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We show that in model neuronal 
ultures, where the probability of interneuronal 
onne
tion formation

de
reases exponentially with in
reasing distan
e between the neurons, there exists a small number of spatial

nu
leation 
enters of a network spike, from where the syn
hronous spiking a
tivity starts propagating in the

network typi
ally in the form of 
ir
ular traveling waves. The number of nu
leation 
enters and their spatial

lo
ations are unique and un
hanged for a given realization of neuronal network but are di�erent for di�erent

networks. In 
ontrast, if the probability of interneuronal 
onne
tion formation is independent of the distan
e

between neurons, then the nu
leation 
enters do not arise and the syn
hronization of spiking a
tivity during

a network spike o

urs spatially uniform throughout the network. Therefore one 
an 
on
lude that spatial

proximity of 
onne
tions between neurons is important for the formation of nu
leation 
enters. It is also

shown that �u
tuations of the spatial density of neurons at their random homogeneous distribution typi
al

for the experiments in vitro do not determine the lo
ations of the nu
leation 
enters. The simulation results

are qualitatively 
onsistent with the experimental observations.
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1. Introdu
tion

In neuronal 
ultures, i.e. planar neuronal networks

grown in vitro from initially disso
iated neurons typi-


ally of 
erebral 
ortex or hippo
ampus, one 
an often

dete
t spontaneous short-term (fra
tions of a se
ond)

repetitive syn
hronization of neuronal spiking a
tivity


alled a network spike or a population burst [1�5℄. This

phenomenon is thought to be related to epilepsy [6, 7℄

therefore both the origin and the properties of network

spikes are the subje
t of intensive studies [8�19℄. The

parti
ular attention is paid to identifying patterns of

the network spike initiation [2�4, 20�27℄. In a re
ent

paper [4℄ (see also [20,28�30℄) it has been shown exper-

imentally that a typi
al network spike has a few steady

spatial sour
es - nu
leation 
enters of traveling waves

of syn
hronous spiking a
tivity. The 
auses of their

o

urren
e have not yet been identi�ed. As des
ribed

in [4℄, the number and lo
ations of the nu
leation 
en-

ters for di�erent neuronal 
ultures are di�erent, but for

the same neuronal 
ulture these remain pra
ti
ally un-


hanged during the observation period.

In this paper, by means of simulations, we investi-

gated the spatial dynami
s of network spikes in large

planar neuronal networks (50 thousand neurons, sev-

eral millions of interneuronal 
onne
tions), whi
h are


omparable to real neuronal 
ultures. It was suggested

that the probability pcon(r) of an unidire
tional 
on-

ne
tion between two neurons de
reases exponentially

as a fun
tion of the distan
e r between them [31℄. In

fa
t, we have generalized the model [8℄, where the net-

work spikes o

urred in a neuronal network 
omposed

of Leaky Integrate-and-Fire (LIF) neurons with bino-

mial distribution of interneuronal 
onne
tions and re-

laxational synapti
 plasti
ity, for the 
ase of spatially

dependent network topology, taking into a

ount the

respe
tive propagation delays of signals between neu-

rons.

We have found that (i) for the network of ex
itatory

neurons, uniformly distributed over the square area,

there is indeed a small number of spontaneously-formed

nu
leation 
enters of a network spike, from where the

syn
hronous spiking a
tivity propagates farther typi-


ally in the form of 
ir
ular traveling waves. The num-

ber of nu
leation 
enters and their spatial lo
ations are

unique and invariable for a given implementation of the

neuronal network, but are di�erent for di�erent net-

works. The nu
leation 
enters are not nested in �u
-

tuations of spatial density of neurons and the 
hanges

in the fun
tion pcon(r), under 
ertain 
onditions on

the average values of network parameters, do not lead

to the disappearan
e of nu
leation 
enters. (ii) If the

probability of formation of interneuronal 
onne
tion is

not dependent on the neurons' lo
ation relative to ea
h

other, then the nu
leation 
enters do not arise - the syn-
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hronization of spiking a
tivity o

urs spatially uniform

throughout the network. (iii) In the networks of ex
ita-

tory and inhibitory neurons with relatively high density

of interneuronal 
onne
tions, a network spike may o

a-

sionally o

ur in the form of non-stationary multiarmed

spiral wave with the drifting 
enter.

