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1 Abstract

2 Understanding the behavioral and psychological mechanisms underlying social behav-
3 iors is one of the major outstanding goals of social evolutionary theory. In particular, a per-
4 sistent question about human-and animal-cooperation is to what extent it is supported by
5 other-regarding preferences—the motivation to increase the welfare of others. In real-world
6 situations, individuals have the opportunity to learn from past interactions, so we may ask
7 how individuals evolve to learn to satisfy their social preferences during the course of an
8 interaction. In this context, the rewards an individual receives from his social behaviors cap-
9 ture his preferences. In this paper, we develop a mathematical model in order to ask whether
10 the mere act of cooperating with a social partner will evolve to be inherently rewarding. In

n our model, individuals interact repeatedly in pairs and adjust their behaviors through rein-

12 forcement learning. Individuals associate to each game outcome a subjective utility, which
13 constitute the reward for that particular outcome. We find that utilities that value mutual
1 cooperation positively but the sucker’s outcome negatively are evolutionarily stable. In a re-
15 duced model, other-regarding preferences can co-exist with preferences that match the sign
16 of the material payoffs under narrow conditions. In simulations of the full model, we find
17 that selfish preferences that always learn pure defection are also evolutionarily successful.
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18 These findings are consistent with empirical observations showing that humans tend to be-
1 have according to distinct behavioral types, and call for further integration of different levels
20 of biological and social determinants of behavior.

» 1 Introduction

» In animals and humans, repeated interactions often lead to mutual cooperation (1-6). However,
» the psychological basis of cooperative behaviors in humans and animals is still debated: in partic-
» ular, researchers disagree whether cooperative behaviors are caused by intrinsic preferences for
» increasing the welfare of others (7). A large body of empirical work has been interpreted as show-
» ing that humans do have other-regarding preferences, because cooperation is observed in various
» experimental games where participants are given the choice between sharing money with other
» partners, or keeping it for themselves. In many of these experiments, cooperation is observed de-
» spite the prediction from standard economic theory that cooperation is not an optimal strategy
» (8-12). Other researchers (13-15) argue that such results may be explained by the participants
» not fully understanding the experiment’s setup, combined with payoff-based learning during the

» course of the game.

» Traditionally, economists represent the preferences of humans over the possible outcomes of a
» behavioral interaction using utility functions (16, 17), and assume that humans strive to maximize
5 their utility. It is common to equate the utility with material payoffs (e.g., money in economic
% experiments), the so-called homo economicus, but such utilities frequently fail to predict human
» behavior, because cooperation in these experiments is not an act that maximizes one’s material
% payoff. In response, economists have proposed that the utility function of an individual may
» depend not only on the individual’s own material payoff, but also on the material payoffs of the
« other individuals involved in the social interaction. This idea has led to models of preference evo-
« lution, where individuals play a given game that has fitness consequences (material payoffs) but
» where each individual possesses an arbitrary utility function that is genetically determined (18-
s 21). This utility function itself then evolves according to the fitness consequences of the behaviors

« it generates. Importantly, both the fitness function and the utility function order the outcomes of
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s the social interaction, but these two orderings may be different from each other.

w We therefore want to know what the evolutionarily stable utility function is for a given game. In
« the context of cooperation in particular, can utility functions that assign positive value to others’
s payofls, i.e. other-regarding preferences, be evolutionarily stable? The main result from prefer-
» ence evolution models is that if players can observe each other’s utility functions before choosing
s an action, then other-regarding preferences may be evolutionarily stable; otherwise, natural se-
51 lection leads to an utility function that corresponds exactly to the fitness function (22, 23). This
2 is the same principle that explains the evolution of green-beard genes, where cooperators rec-
s ognize each other (24). A common way for animals and humans to achieve such recognition
s is repeated interactions where individuals’ responses to each other’s behavior is informative of
s their preferences (20, 25). Interactions between relatives also has been shown to promote other-
s regarding preferences by interacting with such behavioral responses (25) or recognition of part-

s> ners (21).

s At the same time, most previous theories that model preference evolution or try to explain coop-
s eration in the laboratory do not take into account that the behavior of humans and other animals
« is modified by learning based on past rewards. Indeed, learning (or initial lack thereof) is usually
s presented as an alternative to prosocial preferences for explaining behavior in experiments (13).
« However, as with many social and non-social behaviors consistently produced by a species with a
& neural system, cooperative behavior must generate positive rewards (in the proximate sense, see
« below) for an individual (26-29). If cooperation is to be observed in those species, then the tempo-
s ral sequence of cooperation must be consistent with known principles of learning (30). A theory
« for the proximate mechanisms of human and animal cooperation is incomplete without account-
o ing for learning at the same time. In a learning context, the question of whether humans have

s other-regarding preferences thus becomes: can the cooperative act in itself be rewarding?

» One may define a reward as an event that generates a particular pattern of activation of neural
7 circuits that induces positive feedback on behavior (26, 29, 31). Essentially, animals tend to repeat
»  actions that are followed by rewards; this phenomenon constitutes the core of instrumental learn-
» ing. Punishments, on the other hand, are stimuli that generate a negative feedback on behavior,

»  whereby actions followed by punishments tend to be avoided in the future. Certain stimuli act
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» as intrinsic rewards (also called primary, or unconditioned rewards), which allows an animal to
»  build associations between these intrinsic rewards and new actions or stimuli. Glucose is such an
7% intrinsic reward in many animals: an animal can learn to associate glucose with another stimulus
7 (e.g., a particular fruit), or with an action (e.g., in the laboratory, pulling a lever). Once learning
» has taken place, the associated stimulus (e.g., the fruit), or the associated action (e.g., pulling a
» lever) become reward predictors (32). Because regions involved in decision-making and social
9 cognition project to the mesolimbic reward system (33), it is possible that the part of the brain
s responsible for social cognition activates innately the reward system. In other words, coopera-
2 tion may be intrinsically rewarding in the brain, which may be true not only in humans but also
s in other primates (34). However, a recent study (that did not observe neural activity) also found
s« that learning in repeated public goods games seems to be driven by material payoffs, and an in-
ss crease in others’ payoffs leads a focal subject to reduce his own contribution to the public good
ss (14). Thus, it is an open empirical question whether rewards other than material payoffs, such as
s other-regarding preferences, drive social behavior in humans. Moreover, there is little evolution-

s ary theory for how such social preferences should evolve in the context of learning.

