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Abstract1

Understanding the behavioral and psychological mechanisms underlying social behav-2

iors is one of the major outstanding goals of social evolutionary theory. In particular, a per-3

sistent question about human–and animal–cooperation is to what extent it is supported by4

other-regarding preferences–the motivation to increase the welfare of others. In real-world5

situations, individuals have the opportunity to learn from past interactions, so we may ask6

how individuals evolve to learn to satisfy their social preferences during the course of an7

interaction. In this context, the rewards an individual receives from his social behaviors cap-8

ture his preferences. In this paper, we develop a mathematical model in order to ask whether9

the mere act of cooperating with a social partner will evolve to be inherently rewarding. In10

our model, individuals interact repeatedly in pairs and adjust their behaviors through rein-11

forcement learning. Individuals associate to each game outcome a subjective utility, which12

constitute the reward for that particular outcome. We �nd that utilities that value mutual13

cooperation positively but the sucker’s outcome negatively are evolutionarily stable. In a re-14

duced model, other-regarding preferences can co-exist with preferences that match the sign15

of the material payo�s under narrow conditions. In simulations of the full model, we �nd16

that sel�sh preferences that always learn pure defection are also evolutionarily successful.17
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These �ndings are consistent with empirical observations showing that humans tend to be-18

have according to distinct behavioral types, and call for further integration of di�erent levels19

of biological and social determinants of behavior.20

1 Introduction21

In animals and humans, repeated interactions often lead to mutual cooperation (1–6). However,22

the psychological basis of cooperative behaviors in humans and animals is still debated: in partic-23

ular, researchers disagree whether cooperative behaviors are caused by intrinsic preferences for24

increasing the welfare of others (7). A large body of empirical work has been interpreted as show-25

ing that humans do have other-regarding preferences, because cooperation is observed in various26

experimental games where participants are given the choice between sharing money with other27

partners, or keeping it for themselves. In many of these experiments, cooperation is observed de-28

spite the prediction from standard economic theory that cooperation is not an optimal strategy29

(8–12). Other researchers (13–15) argue that such results may be explained by the participants30

not fully understanding the experiment’s setup, combined with payo�-based learning during the31

course of the game.32

Traditionally, economists represent the preferences of humans over the possible outcomes of a33

behavioral interaction using utility functions (16, 17), and assume that humans strive to maximize34

their utility. It is common to equate the utility with material payo�s (e.g., money in economic35

experiments), the so-called homo economicus, but such utilities frequently fail to predict human36

behavior, because cooperation in these experiments is not an act that maximizes one’s material37

payo�. In response, economists have proposed that the utility function of an individual may38

depend not only on the individual’s own material payo�, but also on the material payo�s of the39

other individuals involved in the social interaction. This idea has led to models of preference evo-40

lution, where individuals play a given game that has �tness consequences (material payo�s) but41

where each individual possesses an arbitrary utility function that is genetically determined (18–42

21). This utility function itself then evolves according to the �tness consequences of the behaviors43

it generates. Importantly, both the �tness function and the utility function order the outcomes of44
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the social interaction, but these two orderings may be di�erent from each other.45

We therefore want to know what the evolutionarily stable utility function is for a given game. In46

the context of cooperation in particular, can utility functions that assign positive value to others’47

payo�s, i.e. other-regarding preferences, be evolutionarily stable? The main result from prefer-48

ence evolution models is that if players can observe each other’s utility functions before choosing49

an action, then other-regarding preferences may be evolutionarily stable; otherwise, natural se-50

lection leads to an utility function that corresponds exactly to the �tness function (22, 23). This51

is the same principle that explains the evolution of green-beard genes, where cooperators rec-52

ognize each other (24). A common way for animals and humans to achieve such recognition53

is repeated interactions where individuals’ responses to each other’s behavior is informative of54

their preferences (20, 25). Interactions between relatives also has been shown to promote other-55

regarding preferences by interacting with such behavioral responses (25) or recognition of part-56

ners (21).57

At the same time, most previous theories that model preference evolution or try to explain coop-58

eration in the laboratory do not take into account that the behavior of humans and other animals59

is modi�ed by learning based on past rewards. Indeed, learning (or initial lack thereof) is usually60

presented as an alternative to prosocial preferences for explaining behavior in experiments (13).61