The results obtained, in parti
ular, the existen
e of

nu
leation 
enters and the statisti
al regularities of their

o

urren
e, seem 
onsistent with the spatial dynami
s of

network spikes des
ribed in [4℄. It is worth noting that

the dynami
 transitions between the phases of asyn-


hronous and syn
hronous spiking a
tivity of the net-

work 
ould be related to phase transitions of either the

�rst (
ase (i)) or the se
ond (
ase (ii)) kind, depending

on the degree of lo
ality of the majority of interneuronal


onne
tions.

2. Neuronal network model

A mathemati
al model of the neuronal network 
om-

prised of three main 
omponents: (I) the model of a

neuron, (II) synapse model des
ribing the intera
tion

between neurons, and (III) algorithm for generating the

network topology. By default, the network 
onsisted of

80% ex
itatory and 20% inhibitory neurons. The val-

ues of parameters for the neuron and synapse models,

in
luding the parameters of normal distributions (stan-

dard deviations of whi
h by default were taken equal to

1/2 of the average values), do not di�er essentially from

those used in arti
le [8℄ (see [32℄).

I. As a neuron model, the standard LIF-neuron has

been used. Subthreshold dynami
s of the transmem-

brane potential V of su
h a neuron is des
ribed by the

equation

τmdV/dt = Vrest − V (t) + (Isyn(t) + Ibg)Rm, (1)

where Vrest is the neuron's resting potential, τm is the


hara
teristi
 time for relaxation of V to Vrest, Rm is the

ele
tri
al resistan
e of the neuron's membrane, Isyn(t) is

the total in
oming synapti
 
urrent, whi
h, as a fun
tion

of time t, depends on the 
hoi
e of the dynami
 model

of a synapse and the number of in
oming synapses, Ibg
is a 
onstant "ba
kground" 
urrent, the magnitude of

whi
h varies from neuron to neuron by a normal distri-

bution. The ba
kground 
urrents are required in order

to initiate and sustain a spontaneous asyn
hronous spik-

ing a
tivity of the network. These also determine the

diversity of neuronal ex
itability in the network.

When the transmembrane potential rea
hes a

threshold value Vth = V (tsp), it is supposed that the

neuron emits a spike, then V abruptly drops to a

spe
i�ed value Vreset, Vrest < Vreset < Vth, and retains

this value during the period of refra
toriness τref , then

the dynami
s of the potential is again des
ribed by the

equation (1). The result of the LIF-neuron dynami
s is

a sequen
e of spike generation moments {t(1)sp , t
(2)
sp , . . .}.

If a neuron has the value of Ibg that ex
eeds a 
riti
al

value Ic = (Vth−Vrest)/Rm, then this neuron is a pa
e-

maker, i.e., it is able to emit spikes periodi
ally, with

the period △tsp = τref + τm ln[(Ibg − Ir)/(Ibg − Ic)],

where Ir = (Vreset − Vrest)/Rm, in the absen
e of in-


oming signals from other neurons. Our network model

implies that both ex
itatory and inhibitory neurons may

be pa
emakers.

Finally, it is worth noting that the LIF-neuron has

no ability for intrinsi
 bursting, unlike the neuron model

used in [4, 17℄.