» From an evolutionary perspective, intrinsic rewards are often viewed as fitness-enhancing stim-
o uli. The idea is that natural selection shapes individuals to innately respond favorably to those
o stimuli that help increase fitness. This is explicit in many models of the evolution of learning (35-
2 40), where the reinforcement term in the equation describing learning is equated to incremental
o3 fitness effects. However, numerous examples show that certain stimuli act as intrinsic rewards
o« without there being a clear relationship between these stimuli and fitness. Certain rewards, when
os taken in inappropriate amount, are even fitness-detrimental. This is the case for glucose, salt, cer-
o tain drugs, which can be addictive, and in excessive amount, harmful (41). Hence, the mapping
o from intrinsic rewards to fitness need not be direct, especially when rewards drive social inter-
s actions. Evolutionary models can shed light on how natural selection shapes intrinsic rewards to

o further individuals’ fitness interests in social interactions.

w In this article, we present a model of the evolution of such intrinsic rewards when individuals
w interact in the Prisoner’s Dilemma game, where they have the choice between cooperation and

2 defection. To capture general learning processes in humans and animals, we model learning as
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s a basic trial-and-error process where individuals repeat actions followed by rewards and avoid
e actions followed by punishments. In our model, individuals interact in games whose material
s payoffs determine fitness. Instead of learning according to the real material payoffs, an indi-
ws vidual associates to each game outcome a genetically determined utility, which is used as the
w7 intrinsic reward/punishment for that particular outcome. For example, other-regarding individ-
s uals may associate positive utilities to outcomes where their partner obtains a positive material
o payoff, and thus might learn to cooperate as an intrinsically rewarding action. This decoupling
o of material payoffs and rewards allows us to address the question of how rewards evolve in social
m  interactions. We look for the evolutionarily stable utility functions when individuals interact re-
2 peatedly in a game whose material one-shot payoffs determine the 2-person Prisoner’s Dilemma

13 game.

w 2 Model

s 2.1  Social interactions and rewards

e We consider an evolutionary model of repeated pairwise games in a large, well-mixed popula-
1w tion of learners with non-overlapping generations. Every generation of the evolutionary process
ns  consists of a sequence of interaction rounds, t = 1,2,...,T. At each generation just before t = 1,
o individuals in the population are randomly matched in pairs, and each pair remains together for
10 the entire duration of the game (until t = T). Hence, individuals are playing a repeated game with
w  their partner. The one-shot game, played at every time ¢, is a Prisoner’s Dilemma game with two
12 possible actions, cooperate, C (or action 1), or defect, D (or action 2). The one-shot material pay-
123 offs for individual i are denoted 7;(C,C) = b — ¢, 7;(C,D) = —c, m;(D,C) = b, n;(D,D) = 0, where
124 the first element in parentheses of 7;(a;,a_;) denotes player i’s action (a;), and the second element
s denotes his opponent’s action (a—;). We assume also that b > ¢ > 0. The sequence of material

s payoffs ultimately determine fitness (see below for details on how fitness is evaluated).

17 At every interaction round t, each individual in every pair chooses an action. Individual i’s action

s at time ¢ is denoted a;; and his opponent’s action is a_;;. After actions are chosen, both players
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1 observe the outcome (a;;,a—;;) and subjectively evaluate how good the outcome was, which is
w0 genetically determined. We call this subjective evaluation the utility function of a player, which
w  may be different than the actual material payoff, 7;(a;;,a_;;), obtained at time t. This utility
12 (rather than the material payoff) determines the reward sensation of a game outcome, and this
1w reward is used by an individual to learn his strategy in the repeated game (see below for details
1 about the learning process). Specifically, the genotype of each individual i associates to each
135 outcome (a;,a—;) an utility u;(a;, a—;) that can take any negative or positive real value. We say that
e the utility is a reward if it is positive u;(a;,a—;) > 0, while we call it a punishment if u;(a;,a—;) < 0.
w7 Hence a genotype consists of the four utilities u;(C,C), u;(C, D), u;(D,C), u;(D, D). We can arrange
s these four utilities in a matrix according to the game outcomes, which we call the utility matrix of
1w individual i (Fig. 1A). However, evolutionarily speaking, it is easier to think of these utilities as the
w  vector u; = (4;(C,C),u;(C,D),u;(D,C),u;(D,D)); below we also use the more compact notation
W= (U1, Uy, Uz1,Usz), dropping the player’s index. The state space is thus R*. Our interest in this
w2 paper is to find the evolutionarily stable utility vector u*. To do so, we need to know the fitness
ws f(u;) of an individual with utility u;. To arrive there, we first need to specify how the utility

s vectors of a pair of players determine behavior in the repeated game.

w 2.2 Learning

us  We assume that individuals learn to play the game according to a simple trial-and-error proce-
w dure. We use a standard model of learning dynamics (30, 40), except that actions are reinforced
us according to the subjective utilities of a game outcome u;(-), rather than the objective material
w payoff ;(-) (see SItext S1). At every time t, an individual i holds in memory action values V;;(a;)
w0 for both actions a; € {C,D} and chooses to cooperate at time ¢ with a probability, p;;, that de-
w1 pends on its action values {V;;(C), V;;(D)}. The action values are updated according to the utilities

152 received from the last game outcome (eqs. S1.1-51.2 in SI text S1).

The behavioral interaction between a reinforcement learner with utilities u = (u11, u12, a1, Us2)
and another reinforcement learner with utilities v = (v11,v12, V21, 022) is what we need to analyze
in order to compute fitness. By a slight abuse of notation, we denote these two players u and v and

their probabilities to cooperate by p, and p, respectively. In ref. (40), stochastic approximation
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theory is used to show that the long-run learning dynamics (eqs. S1.1-S1.2) for a pair of learners

can be described as

pu = pu(l _Pu)g [pu{pvull + (1 _pv)ulz} - (1 _Pu){pvu21 + (1 —Pv)uzz}] s
pv = pv(l _pv)'yz [Pv{PuUn +(1 _pu)vlz} -(1 —Pv){PuUm +(1 _Pu)UZZ}] > (1)

where ¢ > 0 is an exploration parameter whose role in the original stochastic model is to capture
how responsive an individual is to his action values. Eq. 1 displays ten generic behavioral equi-
libria (Fig. S1). Depending on the specific values of u and v, one or more of these equilibria may
exist. Note that because the original dynamic is stochastic, when the corresponding deterministic
system admits several locally stable equilibria, the stochastic dynamics may reach any of these
equilibria. It turns out that the theory of stochastic approximations is almost silent about which
particular equilibrium will be reached. These lock-in probabilities will however play an important

role for the evolutionary stability of the different utility functions we will study below.