However, as with many social and non-social behaviors consistently produced by a species with a62

neural system, cooperative behavior must generate positive rewards (in the proximate sense, see63

below) for an individual (26–29). If cooperation is to be observed in those species, then the tempo-64

ral sequence of cooperation must be consistent with known principles of learning (30). A theory65

for the proximate mechanisms of human and animal cooperation is incomplete without account-66

ing for learning at the same time. In a learning context, the question of whether humans have67

other-regarding preferences thus becomes: can the cooperative act in itself be rewarding?68

One may de�ne a reward as an event that generates a particular pattern of activation of neural69

circuits that induces positive feedback on behavior (26, 29, 31). Essentially, animals tend to repeat70

actions that are followed by rewards; this phenomenon constitutes the core of instrumental learn-71

ing. Punishments, on the other hand, are stimuli that generate a negative feedback on behavior,72

whereby actions followed by punishments tend to be avoided in the future. Certain stimuli act73
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as intrinsic rewards (also called primary, or unconditioned rewards), which allows an animal to74

build associations between these intrinsic rewards and new actions or stimuli. Glucose is such an75

intrinsic reward in many animals: an animal can learn to associate glucose with another stimulus76

(e.g., a particular fruit), or with an action (e.g., in the laboratory, pulling a lever). Once learning77

has taken place, the associated stimulus (e.g., the fruit), or the associated action (e.g., pulling a78

lever) become reward predictors (32). Because regions involved in decision-making and social79

cognition project to the mesolimbic reward system (33), it is possible that the part of the brain80

responsible for social cognition activates innately the reward system. In other words, coopera-81

tion may be intrinsically rewarding in the brain, which may be true not only in humans but also82

in other primates (34). However, a recent study (that did not observe neural activity) also found83

that learning in repeated public goods games seems to be driven by material payo�s, and an in-84

crease in others’ payo�s leads a focal subject to reduce his own contribution to the public good85

(14). Thus, it is an open empirical question whether rewards other than material payo�s, such as86

other-regarding preferences, drive social behavior in humans. Moreover, there is little evolution-87

ary theory for how such social preferences should evolve in the context of learning.88

From an evolutionary perspective, intrinsic rewards are often viewed as �tness-enhancing stim-89

uli. The idea is that natural selection shapes individuals to innately respond favorably to those90

stimuli that help increase �tness. This is explicit in many models of the evolution of learning (35–91

40), where the reinforcement term in the equation describing learning is equated to incremental92

�tness e�ects. However, numerous examples show that certain stimuli act as intrinsic rewards93

without there being a clear relationship between these stimuli and �tness. Certain rewards, when94

taken in inappropriate amount, are even �tness-detrimental. This is the case for glucose, salt, cer-95

tain drugs, which can be addictive, and in excessive amount, harmful (41). Hence, the mapping96

from intrinsic rewards to �tness need not be direct, especially when rewards drive social inter-97

actions. Evolutionary models can shed light on how natural selection shapes intrinsic rewards to98

further individuals’ �tness interests in social interactions.99

In this article, we present a model of the evolution of such intrinsic rewards when individuals100

interact in the Prisoner’s Dilemma game, where they have the choice between cooperation and101

defection. To capture general learning processes in humans and animals, we model learning as102
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a basic trial-and-error process where individuals repeat actions followed by rewards and avoid103

actions followed by punishments. In our model, individuals interact in games whose material104

payo�s determine �tness. Instead of learning according to the real material payo�s, an indi-105

vidual associates to each game outcome a genetically determined utility, which is used as the106

intrinsic reward/punishment for that particular outcome. For example, other-regarding individ-107

uals may associate positive utilities to outcomes where their partner obtains a positive material108

payo�, and thus might learn to cooperate as an intrinsically rewarding action. This decoupling109

of material payo�s and rewards allows us to address the question of how rewards evolve in social110

interactions. We look for the evolutionarily stable utility functions when individuals interact re-111

peatedly in a game whose material one-shot payo�s determine the 2-person Prisoner’s Dilemma112

game.113

2 Model114

2.1 Social interactions and rewards115

We consider an evolutionary model of repeated pairwise games in a large, well-mixed popula-116

tion of learners with non-overlapping generations. Every generation of the evolutionary process117

consists of a sequence of interaction rounds, t = 1,2, . . . ,T . At each generation just before t = 1,118

individuals in the population are randomly matched in pairs, and each pair remains together for119

the entire duration of the game (until t = T ). Hence, individuals are playing a repeated game with120

their partner. The one-shot game, played at every time t , is a Prisoner’s Dilemma game with two121

possible actions, cooperate, C (or action 1), or defect, D (or action 2). The one-shot material pay-122

o�s for individual i are denoted πi (C,C ) = b − c , πi (C,D) = −c , πi (D,C ) = b, πi (D,D) = 0, where123

the �rst element in parentheses of πi (ai ,a−i ) denotes player i’s action (ai ), and the second element124

denotes his opponent’s action (a−i ). We assume also that b > c > 0. The sequence of material125

payo�s ultimately determine �tness (see below for details on how �tness is evaluated).126