II. A single 
ontribution to the in
oming synapti



urrent in the TUM model [8℄ is determined by the for-

mula

Isyn(t) = A · y(t), (2)

where A is the maximum amplitude of synapti
 
urrent,

the sign and magnitude of whi
h depend on the type of

pre- and postsynapti
 neurons (i.e., whether the neuron

is ex
itatory or inhibitory), and y(t) is a dimensionless

parameter, 0 ≤ y ≤ 1, the dynami
s of whi
h is deter-

mined by the following system of equations:











dx/dt = z/τrec − u · x · δ(t− tsp − τdel),

dy/dt = −y/τI + u · x · δ(t− tsp − τdel),

dz/dt = y/τI − z/τrec,

(3)

where x, y, and z are the fra
tions of synapti
 resour
es

in the re
overed, a
tive and ina
tive state, respe
tively,

x + y + z = 1, τrec, τI are the 
hara
teristi
 relaxation

times, δ(. . .) is the Dira
 delta fun
tion, tsp is the mo-

ment of spike generation at the presynapti
 neuron, τdel
is the spike propagation delay (see (8)), and u is the

fra
tion of re
overed synapti
 resour
e used to transmit

the signal a
ross the synapse, 0 ≤ u ≤ 1. For the out-

going synapses of inhibitory neurons, the dynami
s of u

is des
ribed by the equation

du/dt = −u/τfacil + U · (1− u) · δ(t− tsp − τdel), (4)

where τfacil is the 
hara
teristi
 relaxation time, and

0 < U ≤ 1 is a 
onstant parameter. For the out-

going synapses of ex
itatory neurons, u remains 
on-

stant and equals to U . In the numeri
al simulations the


onstants A and U , as well as all the 
hara
teristi
 re-

laxation times (ex
ept for τI) in the synapti
 
urrent

model, were normally distributed, i.e. ea
h synapse had

its own unique values of these parameters.

III. We used the binomial and spatially-dependent

distributions of interneuronal 
onne
tions. To simplify
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the model, the formation of autapti
 
onne
tions was

prohibited. In the 
ase of "binomial" network topol-

ogy, we set a 
onstant probability pcon of the forma-

tion of unilateral synapti
 
onne
tion between two neu-

rons, independent of their spatial 
oordinates. Then in

the network of N neurons the number m of outgoing


onne
tions of a neuron is des
ribed by the binomial

distribution P (m) = Cm
N−1p

m
con(1− pcon)

N−1−m
, where

0 ≤ m ≤ N − 1, with mean value m̄ = pcon(N − 1).

In the 
ase of spatially-dependent network topology,

point neurons were uniformly distributed over a square

area L × L of unit size (L = 1). The probability of

formation of unilateral 
onne
tion between ea
h pair of

neurons depended on the distan
e r between them a
-


ording to the formula [31℄

pcon(r) = Be−r/λ, (5)

where λ is the 
hara
teristi
 
onne
tion length, ex-

pressed in units of L. The 
onstants B and λ, for sim-

pli
ity, were 
hosen independent of the types of pre- and

postsynapti
 neurons, in parti
ular, it was taken B = 1,

λ = const for all 
ombinations of types of neurons.

Note two essential 
ir
umstan
es: �rst, sin
e the

square area is a 
onvex set of points, we assumed that

the interneuronal 
onne
tions may be modeled by seg-

ments of straight lines. In addition, as the 
onne
tions

do not 
ross boundaries of the square, the neurons in the

vi
inity of the boundaries have fewer 
onne
tions. Se
-

ondly, despite the fa
t that pcon(r) rea
hes its maximum

at r = 0, the distribution of the lengths of interneuronal


onne
tions is zero at r = 0 and rea
hes its maximum

at the point r ≈ λ, provided that λ . 0.1. One 
an

show this straightforwardly by �nding the probability

density P (r) to dete
t two neurons at a distan
e r from

ea
h other,

P (r) =















2r · (π − 4r + r2), r ≤ 1,

4r · (2 arcsin(1/r) + 2
√

r2 − 1− . . .