Another important fact about the behavioral dynamics is that the stability of the possible behav-
ioral equilibria is very much dependent on the signs of utilities of the individuals involved in
an interaction. In particular, one has that a pure equilibrium is locally stable if and only if both
players have a positive utility (making it a reward) for this outcome. The implication of this is
that if at least one player has a negative utility for the outcome, then this outcome is unstable.
In other words, if players u and v do not “agree” on preferred outcomes, then a pure behavioral
equilibrium cannot be stable. This intuitive result is mathematically true because the eigenvalues

of the Jacobian matrix associated to eq. 1 evaluated at a pure outcome (i, ) are simply
A = —8uij, Ay = —Evji. (2)

This fact has important evolutionary consequences, as will be detailed below when we analyze
interactions between individuals with particular utility functions. In particular, it allows us to

classify different utility functions by their sign for each of the four outcomes.
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m 2.3 Fecundity

s Assuming that interactions last long enough (T — o), we define the fecundity of individual i as
7+ being proportional to the average material payoff obtained at equilibrium of the learning process,

175 1.e.

fi= fw) =) p@m) 3)

acA

s where p(a) = p;(a;)p-i(a—;) is the equilibrium probability of outcome a = (a;,a_;). The sum in
7 eq. 3 is taken over the set of possible game outcomes, A = {(C,C),(C,D),(D,C),(D,D)}. We
s call p the behavioral equilibrium. Importantly, while the utility function does not appear on the
e  right-hand side of eq. 3, we still defined it as f(u;) because the equilibrium choice probabilities of
w a player, p;(a;), implicitly depend on the utility function of player i, as will become clearer when

w1 we derive expressions for the behavioral equilibria below.

w2 The fecundity f(u) depends on the outcome of the learning dynamics, and is therefore not con-
w3 tinuous in u, which renders difficult a full analytic treatment of the model. To overcome this
s problem we adopt two complementary approaches. First, we focus on a smaller number of utility
s functions that are relevant to our original question of the evolution of other-regarding prefer-
1ss ences. Second we run evolutionary simulations of the full model to have a more comprehensive

7 view of our model.

= 3 Results

w» 3.1 Analytical results for 4-strategy competition

v  We first consider the evolutionary dynamics of four possible utility functions that are represented

w1 in Fig. 1A using the replicator dynamics (for details of the analysis, see S2, S3, and S4):

192 « The Realistic function, which associates to outcomes an utility of the same sign than the
193 real material payoff. This type of utility function is the “default” utility function, used
194 in virtually all models of the evolution of learning (35-40). It takes as a special case the
195 material payoff function, i.e., u; = ;. It is the function that evolves when interactions
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Figure 1: Replicator dynamics for the competition between Realistic, Other-regard, Manipulator, and
Selfish. (A) The 4 strategies considered in the analytical model. A strategy is defined by the outcomes to
which it associates a positive or negative utility. The first row/column corresponds to Cooperate and the
second row/column to Defect. Utilities are to row-player. (B) Pairwise invasion diagram between the four
strategies Realistic, Other-regard, Manipulator, and Selfish, and associated invasion conditions. A plain
directed edge from node X to node Y means that strategy Y always invades a monomorphic population
of X (but does not necessarily reach fixation). A dashed directed edge from node X to node Y means that
Y can invade X under certain conditions (A, B, and C) on the model parameters. When a given strategy
can be invaded by more than one other strategy, a thick edge designates the best response. Note that all
combinations of these three conditions are possible. (C) Classification of phase portraits for the replicator
dynamics in the 4-strategy game defined by the competition between Realistic, Other-regard, Manipulator,
and Selfish. Each subfigure is a drawing of the 4-simplex. At each vertex, one of the four strategies is
at frequency 1: Realistic at the top, Manipulator at the bottom-front, Other-regard at the back left, and
Selfish at the back right. The letters A, B, and C refer to the conditions in Panel B, where the symbol “=”
denotes logical negation. For instance, the subfigure labeled —~ABC is drawn for parameter values such
that condition A is not true, but conditions B and C are true. Red dots denote locally stable equilibria,
i.e. possible outcomes of natural selection. To disambiguate the 3D view, red labels in curly braces indicate
the set of strategies present at an equilibrium. In the subfigure for the case A—B—C, the green dots are two
alternative outcomes: {R,0} occurs when Selfish cannot invade this polymorphism; if Selfish does invade
this polymorphism, {R,0} becomes unstable and {R,0, s} stable. The condition for this to happen is given
by eq. S4.7 in Appendix S4. 9
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196 between players are completely anonymous, one-shot, and there is no assortment in the
197 matching process (22, 23).

198 « The Other-regard function, which associates positive utility to the outcomes where the
199 opponent obtains a strictly positive payoff. In other words, this strategy associates positive
200 utilities only to the outcomes where it cooperates.

201  The Selfish function, which associates positive utility to the outcomes where it defects.
02 « The Manipulator function, which associates positive utility only to the outcomes where
03 its opponent cooperate. The name of this utility function stems from the fact that it will
204 drive a compliant opponent (who associates positive utility to all outcomes) to cooperate.

xs  We first construct the fitness matrix for the evolutionary game in Table 1 by considering the stable
us equilibria of learning dynamics of all possible pairwise matchings between the four strategies
27 (described in detail in the SI text S2 and S3). For the four strategies we consider in this section,
x5 no more than two behavioral equilibria are locally stable at the same time. It turns out that in all
o cases where two equilibria are locally stable, one of them is mutual cooperation, (1,1). Because
2o the underlying learning model is stochastic (egs. S1.1-S1.2 in SI text S1), the lock-in probability in
o the cooperative equilibrium (1,1) will affect the fitness and hence the evolutionary competition
22 between the four strategies we are considering. However, there is no general technique to obtain
23 an expression of the lock-in probability. At this point, we leave these probabilities unspecified,
xa and denote by g, the probability that an interaction between strategy u and strategy v leads
»s  to the cooperative equilibrium (1,1). For instance, two Realistic individuals can learn mutual
ze cooperation, (1,1), or mutual defection, (0,0). The probability that an interaction between two
27 Realistic individuals leads to mutual cooperation is thus denoted ggg; the probability of locking

25 in the defective equilibrium is 1 — ggg.