At every interaction round t , each individual in every pair chooses an action. Individual i’s action127

at time t is denoted ai,t and his opponent’s action is a−i,t . After actions are chosen, both players128
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observe the outcome (ai,t ,a−i,t ) and subjectively evaluate how good the outcome was, which is129

genetically determined. We call this subjective evaluation the utility function of a player, which130

may be di�erent than the actual material payo�, πi (ai,t ,a−i,t ), obtained at time t . This utility131

(rather than the material payo�) determines the reward sensation of a game outcome, and this132

reward is used by an individual to learn his strategy in the repeated game (see below for details133

about the learning process). Speci�cally, the genotype of each individual i associates to each134

outcome (ai ,a−i ) an utilityui (ai ,a−i ) that can take any negative or positive real value. We say that135

the utility is a reward if it is positiveui (ai ,a−i ) > 0, while we call it a punishment ifui (ai ,a−i ) < 0.136

Hence a genotype consists of the four utilitiesui (C,C ),ui (C,D),ui (D,C ),ui (D,D). We can arrange137

these four utilities in a matrix according to the game outcomes, which we call the utility matrix of138

individual i (Fig. 1A). However, evolutionarily speaking, it is easier to think of these utilities as the139

vector ui = (ui (C,C ),ui (C,D),ui (D,C ),ui (D,D)); below we also use the more compact notation140

u = (u11,u12,u21,u22), dropping the player’s index. The state space is thusR4. Our interest in this141

paper is to �nd the evolutionarily stable utility vector u∗. To do so, we need to know the �tness142

f (ui ) of an individual with utility ui . To arrive there, we �rst need to specify how the utility143

vectors of a pair of players determine behavior in the repeated game.144

2.2 Learning145

We assume that individuals learn to play the game according to a simple trial-and-error proce-146

dure. We use a standard model of learning dynamics (30, 40), except that actions are reinforced147

according to the subjective utilities of a game outcome ui (·), rather than the objective material148

payo� πi (·) (see SI text S1). At every time t , an individual i holds in memory action valuesVi,t (ai )149

for both actions ai ∈ {C,D} and chooses to cooperate at time t with a probability, pi,t , that de-150

pends on its action values {Vi,t (C ),Vi,t (D)}. The action values are updated according to the utilities151

received from the last game outcome (eqs. S1.1–S1.2 in SI text S1).152

The behavioral interaction between a reinforcement learner with utilities u = (u11,u12,u21,u22)

and another reinforcement learner with utilities v = (v11,v12,v21,v22) is what we need to analyze

in order to compute �tness. By a slight abuse of notation, we denote these two playersu andv and

their probabilities to cooperate by pu and pv respectively. In ref. (40), stochastic approximation
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theory is used to show that the long-run learning dynamics (eqs. S1.1–S1.2) for a pair of learners

can be described as

ṗu = pu (1 − pu )ξ [
pu {pvu11 + (1 − pv )u12} − (1 − pu ){pvu21 + (1 − pv )u22}] ,

ṗv = pv (1 − pv )ξ [
pv {puv11 + (1 − pu )v12} − (1 − pv ){puv21 + (1 − pu )v22}] , (1)

where ξ > 0 is an exploration parameter whose role in the original stochastic model is to capture153

how responsive an individual is to his action values. Eq. 1 displays ten generic behavioral equi-154

libria (Fig. S1). Depending on the speci�c values of u and v, one or more of these equilibria may155

exist. Note that because the original dynamic is stochastic, when the corresponding deterministic156

system admits several locally stable equilibria, the stochastic dynamics may reach any of these157

equilibria. It turns out that the theory of stochastic approximations is almost silent about which158

particular equilibrium will be reached. These lock-in probabilities will however play an important159

role for the evolutionary stability of the di�erent utility functions we will study below.160

Another important fact about the behavioral dynamics is that the stability of the possible behav-161

ioral equilibria is very much dependent on the signs of utilities of the individuals involved in162

an interaction. In particular, one has that a pure equilibrium is locally stable if and only if both163

players have a positive utility (making it a reward) for this outcome. The implication of this is164

that if at least one player has a negative utility for the outcome, then this outcome is unstable.165