−π/2− r2/2− 1), 1 < r ≤
√
2,

(6)

su
h that

√

2
∫

0

P (r)dr = 1 [32�35℄. The distribution of in-

terneuronal 
onne
tion lengths is given by the produ
t

pcon(r)P (r) (Fig. 1, upper graph), 
p. [4, 17, 36℄. In

turn, the average number of interneuronal 
onne
tions

in the network of N neurons is

Ncon(λ) = N(N − 1)

√

2
∫

0

pcon(r)P (r)dr, (7)
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Figure 1. Upper graph: Probability density P (r) to �nd

two neurons, whose spatial 
oordinates are at random

uniformly distributed in the square L × L, at distan
e

r from ea
h other. Inset: Normalized distribution of

the interneuronal 
onne
tion lengths for the network of

N = 104 neurons at λ = 0.1L (see (5)) and the 
or-

responding produ
t pcon(r)P (r). Lower graph: Fun
-

tional dependen
e Ncon(λ) obtained (i) by dire
t simu-

lation of the networks of N = 104 neurons (thi
k blue


urve) and (ii) with the use of the approximate ana-

lyti
al expression of Eq. (7) (thin red 
urve, whi
h is

virtually superimposed on the blue 
urve).

so that the 
orresponding probability for the binomial

distribution 
an be found as pcon = Ncon(λ)/(N(N−1))

(Fig. 1, lower graph). The approximate analyti
al ex-

pression for the fun
tion Ncon(λ) is given in [32℄.

The delays resulting from the propagation of spikes

along the axons were 
al
ulated by the formula [37℄

τdel = τdel,min + r/vsp, (8)

where τdel is the total propagation delay of a spike along

the axon of length r, τdel,min is the minimal axonal delay

the same for all synapses, and vsp is the 
onstant speed

of spike propagation along the axon [32℄. Note that the

distribution of axonal delays (8) is also determined by

the produ
t pcon(r)P (r).
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Figure 2. Spiking a
tivity of the "binomial" neuronal

network of N = 500 LIF-neurons (80% ex
itatory, 20%

inhibitory; 6.4% pa
emaker neurons) with pcon = 0.1

and the normal distribution of the ba
kground 
urrents

(see the inset at right). LEFT: Raster plot (top) and

spiking a
tivity, averaged over 2 ms and normalized to

the total number of neurons (bottom). Network spikes

are the verti
al stripes in the raster and the peaks on

the a
tivity plot. X(t) is the network-averaged fra
tion

of synapti
 resour
es in the re
overed state. RIGHT:

The same quantities for a single network spike.

3. Results

Arti
le [8℄ lists the parameter values for the TUM

model at whi
h the regime of repetitive network spikes

o

urs in simulations (Fig. 2). This regime ("TUM

regime") is 
hara
terized by a large variability of in-

tervals between subsequent network spikes for di�erent

realizations of the network, 
p. [5, 12, 16℄. (Findings

[9,11℄ indi
ate that the realization-averaged distribution

of in
rements of these intervals may be approximated

by the Levy distribution.) It is important to note that

the TUM regime o

urs only in a relatively narrow re-

gion of values of the average number m̄ = pcon(N − 1)

of outgoing 
onne
tions per neuron. In parti
ular, keep-

ing un
hanged other parameters of the simulations, for

the networks of ex
itatory neurons the TUM-regime o
-


urred in the range 30 . m̄ . 90 (see Fig. 3). If the

network 
omprises 20% inhibitory neurons, this range

is expanded, 30 . m̄ . 150. In what follows, we

obtain and examine the TUM regime for the 
ase of

spatially-dependent network topology. For planar net-

works with a large number of neurons (40-50 thousand)

uniformly distributed over a square area, the parame-

ter λ, whi
h determines the probability (5) of interneu-

ronal 
onne
tion formation, was typi
ally set so that

the average number of outgoing 
onne
tions per neuron

(m̄ = Ncon(λ)/N , see (7)) was inside this range, near
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Figure 3. À: Phase diagram of the o

urren
e proba-

bility for the regime of aperiodi
ally repetitive network

spikes (TUM-regime) in the "binomial" networks of ex-


itatory neurons. N is the number of neurons in the

network, pcon is the probability of interneuronal 
on-

ne
tion formation. Ea
h pixel of the diagram displays

the relative number of realizations of a neuronal net-

work with given values of N and pcon (in total, there

were 5 su
h trials) for whi
h the TUM-regime was ob-

served. B: Examples of averaged (over 3 ms) spiking

a
tivity of the network of N = 500 ex
itatory neurons

at pcon = 0.03, 0.1, 0.22.

its lower boundary for the sake of 
onserving 
omputing

resour
es.