29 3.1.1 Evolutionary dynamics for the Prisoner’s Dilemma

2 We use the replicator dynamics (42, eq. S4.2 in SI text) to describe the competition between Re-
=1 alistic, Other-regard, Manipulator, and Selfish, with the evolutionary game given in Table 1. De-

2 termining the outcome of the replicator dynamics is dependent on the parameters b (benefit to

10
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23 a receiver of a cooperative act), ¢ (cost of cooperating), and the lock-in probabilities in the co-
2 operative equilibrium ggg, gro, grms goum, for the different behavioral interactions where several

»s equilibria are locally stable.

»s  We first find that, although (Selfish, Selfish) is always a weak Nash Equilibrium (NE) of the evo-
» lutionary game between the four strategies, regardless of parameter values, it is never evolution-
»s  arily stable (Fig. 1 and Table 1). This is because Selfish gets invaded by Realistic, which learns to
2 defect against Selfish, but cooperates with itself. On the other hand, the strategy Other-regard is
x  also always invaded by every other strategy in pairwise competitions, although it can be part of
»  a mixed equilibrium, as we will see below. All other important results depend on the parameters
2 of the model, and three basic conditions on the parameters help classify the possible evolutionary
» outcomes (conditions A, B, and C in Fig. 1A). For certain parameter values, Realistic can be an evo-
x lutionarily stable strategy when the benefit-to-cost ratio is sufficiently low (conditions A and B in
s Fig. 1A). Also, for other parameter values, Manipulator can be evolutionary stable (condition C in
us  Fig. 1A). Note that these conditions are not mutually exclusive, so both Realistic and Manipulator
2 can be evolutionarily stable at the same time (Fig. 1B). When at least one of Realistic or Manip-
»s ulator is not evolutionarily stable, then we obtain polymorphic equilibria. In such polymorphic
» equilibria, we have either three strategies (there is an equilibrium with Realistic, Other-regard,
x0 Selfish, and an equilibrium with Realistic, Manipulator, and Selfish) or two strategies (Realistic
a1 and Other-regard), the common feature of these being that Realistic is always present (Fig. 1B).
22 We note here that Other-regard can only be present when Realistic is present. Moreover, accord-
23 ing to condition A in Fig. 1A, Realistic should cooperate more often with Other-regard than with

ua itself for the latter to make part of an equilibrium.

Table 1: Evolutionary fitness matrix amongst the 4 strategies considered in the analytical model.

R O M S
R Grn(b = ©) Gro(b =€) + (1= Gro)b  quu(b = ©) + (1= qu) (b (72-)) 0
0 QRo(b -c)+(1- qRo)(_C) b-c qOM(b -c)+(1- qOM)(_C) —C
M Guulb =)+ (1= qu) ((=0) (:22=))  qou(b =) + (1= Go)b b-c —c R
s 0 b bt 0

11
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» 3.2 Simulations
u 3.2.1 Freely evolving utilities

2 In order to explore the entire set of possible strategies, we also performed individual-based sim-
»s ulations for various values of the benefit-to-cost ratio, b/c. In such simulations, the lock-in prob-
»  abilities in behavioral equilibria, which played a critical role in determining the evolutionary
»0 outcome in the above 4-strategy model, will no longer be parameters but will have a value that
»1 depends on the utilities of the particular strategies involved in behavioral interactions. Our evo-
»2 lutionary simulations consist of the trait substitution sequence of adaptive dynamics. Namely,
»3  we assume that the genotype of an individual, u = (u11, u12,us1,Us2), is supported by one locus,
s and that the population is always monomorphic. At each iteration, we propose a mutation and
»s determine whether the mutant invades the resident population using eqs. 41-42 of ref. (43), which
»s is calculated for Wright’s island model (in our case, the population is panmictic, or there is only

»7  one deme).

»s In order to represent the four utilities at the same time, we classified all strategies according to the
»  sign of their utilities (as we demonstrated above, these signs provide necessary conditions on the
x0 possible behavioral equilibria), which results in 2* = 16 classes of strategies (because each of the
2 four utilities has two possible signs). We can first look at the proportion of time a simulation run
x2 spends in each of the 16 strategy classes, which is an approximation of the stationary distribution
2 of the evolutionary dynamics. We find that 6 strategies are consistently represented more than
2 10% of the time in the occupation measure: Selfish, Avoid Sucker’s Payoff, Manipulator, Matcher,
xs Pareto, Anti-Cooperation. Avoid Sucker’s Payoft (AS) is similar to Realistic except that it has a
xs  positive utility for mutual defection instead of a 0; AS produces the same behavioral equilibria
% as Realistic when paired with other strategies (Fig. S3). Matcher has positive utilities only for
xs outcomes where its own action matches that of its opponent. Pareto has positive utility only for
x the outcome of mutual cooperation. Finally, Anti-Cooperation is the exact opposite of Pareto, as
xo it has positive utilities for all outcomes except for mutual cooperation. In Fig. 2, we show results

m  for various benefit-to-cost ratios, b/c, which leads to two main observations.

2 The first take-away is that our simulations confirm the overall pattern in the analysis of the
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uir >0 | up >0 U1 >0 | upp >0 U1 >0 | up2 >0 U1 >0 | u2 >0
41% 84% 44% 83% 44% 79% 43% 72%
Uz >0 | upp >0 Uy >0 | upp >0 Uz >0 | ugpp >0 Uz >0 | ugpy >0
39% 22% 39% 31% 40% 30% 37% 29%
1211 =1.28 ﬁlz = —-4.76 ﬂ]l =0.58 1212 =—-4.73 1211 =0.72 ﬂ]z = —4.06 L_lll =0.88 l_llz =-2.96
1221 =1.47 ﬁzz =3.81 1221 =1.50 1222 =2.59 1221 =1.44 1222 =2.96 ﬁ21 =1.96 l_lzz =3.17

