucleation centers still occurred (Fig. 7, upper
panel). One-to-one correspondence was not observed
between the locations of local maxima of spatial density
of pacemaker neurons and primary nucleation centers.
Nucleation centers occurred even at identical values of
synaptic parameters (see (2), (3)) for all synapses of the
network.

Modifications of the functional dependence of the
probability of interneuronal connection formation on
the distance between neurons (e.g., peon(r) = (A — 1),
where 6(...) is unit step function), provided that (i)
the average number of outgoing connections per neu-
ron remains the same in the order of magnitude and (ii)
neurons located far (compared with the characteristic
distance A, L/v/N < A < L) from each other practi-
cally do not form connections, also do not lead to the
disappearance of nucleation centers. On the other hand,
if the probability of interneuronal connection forma-
tion was independent of the distance between neurons
(i-e., peon(r) = const, given that the average number of
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Figure 5. Left graph: The dynamics of spiking activity front for the initial stage of the network spike shown in Fig. 4
(see frames A - C) with the relative times indication. The vertical axis denotes the spatially-averaged spiking activity
of the network, the horizontal one shows the distance p from the nucleation center. Right graph: Spatial locations of
the nucleation centers of 20 network spikes for the same network as that in Fig. 4. Three nucleation centers (A, B,
C) are clearly distinguishable. Black dots depict the spatial spiking activity of neurons during the first 40 ms after the
network spike onset that was determined by the excess of a threshold value for the network spiking activity.
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Figure 6. Drifting spiral wave during the network spike (marked by the arrow) for the network of 50 thousand neurons
at A = 0.04 that gives approx. 23 million interneuron connections in the network with approx. 460 outgoing connections
per neuron. Other simulation parameters were taken the same as for the network in Fig. 4. Inhibitory neurons (20% of
the total) are not blocked during the whole time of the simulation. Blocking inhibitory neurons at A = 0.04 results in
disappearance of the TUM-regime (see region III of the phase diagram in Fig. 3 A).

outgoing connections per neuron remains unchanged), simulations were performed). Here, it may be significant
the nucleation centers did not arise - synchronization that the variance of the total number of interneuronal
of spiking activity occurred spatially uniform through- connections of the network with peo,(r) = e~"/*, corre-

out the network (lower panel in Fig. 7, a total of 5 such sponding to the Bernoulli trials with variable probabili-
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ties of success, reaches its maximum at peon(r) = const,
i.e. in the limit of standard binomial distribution [19].
Nevertheless, the results of simulations strongly suggest
that the spatial proximity of the majority of network
interneuronal connections is important for the forma-
tion of nucleation centers. Moreover, the evaluation
of network-averaged values of the shortest path length
(SPL) and clustering coefficient (C') [20] indicates that
the neuronal networks exhibiting nucleation centers dur-
ing network spikes belong to small-world networks. In
particular, (SPL) ~ 4.3 and (C) ~ 0.1 for the network
in Fig. 4, (SPL) ~ 3.8 and (C) ~ 0.1 for the network in
Fig. 7 (upper panel), and (SPL) ~ 3.4 and (C) ~ 1073
for truly random (binomial) network in Fig. 7 (lower
panel).

In general, our findings on nucleation centers, circu-
lar traveling waves and drifting spiral waves of spiking
activity are in qualitative agreement with the already
known. In particular, the nucleation centers and circu-
lar traveling waves during a network spike were directly
observed experimentally in neuronal cultures [5], and
the spiral waves were observed in disinhibited neocor-
tical slices [21]. The similar effects (e.g., circular and
spiral waves), regardless to the occurrence of network
spikes, were also obtained in previous computational
studies [22, 23, 24, 25] using different models of the neu-
ronal network.

5. Conclusion

A relatively simple model of a planar neuronal cul-
ture is described that demonstrates in simulations the
regime of repetitive network spikes emerging in a small
number of spatial nucleation centers, the location of
which is unique for a given network implementation.
In fact, the number and location of primary nucleation
centers are dynamic "marks of distinction" of neuronal
cultures from each other.

More specifically, we have shown that (i) in spatially
uniform networks of excitatory neurons, a typical net-
work spike has complex spatial dynamics with a few
nucleation centers, (ii) the spatial nucleation centers of
a network spike appear if the majority of connections
between neurons are the local ones, and (iii) the nucle-
ation centers are not nested in fluctuations of spatial
density of neurons.

It is worth noting that the spatial dynamics of a
network spike in real neuronal cultures can be directly
visualized with high spatial and temporal resolution us-
ing multi-transistor arrays [26] or advanced standard
microelectrode arrays [27]. Therefore the results of sim-

ulations similar to those conducted in this study allow
a direct comparison with experimental observations.
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A spatially resolved network spike in model neuronal cultures reveals nucleation centers... 9
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Figure 7. Upper panel: Spatial dynamics of the network spike (marked by the arrow) for the network of 50625 neurons
located in 225 X 225 nodes of a square lattice having period a = 0.004L. Inhibitory neurons (20% of the total) are
blocked from the outset of the simulation. The dependence pcon(r), with A = 0.014, and other simulation parameters
were taken the same as for the network in Fig. 4. On frames A and B two nucleation centers are clearly visible. Lower
panel: A similar simulation for the network of 50 thousand neurons at pcon(r) = const = 6.4 - 10_47 with the same
average number of outgoing connections per neuron and other simulation parameters as those for the network in Fig.
4. It is seen that there are no nucleation centers.
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