In the TUM-regime, a network spike in the net-

work of ex
itatory neurons uniformly distributed in the

square area starts in one of a few (usually 3-4) spatial


enters - primary nu
leation 
enters, from whi
h the

syn
hronous spiking a
tivity starts propagating through

the network typi
ally in the form of a 
ir
ular traveling

wave a

ompanied by the a
tivation of more numerous

se
ondary nu
leation 
enters (Fig. 4). A spatial pro�le

of the network spike emerging in the nu
leation 
enter

is shown in Fig. 5.

The primary nu
leation 
enters are determined at

the initial stage of a network spike by their invariable

spatial arrangement (Fig. 5, right graph). The evalu-

ation of their number, obviously, depends on the simu-

lation time sin
e the network spikes o

ur randomly in

one of them with di�erent relative probabilities. A
-


ording to our observations (in total, 12 simulations
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Figure 4. Upper graph: Averaged (over 2 ms) spiking a
tivity of the network of 50 thousand neurons at λ = 0.01L.

After the �rst 10 se
onds of the simulation the inhibitory neurons (20% of the total) are blo
ked, i.e. do not parti
ipate

in spiking dynami
s of the network, in order to obtain a 
lear pi
ture of the propagation of syn
hronous spiking a
tivity

from the smallest number of nu
leation 
enters. Lower graph: LEFT: Network a
tivity (top) and raster (bottom) during

the network spike marked by the arrow in the upper graph. RIGHT: Snapshots of the instantaneous spatial a
tivity of

neurons for the 
orresponding moments of the network spike. Blue dots depi
t neurons and red dots highlight spiking

neurons. Ea
h frame 
orresponds to the area L×L. On the frame C it is seen that in addition to the primary nu
leation


enter (frame A) three se
ondary 
enters be
ome a
tive. The simulation parameters are des
ribed in detail in [32℄.

of the same type and 14 various modi�
ations were

performed), the number of primary nu
leation 
enters


eases to in
rease after 10-15 sequentially passed net-

work spikes. We therefore 
on
lude that it remains the

same for a given realization of the neuronal network, be-

ing di�erent for di�erent networks. Note that a typi
al

rate of generating network spikes is about a few hertz

(Fig. 4) and the 
orresponding times
ale has the same

order of magnitude as the resour
e re
overy time τrec
(see (3)) for an outgoing synapse of an ex
itatory neu-

ron [32℄. However, for some network realizations this

similarity in the times
ales is strongly violated.

Inhibitory neurons, in their turn, generally (i) de-


rease the average frequen
y of network spike o

ur-

ren
e, (ii) in
rease the variability of both the amplitude

and duration of a network spike, and (iii) hinder the

a
tivity of primary nu
leation 
enters and in
rease the

number of se
ondary ones.

Interestingly, if the average number of outgoing

synapti
 
onne
tions per neuron is su�
iently large (i.e.,

parameter λ in Eq. (5) is relatively large), then a mul-

tiarmed spiral wave with the drifting 
enter 
an arise

during some network spikes (Fig. 6), given that most

of the network spikes still start with 
ir
ular traveling

waves diverging from the motionless nu
leation 
enters.

(In total, three su
h spirals o

urred in two of �ve iden-

ti
al simulations at λ = 0.04 with relative rates 1/12

and 2/10, respe
tively.)