Figure 2: Simulation results for various benefit-to-cost ratios (b/c). The top row shows the invasion graph
between the 16 classes of strategies defined by their utilities’ sign (see main text), the second row shows
the proportion of time each utility was positive in a simulation run, the third row shows the time average
of utilities. In the invasion graph, the size of the nodes is proportional to the amount of time a simulation
run spends in the corresponding strategy class. The edges are colored according to the invader strategy
and thus indicate the direction of the edges. Edge thickness is proportional to the number of invasions
that occured between a pair of strategies (and we do not show edges between pairs of strategies for which
the number of invasions was less than 10). Simulation parameter values: minu = —10; maxu = 10; £ = 2;
c=1;T = 150.
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z3  replicator dynamics, where at low values of b/c the strategy AS (corresponding to the Realistic
m  strategy in the analytical model) experiences few invasions. As b/c increases, more strategies are
zs able to invade AS, and consequently the frequency of AS declines (Fig. 2 and Fig. 3). In particular,
zs if we analyze the invasions between the 6 dominant strategies in our simulations (Fig. S4), we
x  find that Manipulator, Matcher, and Pareto invade AS only for sufficiently high b/c. All these
zs strategies have a positive utility for mutual cooperation; they also have a negative utility for
zo  the sucker’s outcome (u;; < 0). The success of AS and of cooperative strategies more gener-
x ally yield an average utility matrix of the AS type (Fig. 2), where average utilities are ordered as
w1 u(D,D) > a(D,C) > u(C,C) > u(C,D), which is different than the ordering of the material pay-
x offs, 7(D,C) > n(C,C) > n(D,D) > n(C,D). The strategy Pareto increases in frequency in the
»3 stationary distribution for increasing b/c (Fig. 3A), as the analysis shows that it invades AS for
x+  high enough b/c (Fig. S4). Strategies that are able to invade AS (Manipulator, Matcher, Pareto) can
»s mutually invade one another and we indeed observe that an important number of invasions occur
s between AS, Manipulator, Matcher, Pareto (Fig. 2). As a consequence of the increasing success of
x  strategies that positively value cooperation as a function of b/c, we observe that the overall coop-
xs eration frequency in the population increases for increasing b/c (Fig. 3B). Even though previous
x» work has shown that cooperative strategies in the iterated Prisoner’s Dilemma can be evolution-
w0 ary robust (6), we could not expect this for the particular type of learning strategies that we have

o1 decided to study.

» Contrasting the apparent success of conditionally cooperative strategies, a second major feature
»3 of our simulations is the success of Selfish. For all b/c, the simulation spends approximately 15-
»s 20% of the time in this strategy class, and for high b/c this makes Selfish the most represented
»s strategy class in the stationary distribution (because of the decline of AS; Fig. 2 and Fig. 3A).
»s Although this result could not be anticipated from our analysis of the replicator dynamics above,
»7 it is still consistent with the fact that Selfish was relatively stable (only Realistic could invade
»s it). Analytically considering the invasion conditions between the 6 dominant strategy classes
» in the simulations (Fig. S4) reveals that Selfish is also relatively stable in this set, with only AS
w and Matcher being able to invade it. In our simulations, AS invades more frequently Selfish that
sr  Matcher does because, with our mutation scheme, an AS mutant is much more likely than a

w2 Matcher mutant to occur in a Selfish population given that we draw mutations from a doubly
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Figure 3: Effect of the benefit-to-cost ratio, b/c. (A) Proportion of time the simulation spends in each
of the 16 strategy classes as a function of b/c, which is a measure of the stationary distribution. Colors
of strategies are as in Fig. 2 (see also Fig. S5). (B) Time average of the frequency of game outcomes in a
simulation run as a function of b/c (black lines); plain: (C,C); dashed: (D, D). The frequency of the third
type of possible of outcome, (C, D), is the complementary ((C,D) and (D,C) are the same outcome). The
red lines show the expected frequency of the corresponding game outcomes in the population if we draw
strategies randomly from a uniform distribution. Parameter values are as in Fig. 2.

exponential distribution centered at the resident phenotype.

A final observation regarding strategy classes is that Anti-Cooperation is relatively successful
for high b/c (Fig. 3A). Our invasion analysis in Fig. S4 shows that this strategy, despite having a
positive utility for the sucker’s outcome, compensates by exploiting certain cooperative strate-
gies, such as Pareto. At low b/c, Anti-Cooperation gets exploited by strategies that have positive
utilities for defection (such as AS or Selfish; Fig. S3) but as b/c increases, Anti-Cooperation be-
comes more stable against these strategies, which explains why it makes part of an important

proportion of the stationary distribution of the evolutionary dynamics.

3.2.2 Utilities explicitly depending on material payoffs

In this section we perform additional simulations by constraining the utility function to be depen-
dent on the material payoffs of the focal player and its opponent. This allows us to address more
directly the question of whether (and, if any, what type of) other-regarding preferences evolve in

our model. Specifically, for any game outcome a = (a;,a—;), we consider utility functions of the
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316 form
ui(a) = m(a) + f(m(a) + ¢ + k)(n_;(a) + c + k) + an_;(a) — y|mi(a) — 7_;(a)]. (4)

s where (a, B,y) are player i’s genetically determined parameters. In this section we will be inter-
ns  ested in the evolution of these three parameters. In eq. 4, c is the negative of the sucker’s payoft
s (—c) and is added to the realized payoff to ensure that the term multiplied by f is always posi-
» tive. The parameter k is here to allow the utility to vary as a function of . Our utility function
2 then measures the extent to which an individual is “additively” other-regarding (¢ € [-1,1]),
2 the extent to which he is “multiplicatively” other-regarding (f € [—1,1]), and inequity aversion
» (y € [-1,1]). Even though this utility function can realize all of the 16 possible utility matrices
2 discussed above, the structure of the phenotype space changes as compared to the above simula-

»s tions where we let the utility matrix evolve in an unconstrained way (Fig. S5).