In other words, if players u and v do not “agree” on preferred outcomes, then a pure behavioral166

equilibrium cannot be stable. This intuitive result is mathematically true because the eigenvalues167

of the Jacobian matrix associated to eq. 1 evaluated at a pure outcome (i, j ) are simply168

λ1 = −ξuij ,λ2 = −ξvji . (2)

This fact has important evolutionary consequences, as will be detailed below when we analyze169

interactions between individuals with particular utility functions. In particular, it allows us to170

classify di�erent utility functions by their sign for each of the four outcomes.171
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2.3 Fecundity172

Assuming that interactions last long enough (T → ∞), we de�ne the fecundity of individual i as173

being proportional to the average material payo� obtained at equilibrium of the learning process,174

i.e.175

fi = f (ui ) =
∑

a∈A
p̂(a)πi (a), (3)

where p̂(a) = p̂i (ai )p̂−i (a−i ) is the equilibrium probability of outcome a = (ai ,a−i ). The sum in176

eq. 3 is taken over the set of possible game outcomes, A = {(C,C ), (C,D), (D,C ), (D,D)}. We177

call p̂ the behavioral equilibrium. Importantly, while the utility function does not appear on the178

right-hand side of eq. 3, we still de�ned it as f (ui ) because the equilibrium choice probabilities of179

a player, p̂i (ai ), implicitly depend on the utility function of player i , as will become clearer when180

we derive expressions for the behavioral equilibria below.181

The fecundity f (u) depends on the outcome of the learning dynamics, and is therefore not con-182

tinuous in u, which renders di�cult a full analytic treatment of the model. To overcome this183

problem we adopt two complementary approaches. First, we focus on a smaller number of utility184

functions that are relevant to our original question of the evolution of other-regarding prefer-185

ences. Second we run evolutionary simulations of the full model to have a more comprehensive186

view of our model.187

3 Results188

3.1 Analytical results for 4-strategy competition189

We �rst consider the evolutionary dynamics of four possible utility functions that are represented190

in Fig. 1A using the replicator dynamics (for details of the analysis, see S2, S3, and S4):191

• The Realistic function, which associates to outcomes an utility of the same sign than the192

real material payo�. This type of utility function is the “default” utility function, used193

in virtually all models of the evolution of learning (35–40). It takes as a special case the194

material payo� function, i.e., ui = πi . It is the function that evolves when interactions195
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Figure 1: The possible outcomes, the utilities, the material payo�s, and the 4 strategies considered
in the analytical model. A strategy is de�ned by the outcomes to which it associates a positive
or negative utility in the corresponding outcome matrix (top left). Cooperation is denoted by
C and corresponds to action 1; defection is denoted by D and corresponds to action 2. In the
outcome matrix, the �rst letter refers to the action of the focal player (row) and the second letter
to the action of its opponent (column). The utility matrices (bottom) are organized in the same
way as the outcome matrix. For example, the strategy Realistic associates a positive utility to the
outcomes that yield positive material payo�s for itself, and negative utility to outcomes yielding
negative material payo�s for itself. The strategy Other-regard associates a positive utility to the
outcomes where the focal player cooperates (C, ·) and has a negative utility for outcomes where
the focal player defects (D, ·).
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strategies Realistic, Other-regard, Manipulator, and Sel�sh, and associated invasion conditions. A plain
directed edge from node X to node Y means that strategy Y always invades a monomorphic population
of X (but does not necessarily reach �xation). A dashed directed edge from node X to node Y means that
Y can invade X under certain conditions (A, B, and C) on the model parameters. When a given strategy
can be invaded by more than one other strategy, a thick edge designates the best response. Note that all
combinations of these three conditions are possible. (C) Classi�cation of phase portraits for the replicator
dynamics in the 4-strategy game de�ned by the competition between Realistic, Other-regard, Manipulator,
and Sel�sh. Each sub�gure is a drawing of the 4-simplex. At each vertex, one of the four strategies is
at frequency 1: Realistic at the top, Manipulator at the bottom-front, Other-regard at the back left, and
Sel�sh at the back right. The letters A,B, and C refer to the conditions in Panel B, where the symbol “¬”
denotes logical negation. For instance, the sub�gure labeled ¬ABC is drawn for parameter values such
that condition A is not true, but conditions B and C are true. Red dots denote locally stable equilibria,
i.e. possible outcomes of natural selection. To disambiguate the 3D view, red labels in curly braces indicate
the set of strategies present at an equilibrium. In the sub�gure for the case A¬B¬C , the green dots are two
alternative outcomes: {r,o} occurs when Sel�sh cannot invade this polymorphism; if Sel�sh does invade
this polymorphism, {r,o} becomes unstable and {r,o,s} stable. The condition for this to happen is given
by eq. S4.7 in Appendix S4. 9
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between players are completely anonymous, one-shot, and there is no assortment in the196