4. Dis
ussion

Despite some theoreti
al advan
es [25,38�45℄, a the-

ory for the origin of the nu
leation 
enters of network

spikes, enabling predi
tion of the number and lo
ations

of primary nu
leation 
enters before 
arrying out the

dynami
 simulations, is 
urrently absent. We have ex-


luded the in�uen
e of �u
tuations of the spatial distri-

bution density of neurons by pla
ing the neurons stri
tly

periodi
ally in the nodes of a square latti
e - the nu-


leation 
enters still o

urred (Fig. 7, upper panel).

One-to-one 
orresponden
e was not observed between
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Figure 5. Left graph: The dynami
s of spiking a
tivity front for the initial stage of the network spike shown in Fig. 4

(see frames A - C) with the relative times indi
ation. The verti
al axis denotes the spatially-averaged spiking a
tivity

of the network, the horizontal one shows the distan
e ρ from the nu
leation 
enter. Right graph: Spatial lo
ations of

the nu
leation 
enters of twenty subsequent network spikes o

urred after blo
king the inhibitory neurons for the same

network as that in Fig. 4, where only the �rst fourteen of these network spikes are shown. Three nu
leation 
enters

(A, B, C) with di�erent relative rates of network spike generation (10/20, 5/20 and 4/20, respe
tively) are 
learly

distinguishable. Bla
k dots depi
t the spatial spiking a
tivity of neurons during the �rst 40 ms after the network spike

onset that was determined by the ex
ess of a threshold value for the network spiking a
tivity.

Figure 6. Multiarmed spiral wave with the drifting 
enter during the network spike (marked by the arrow) for the

network of 50 thousand neurons at λ = 0.04L that gives approx. 23 million interneuronal 
onne
tions in the network,

with approx. 460 outgoing 
onne
tions per neuron. Other simulation parameters were taken the same as for the network

in Fig. 4. Inhibitory neurons (20% of the total) are not blo
ked during the whole time of the simulation. Blo
king

inhibitory neurons at λ = 0.04L results in disappearan
e of the TUM-regime (see region III of the phase diagram in

Fig. 3 A).
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the lo
ations of lo
al maxima of spatial density of pa
e-

maker neurons and primary nu
leation 
enters. Nu
le-

ation 
enters o

urred even at identi
al values of synap-

ti
 parameters (see (2), (3)) for all synapses of the net-

work and also in the 
ase where pa
emaker neurons did

not have any in
oming 
onne
tions. In addition, a re-

distribution (i.e., a new sampling) of the ba
kground


urrents during the simulation led to the 
hange in the

number of primary nu
leation 
enters, their lo
ations

and relative rates of the network spike generation.

Modi�
ations of the fun
tional dependen
e of the

probability of interneuronal 
onne
tion formation on

the distan
e between neurons (e.g., pcon(r) = θ(λ − r),

where θ(. . .) is unit step fun
tion), provided that (i)

the average number of outgoing 
onne
tions per neu-

ron remains the same in the order of magnitude and (ii)

neurons lo
ated far (
ompared with the 
hara
teristi


distan
e λ, L/
√
N < λ ≪ L) from ea
h other pra
ti-


ally do not form 
onne
tions, also do not lead to the

disappearan
e of nu
leation 
enters. On the other hand,

if the probability of interneuronal 
onne
tion forma-

tion was independent of the distan
e between neurons

(i.e., pcon(r) = const, given that the average number of

outgoing 
onne
tions per neuron remains un
hanged),

the nu
leation 
enters did not arise - syn
hronization

of spiking a
tivity o

urred spatially uniform through-

out the network (lower panel in Fig. 7, a total of 5 su
h

simulations were performed). Here, it may be signi�
ant

that the varian
e of the total number of interneuronal


onne
tions of the network with pcon(r) = e−r/λ
, 
orre-

sponding to the Bernoulli trials with variable probabili-

ties of su

ess, rea
hes its maximum at pcon(r) = const,

i.e. in the limit of standard binomial distribution [46℄.