»s  Our simulations with the utility function in eq. 4 show that the selection pressure on other-
2 regarding preferences increases with b/c (Fig. 4A and Fig. S8). The average value of S is close to
»s 0 for low enough b/c, but suddenly increases at a threshold value of b/c. For these higher b/c val-
2 ues, the average f is approximately 0.5, indicating the evolution of multiplicative other-regard.
s The average values of & and y are negative for low b/c, indicating respectively a combination of
s competitive preferences (valuing negatively other’s success) and inequity aversion. Both « and
s ¥ decrease in magnitude as b/c increases, but remain negative. This is a consequence of the fact
»: that the selection pressure on « and y decreases with increasing b/c, because the absolute dif-
s ference between the temptation to defect, b and the sucker’s payoff, —c, decreases. This pattern
s 1s accompanied by a general increase in the utility for mutual cooperation as a function of b/c
s (Fig. S7A in the SI). For high b/c, mutual cooperation becomes the preferred outcome of the evo-
s lutionarily stable utility function and mutual defection the least preferred outcome. In agreement
s with the above simulations for freely evolving utilities, AS is the dominant utility matrix for low
s b/c. The “Compliant” utility matrix (with all four utilities positive) becomes the dominant one

x  for high b/c (Fig. S7B in the SI).

s Even though other-regarding preferences evolve for sufficiently high b/c, this is not accompa-
w2 nied by the evolution of increased effective mutual cooperation, even though the frequency of

»s  mutual defection decreases. However, this decrease is due to an increase in the asymmetric (C, D)
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Figure 4: Results for the model where the utility depends explictly on material payoffs (eq. 4 with k = 2)
as a function of the benefit-to-cost ratio, b/c. (A) Time average of a, f, y in a simulation run. (B) Time
average of the frequency of game outcomes in a simulation run (similar to Fig. 3).

outcome (Fig. 4B). Overall cooperation is thus increasing but individuals do not coordinate on co-
operating at the same time. This can be explained by the fact that the Compliant utility matrix
that evolves for high b/c can learn any outcome (all pure equilibria are stable when all utilities
are positive). However, the fact that mutual defection is the least preferred outcome implies that

the probability to learn this equilibrium will be the lowest of the four outcomes.

4 Discussion

We presented a model of how intrinsic rewards that drive learning in social interactions evolve.
Rewards capture the intrinsic preferences of individuals over states of the world, and constitute
the fundamental building block of reinforcement learning. Because all behaviors are in part in-
fluenced by learning, modeling the evolution of social behaviors in animals requires that we take
into account how behavior is generated through learning within an individual’s lifespan. Within
this framework, we were able to address the question of whether other-regarding preferences
support the evolution of cooperation, under the constraint of reinforcement learning. Hence,
our work bridges a gap between models of the evolution of preferences in games (20-23, 25) and
neuro-behavioral studies of social interactions in the laboratory (33, 44, 45). Overall, our results
indicate that multiple preference functions can be evolutionarily stable when individuals interact

repeatedly in the Prisoner’s Dilemma. In particular, we find that evolutionarily successful pret-
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w1 erences are of two general types: (1) those that have a positive utility for mutual cooperation
x2 but a negative utility for being exploited; (2) selfish preferences that associate positive utilities
1 to outcomes where their carriers defect, and have negative utility for cooperation. This is true
w in both our analytical results in replicator dynamics and the numerical simulations in the whole
x5 strategy set. Further simulations show that other-regarding preferences evolve for suffficiently

xs  high benefit-to-cost ratio.

s Our results bring together findings from economics, psychology, and basic brain physiology in a
xs unifying evolutionary framework to account theoretically for the apparent other-regarding be-
w0 havior of humans and other species. Economic theory relies on the concept of utility to capture
w0 behavior, but the utility function of an individual is by definition an internal construct that is dif-
o ficult to access (44). In the context of learning, utility can be equated to reward, because rewards
w2 are at the core of repeated behaviors (29). Empirically, one way to try to access the utility or re-
s ward function is to observe the pattern of activation in the brain when individuals make decisions.
s Neuro-behavioral studies of social decision-making provide empirical support for our finding that
w5 positive preferences for cooperation are evolutionarily prevalent. These studies reveal that coop-
7 eration can generate rewards in the human brain, which is consistent with the positive utility of

w7 winning strategies for mutual cooperation found in our model (33, 44, 45).

ws  While our model shows that evolution can lead to intrinsically rewarding mutual cooperation,
w9 such utilities do not necessarily correspond to pure other-regarding preferences. For low benefit-
s to-cost ratios, competitive preferences that value other’s payoff negatively tend to evolve. In con-
s trast, for sufficiently high benefit-to-cost ratio we see the evolution of conditional (multiplicative)
s other-regarding preferences, in agreement with previous results that found these preferences to
%3 be evolutionarily stable in continuous social dilemmas (20). On the other hand, one can interpret
s our results for the freely evolving utilities as reflecting the evolution of the correct representation
x5 of real fitness effect of mutual cooperation, because mutual cooperation generates a positive effect
s on fitness. However, the “Realistic” utility function is not the only evolutionarily successful one
» in our model. For example, some evolutionarily successful preference functions value positively
xs both mutual cooperation and mutual defection. These signs, together with a negative utility for

w0 the sucker’s outcome guarantee uninvadability by the Selfish preference function, because indi-
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» viduals with such preferences will learn to defect against Selfish. Therefore, our results do not
»1  show that natural selection leads to the correct representation of fitness effects in the brain in
» the context of learning. Another important distinction is that, even though the utility for the
»: temptation to defect is the highest in the model with freely evolving utilities, this does not nec-
»  essarily mean that there is no other-regard preferences. This fact is illustrated by our results for
»s the constrained utility function, which capture cases where other-regard (e.g. a positive f) can
»s evolve even if the values of other evolutionary parameters make the temptation outcome being

» more rewarding than mutual cooperation.

»s Taken together, these results suggest that learning agents can be selected to have some other-
w» regarding utilities, but these are unlikely to be “pure” other-regard. Rather, any evolved rewards
w from cooperation is predicted to be conditional on both parties cooperating. This lends partial
w1 theoretical support to empirical studies of cooperation that indicate that humans and animals

w2 have prosocial preferences but are also averse to inequity (46, 47).

w3 Our finding that a diversity of utility functions are favored by natural selection is also consistent
ws With empirical findings that humans in behavioral experiments tend to act according to distinct
w5 behavioral types. In particular, strategies that value cooperation positively can produce similar
«s behavior to that of reciprocating strategies (repeating the action of the partner in the previous
w7 round), and Selfish can produce the behavior of non-cooperators; these two behavioral types have
ws recently been found to represent the action sequence of many human participants in laboratory
wo  experiments (15, 48) and have been considered as plausible evolutionarily significant behavioral
a0 rules in theoretical models (1, 2, 4, 6). Moreover, in addition to a diversity of preference types, our
am model also shows the potential for multiple behavioral outcomes in a population monomorphic
n2 for a given preference function. This is because of the fact that stochastic learning processes
s can converge to different equilibrium profiles, which provides another way for the behavioral

su  variation observed in learning experiments (49).