matching process (22, 23).197

• The Other-regard function, which associates positive utility to the outcomes where the198

opponent obtains a strictly positive payo�. In other words, this strategy associates positive199

utilities only to the outcomes where it cooperates.200

• The Sel�sh function, which associates positive utility to the outcomes where it defects.201

• The Manipulator function, which associates positive utility only to the outcomes where202

its opponent cooperate. The name of this utility function stems from the fact that it will203

drive a compliant opponent (who associates positive utility to all outcomes) to cooperate.204

We �rst construct the �tness matrix for the evolutionary game in Table 1 by considering the stable205

equilibria of learning dynamics of all possible pairwise matchings between the four strategies206

(described in detail in the SI text S2 and S3). For the four strategies we consider in this section,207

no more than two behavioral equilibria are locally stable at the same time. It turns out that in all208

cases where two equilibria are locally stable, one of them is mutual cooperation, (1,1). Because209

the underlying learning model is stochastic (eqs. S1.1–S1.2 in SI text S1), the lock-in probability in210

the cooperative equilibrium (1,1) will a�ect the �tness and hence the evolutionary competition211

between the four strategies we are considering. However, there is no general technique to obtain212

an expression of the lock-in probability. At this point, we leave these probabilities unspeci�ed,213

and denote by quv the probability that an interaction between strategy u and strategy v leads214

to the cooperative equilibrium (1,1). For instance, two Realistic individuals can learn mutual215

cooperation, (1,1), or mutual defection, (0,0). The probability that an interaction between two216

Realistic individuals leads to mutual cooperation is thus denoted qrr; the probability of locking217

in the defective equilibrium is 1 − qrr.218

3.1.1 Evolutionary dynamics for the Prisoner’s Dilemma219

We use the replicator dynamics (42, eq. S4.2 in SI text) to describe the competition between Re-220

alistic, Other-regard, Manipulator, and Sel�sh, with the evolutionary game given in Table 1. De-221

termining the outcome of the replicator dynamics is dependent on the parameters b (bene�t to222
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a receiver of a cooperative act), c (cost of cooperating), and the lock-in probabilities in the co-223

operative equilibrium qrr, qro, qrm, qom, for the di�erent behavioral interactions where several224

equilibria are locally stable.225

We �rst �nd that, although (Sel�sh, Sel�sh) is always a weak Nash Equilibrium (NE) of the evo-226

lutionary game between the four strategies, regardless of parameter values, it is never evolution-227

arily stable (Fig. 1 and Table 1). This is because Sel�sh gets invaded by Realistic, which learns to228

defect against Sel�sh, but cooperates with itself. On the other hand, the strategy Other-regard is229

also always invaded by every other strategy in pairwise competitions, although it can be part of230

a mixed equilibrium, as we will see below. All other important results depend on the parameters231

of the model, and three basic conditions on the parameters help classify the possible evolutionary232

outcomes (conditions A, B, and C in Fig. 1A). For certain parameter values, Realistic can be an evo-233

lutionarily stable strategy when the bene�t-to-cost ratio is su�ciently low (conditions A and B in234

Fig. 1A). Also, for other parameter values, Manipulator can be evolutionary stable (condition C in235

Fig. 1A). Note that these conditions are not mutually exclusive, so both Realistic and Manipulator236

can be evolutionarily stable at the same time (Fig. 1B). When at least one of Realistic or Manip-237

ulator is not evolutionarily stable, then we obtain polymorphic equilibria. In such polymorphic238

equilibria, we have either three strategies (there is an equilibrium with Realistic, Other-regard,239

Sel�sh, and an equilibrium with Realistic, Manipulator, and Sel�sh) or two strategies (Realistic240

and Other-regard), the common feature of these being that Realistic is always present (Fig. 1B).241

We note here that Other-regard can only be present when Realistic is present. Moreover, accord-242

ing to condition A in Fig. 1A, Realistic should cooperate more often with Other-regard than with243

itself for the latter to make part of an equilibrium.244

Table 1: Evolutionary �tness matrix amongst the 4 strategies considered in the analytical model.