Nevertheless, the results of simulations strongly suggest

that the spatial proximity of the majority of network in-

terneuronal 
onne
tions (
p. [42℄) is important for the

formation of nu
leation 
enters. Moreover, the evalu-

ation of network-averaged values of the shortest path

length 〈SPL〉 and 
lustering 
oe�
ient 〈C〉 [47℄ indi-


ates that the neuronal networks exhibiting nu
leation


enters during network spikes belong to small-world net-

works (this 
orrelates with �ndings [48℄). In parti
ular,

〈SPL〉 ≈ 4.3 and 〈C〉 ≈ 0.1 for the network in Fig. 4,

〈SPL〉 ≈ 3.8 and 〈C〉 ≈ 0.1 for the network in Fig.

7 (upper panel), and 〈SPL〉 ≈ 3.4 and 〈C〉 ≈ 10−3

for truly random (binomial) network in Fig. 7 (lower

panel).

In general, our �ndings on nu
leation 
enters, 
ir
u-

lar traveling waves and drifting spiral waves of spiking

a
tivity are in qualitative agreement with the already

known. In parti
ular, the nu
leation 
enters and 
ir
u-

lar traveling waves during a network spike were dire
tly

observed experimentally in neuronal 
ultures [4℄, and

the spiral waves were observed in disinhibited neo
orti-


al sli
es [49�51℄. The similar e�e
ts (e.g., 
ir
ular and

multiarmed spiral waves), regardless to the o

urren
e

of network spikes, were also obtained in previous 
om-

putational studies [52�56℄ using di�erent models of the

neuronal network.

5. Con
lusion

A relatively simple model of a planar neuronal 
ul-

ture is des
ribed that demonstrates in simulations the

regime of repetitive network spikes emerging in a small

number of spatial nu
leation 
enters, the lo
ations of

whi
h are unique for a given network implementation.

In fa
t, the number and lo
ations of primary nu
leation


enters are dynami
 "marks of distin
tion" of neuronal


ultures from ea
h other.

More spe
i�
ally, we have shown that (i) in spatially

uniform networks of ex
itatory neurons, a typi
al net-

work spike has 
omplex spatial dynami
s with a few

nu
leation 
enters, (ii) the spatial nu
leation 
enters of

a network spike appear if the majority of 
onne
tions

between neurons are the lo
al ones that implies a small-

world topology of the neuronal network, (iii) the nu
le-

ation 
enters are not nested in �u
tuations of spatial

density of neurons, and (iv) in the networks of ex
ita-

tory and inhibitory neurons with relatively high density

of 
onne
tions a network spike 
an be a multiarmed spi-

ral wave with the drifting 
enter.

It is worth noting that transient spatial dynami
s of

a network spike in real neuronal 
ultures 
an be dire
tly

visualized with high spatial and temporal resolution us-

ing multi-transistor arrays [57℄ or advan
ed standard

mi
roele
trode arrays [58℄, as well as using opti
al te
h-

niques su
h as 
al
ium imaging [4,5℄ or voltage-sensitive

dye imaging [51℄. Therefore the results of simulations

similar to those 
ondu
ted in this study allow a dire
t


omparison with experimental observations.
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Figure 7. Upper panel: Spatial dynami
s of the network spike (marked by the arrow) for the network of 50625 neurons

lo
ated in 225 × 225 nodes of a square latti
e having period a = 0.004L. Inhibitory neurons (20% of the total) are

blo
ked from the outset of the simulation. The dependen
e pcon(r), with λ = 0.014L, and other simulation parameters

were taken the same as for the network in Fig. 4. On frames A and B two nu
leation 
enters are 
learly visible. Lower

panel: A similar simulation for the network of 50 thousand neurons at pcon(r) = const = 6.4 · 10−4
, with the same

average number of outgoing 
onne
tions per neuron and other simulation parameters as those for the network in Fig.

4. It is seen that there are no nu
leation 
enters.
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