ss In conclusion, our model articulates four levels of determinants of behavior: (1) the biological
ns  rewards at the core of brain functioning; (2) the psychological preferences that determine which
a7 states of the world are rewarding; (3) the social interactions that affect changes in the states of the

ns  world; (4) the biological process of natural selection determining which behavioral mechanisms
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a0 prevail in an evolving population. We find that evolution of rewards for learning captures both
20 the possibility of cooperation and a diversity of individual preferences that can be evolutionarily
o successful. These results show the promise of integrating learning based on evolving intrinsic
= rewards from social interactions as a proximate mechanism for understanding the nature of co-

o operation in humans and animals.
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Supplementary Information

S1 Reinforcement learning

In our learning model, individuals hold action values, V; ;41 (a;), for each action a; € {C,D}. Adapt-
ing the model of ref. (50), the learning rule of individual i in our model is to update action values
according to

Vigri(ai) = Vig(ai) + yel(ai, aip)ui(ai, a-ip), (51.1)
where 1(a;,a;;) is an indicator variable that equals 1 if a; = a;;, and 0 otherwise, and y; € (0,1)
is a dynamic learning rate. This learning rate is decreasing as the game proceeds, which implies
that the initial rounds of interaction are critical in determining the stable outcome of the learning
process. Such a condition ensures that learning converges during an individual’s lifetime (40, 51).
This assumption can be justified by the fact that the situation (game) faced by the individuals is
constant. Finally u;(a;,a_;;) is the utility to i if he plays a; given that his opponent plays a_;;
at time t. Importantly, under the rule in eq. S1.1 an action that is not played at time t keeps the
same action value at time ¢ + 1, in contrast to traditional reinforcement learning, where actions
that are not played for a long period of time tend to be forgotten, and hence their values decay to
0. This feature, together with the fact that early experience is important, means that our model
captures relatively fast-scale learning dynamics that converges to an equilibrium outcome rather
than lifelong learning processes. Thus our model of repeated interactions need not be understood
as implying that an individual is paired with a single opponent for its entire lifespan. Rather, an
individual may play several repeated games with different partners, and each of these repeated

interactions is assumed to last long enough for learning to converge.

We then assume that individuals want to choose the action with highest value V;;(a;), but also
have some tendency to explore the action with smaller value. A widely used choice rule to capture

this principle is the logit-choice function,
_ explEVig(an)]
e, expEVie (b))

where & > 0 is the exploration parameter (the inverse 1/& can be seen as the noise level if we

pir(ai) (51.2)

interpret this model as perturbed maximization of action values, 52) in choosing actions. In our
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s case, there are two actions, C and D, hence eq. S1.2 is a sigmoid function, which can be thought as
ss  a generalization of the threshold rule that chooses the action with greater value V;;(a;). Eq. S1.2

s approaches such threshold function when ¢ gets larger.

« S2 Behavioral analysis

s In this section, we show how we analyze behavioral interactions by focusing on one particu-
sv lar example, Realistic vs. Other-regard (a Sagemath notebook that contains the analysis of all

s« behavioral interactions is available on demand).

s Treating Realistic as player u and Other-regard as player v, one starts by verifying what behav-
so ioral equilibria of eq. 1 (Fig. S1) exist for this particular interaction (see Fig. S2 for the vector field
sn of this interaction). Recall that the utilities of Realistic have the signs u;; > 0, u12 < 0, up; > 0,

sz Ugp = 0. The utilities of Other-regard have the signs v1; > 0, v > 0, v2; < 0, v32 < 0. Con-

s sequently, the equilibria that do not exist are the two interior equilibria as well as (0, o2 ),
V12+022

V21
V111021

574 (ulzufu - ,0), and (1, 01:}42-1021)' For example, the latter equilibrium does not exist because
s either negative (when |vy1| > |vs1]) or greater than 1 (when |v11| < |v21]), which is impossible for

s a probability.

s7 We then calculate the Jacobian matrix associated to eq. 1, evaluate it at each equilibrium, and
s calculate its eigenvalues. The pure equilibria (0,0), (1,0), (0,1), and (1,1) are straightforward to
s» analyze because the sign of the eigenvalues are opposite to the sign of the utilities of the players.
s For example, the equilibrium (1, 1) has the associated eigenvalues (—&u;1,—£v11), which makes it
s locally stable. The equilibrium (0, 1) is also locally stable because it has the associated eigenvalues

s (—&ugy, —&v12), which are both negative. The equilibria where one player is mixing require a little

Uz1
uytug;’

s more work. The equilibrium ( 1) has eigenvalues

(_ U21011 + U11012 U11U21 ) (52.1)
Ui +uz 7 ung + U
s Solving the inequality
Up1011 + U110
U1t uve _ o (52.2)

Ui + Uz
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s shows that this is always true given the signs of u and v. The second eigenvalue

U1 (82 3)
Ui + U '

s 1s always positive, making the equilibrium (unuj;m , 1) a saddle.

= 83 Fitness computation

s In this Appendix, we delineate the logic behind the computation of the fitnesses in Table 1 for the

s interaction between Realistic and Other-regard. The other fitnesses are computed similarly.

s0 As we have proven in Appendix S2, the interaction between Realistic and Other-regard can lead
1 to two possible behavioral equilibria, (1,1) or (0,1). Because the original learning dynamics is
s stochastic, it may reach either equilibrium, but we cannot determine which one analytically.
3 Indeed, the theory of stochastic approximations does not provide precise predictions about the
s« lock-in probabilities in local attractors. Hence, in the analysis of the model we treat the probability
s (ro tO get attracted in the mutual cooperation equilibrium, (1, 1), as a free parameter. Hence the
s probability to reach the equilibrium (0, 1) is 1 — ggo. The payoff to the players at equilibrium (1,1)
s7 is b — ¢ for both players. At equilibrium (0, 1), Realistic obtains b and Other-regard —c. Weighting
s these payoffs by the lock-in probabilities gives

(fro» for) = (CIRo(b —¢) + (1= qro)b.qro(b —¢) + (1 - qRO)(_C)) , (83.1)

s which are the entries of the corresponding fitnesses in Table 1 of the main text.

« S4 Replicator dynamics and evolutionary equilibria

o1 We evaluate the evolutionary competition between Realistic, Other-regard, Selfish, and Manip-
«2 ulator using the 4-dimensional replicator dynamics. In order to do so, we need to construct the
« evolutionary fitness matrix, i.e., computing the fitness, f,,, of a strategy u when matched with an-
s« other strategy v in the repeated game. We need to do so for all strategies u, v € {r,0,M,s}, where

«s we denote a strategy by its initial (i.e., R denotes Realistic, etc.). Having obtained such fitnesses,
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«s one can then call x = (xg, X0, Xy, Xs) the vector of frequencies in the population (xg +x0 +xy + X5 =

«7 1) and define the average fitness of type u when the population is in state x as

L= > Xfw uelroms). (S4.1)

VE{R,0,M,S}
«s We then use the continuous-time replicator dynamics to assess the long-term frequencies of

« strategies in the population, i.e.,

tw=x (fu®) - f®).  ue(rRoms), (S4.2)

s where
f@= > xfu), (54.3)
ue{Rr,0,M,s}

en 1is the average fitness in the population at state x.

sz Solving for the equilibria of eq. S4.2, we find that there is an equilibrium with Realistic, Other-

sz regard, and Selfish, given by

— C
bQRo ?

Xr
b_ RR
xo = Lo, (S4.4)
Xs=1—xg — Xo.
su  We find another 3-strategy equilibrium with Realistic, Manipulator, and Selfish, with the frequen-

¢15  cles
cqrmtioz (=buia+cluia+ug,])
(b=0) (@ —Gra) (w12 [ura+uz2]) —begh,ul,°
(b—c)cqrriiza (12 +1s2) (S4_5)

(b—c)? (qIZ{M_qRR)(MIZ [ulz+uzz])—bcq§Mu§2 ’

xR:

xM:
Xs =1—xg — Xy

s There exists a 2-strategy equilibrium with Realistic and Other-regard who are in frequencies

xo = _c(l_qRo)
R (b_c)(qRR_qRO) ’ (84 6)
Xo =1— x3.

a7 Selfish invades the latter mix of Realistic and Other-regard, and makes part of the equilibrium

s1s  when
b _
Irr < G and -> M, (S4.7)
¢ Qro — qrr
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sw  which is obtained by finding the conditions under which the fitness of Selfish at the equilibrium
o of eq. S4.6, f;(x%,), is higher than the average fitness in the population, f(x%,). When this occurs
&1 the equilibrium consisting of Realistic, Other-regard, and Selfish (eq. S4.4) becomes stable.
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Supplementary tables

Table S1: Classification of behavioral outcomes amongst the 4 strategies considered.

Interaction Stable equilibria

Rvs. R (1,1) and (0,0)
Rvs. O (0,1) and (1,1)
Rvs.M (1,1) and (0, v;jzvzz)
Rvs. S (0,0)

Ovs. O (1,1)

Ovs.M (1,0) and (1,1)
Ovs. S (1,0)

Mvs. M (1,1)*

Myvs. S (ulfjizz,o)

Svs. S (0,0)

*for |ugz| < |us1|, another equilibrium, (-2

uptuzy’

this condition does not hold.

0), becomes stable but we place ourselves in the conditions where
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Supplementary figures
(0.1) (@) @
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(0. 545) ‘
o L ]
) (L)
°
oo (@) (10)

Figure S1: The ten generic behavioral equilibria in a 2X 2 game between a player with utility func-
tion u, and his opponent with utility function v. The two interior equilibria have long expressions

that are not shown here.
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Figure S2: Vector fields (gray arrows) and stochastic trajectories (colored lines) for the 10 possible behav-
ioral interactions between the 4 strategies Realistic, Other-regard, Manipulator, and Selfish. In each panel,
on the x-axis is represented the probability that the row player cooperates (p;), while on the y-axis, this
is the probability that the column player cooperates (p;). The stochastic trajectories are started from the
center of the state space (p1,p2) = (3, %) and dots on it represent interaction rounds between the players.
Circles represent equilibria: a white-filled circle is a source (both associated eigenvalues are positive); a
gray-filled circle is a saddle (one positive and one negative associated eigenvalue); a black circle is a sink
(both associated eigenvalues are negative). The red circle in the Realistic-Realistic interaction is a degener-
ate equilibrium with both zero eigenvalues, but it turns out to be locally stable. These plots were generated

by setting positive utilities close to 1 and negative utilities close to -1 (which is why mixed equilibria always

appear close to 0.5). 39
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Otherwise similar to Fig. S2.
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Figure S6: Results for the model where the utility depends explictly on material payoffs (eq. 4)
as a function of the benefit-to-cost ratio, b/c (identical to Fig. 4 except that k = 5). (A) Time
average of @, f, y in a simulation run. (B) Time average of the frequency of game outcomes in a

simulation run (similar to Fig. 3B and 4B).
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Figure S7: Additional results for the model where the utility depends explictly on material payoffs
(eq. 4 with k = 2) as a function of the benefit-to-cost ratio, b/c. (A) Time average in a simulation
run of the four utilities associated to each game outcome. (B) Proportion of time a simulation run

spends in each strategy class (similar to Fig. 3A; see Fig. S5 for color code of strategies).

36



https://doi.org/10.1101/074096
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/074096; this version posted September 8, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

1.0 L 1.0 o
0.150
05 05 0.175
0.125 0.150
0100 0.125
a 00 a 00 0100
0.075
0.075

0.050 0.050

0.025 0.025

2 4 6 8 10 12 14 : 2 4 6 8 10 12 14
Benefit-to-cost ratio, b/c Benefit-to-cost ratio, b/c
1.0 T 1.0
0.5 0.5 07
0.25
0.6
0.20 0.5
0.15 B 0.0? 0.4
] 0.3
0.10
0.2
-05 005 -05 04
ol b JEUYY PR N U N PR (RO N
2 4 6 8 10 12 14 2 4 6 8 10 12 14
Benefit-to-cost ratio, b/c Benefit-to-cost ratio, b/c

0.06

0.04

0.02

2 4 6 8 10 12 14 ’ 2 4 6 8 10 12 14
Benefit-to-cost ratio, b/c Benefit-to-cost ratio, b/c

Figure S8: Stationary distributions of the traits measuring additive other-regard (), multiplicative
other-regard (f), and inequity aversion (y) for various benefit-to-cost ratios (b/c) and values of
k (see main text for definition, eq. 4) when constraining the utility function to explicitly depend
on the material payoffs. In each subfigure, a column of values for a given benefit-to-cost ratio
represents the stationary distribution of the trait, where darker shading corresponds to a higher

frequency.
q 3% 37


https://doi.org/10.1101/074096
http://creativecommons.org/licenses/by-nc-nd/4.0/