R O M S

R qrr (b − c ) qro (b − c ) + (1 − qro)b qrm (b − c ) + (1 − qrm)
(
b

(
u22

u12+u22

))
0

O qro (b − c ) + (1 − qro) (−c ) b − c qom (b − c ) + (1 − qom) (−c ) −c
M qrm (b − c ) + (1 − qrm)

(
(−c )

(
u22

u12+u22

))
qom (b − c ) + (1 − qom)b b − c −c u22

u12+u22

S 0 b b u22
u12+u22

0
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3.2 Simulations245

3.2.1 Freely evolving utilities246

In order to explore the entire set of possible strategies, we also performed individual-based sim-247

ulations for various values of the bene�t-to-cost ratio, b/c . In such simulations, the lock-in prob-248

abilities in behavioral equilibria, which played a critical role in determining the evolutionary249

outcome in the above 4-strategy model, will no longer be parameters but will have a value that250

depends on the utilities of the particular strategies involved in behavioral interactions. Our evo-251

lutionary simulations consist of the trait substitution sequence of adaptive dynamics. Namely,252

we assume that the genotype of an individual, u = (u11,u12,u21,u22), is supported by one locus,253

and that the population is always monomorphic. At each iteration, we propose a mutation and254

determine whether the mutant invades the resident population using eqs. 41–42 of ref. (43), which255

is calculated for Wright’s island model (in our case, the population is panmictic, or there is only256

one deme).257

In order to represent the four utilities at the same time, we classi�ed all strategies according to the258

sign of their utilities (as we demonstrated above, these signs provide necessary conditions on the259

possible behavioral equilibria), which results in 24 = 16 classes of strategies (because each of the260

four utilities has two possible signs). We can �rst look at the proportion of time a simulation run261

spends in each of the 16 strategy classes, which is an approximation of the stationary distribution262

of the evolutionary dynamics. We �nd that 6 strategies are consistently represented more than263

10% of the time in the occupation measure: Sel�sh, Avoid Sucker’s Payo�, Manipulator, Matcher,264

Pareto, Anti-Cooperation. Avoid Sucker’s Payo� (AS) is similar to Realistic except that it has a265

positive utility for mutual defection instead of a 0; AS produces the same behavioral equilibria266

as Realistic when paired with other strategies (Fig. S3). Matcher has positive utilities only for267

outcomes where its own action matches that of its opponent. Pareto has positive utility only for268

the outcome of mutual cooperation. Finally, Anti-Cooperation is the exact opposite of Pareto, as269

it has positive utilities for all outcomes except for mutual cooperation. In Fig. 2, we show results270

for various bene�t-to-cost ratios, b/c , which leads to two main observations.271

The �rst take-away is that our simulations con�rm the overall pattern in the analysis of the272
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ū11 = 0.88 ū12 = �2.96
ū21 = 1.96 ū22 = 3.17

Figure 4: Simulation results for various bene�t-to-cost ratios (b/c). The top row shows the invasion graph between the 16 classes of
strategies de�ned by their sign (see main text), the second row shows the proportion of time each utility was positive in a simulation
run, the third row shows the time average of utilities. In the invasion graph, the size of the nodes is proportional to the amount of
time a simulation run spends in the corresponding strategy class. The edges are colored according to the invader strategy and thus
indicate the direction of the edges. Edge thickness is proportional to the number of invasions that occured between a pair of strategies
(and we do not show edges between pairs of strategies for which the number of invasions was less than 10).

32

Figure 2: Simulation results for various bene�t-to-cost ratios (b/c). The top row shows the invasion graph
between the 16 classes of strategies de�ned by their utilities’ sign (see main text), the second row shows
the proportion of time each utility was positive in a simulation run, the third row shows the time average
of utilities. In the invasion graph, the size of the nodes is proportional to the amount of time a simulation
run spends in the corresponding strategy class. The edges are colored according to the invader strategy
and thus indicate the direction of the edges. Edge thickness is proportional to the number of invasions
that occured between a pair of strategies (and we do not show edges between pairs of strategies for which
the number of invasions was less than 10). Simulation parameter values: minu = −10; maxu = 10; ξ = 2;
c = 1; T = 150.
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replicator dynamics, where at low values of b/c the strategy AS (corresponding to the Realistic273

strategy in the analytical model) experiences few invasions. As b/c increases, more strategies are274

able to invade AS, and consequently the frequency of AS declines (Fig. 2 and Fig. 3). In particular,275

if we analyze the invasions between the 6 dominant strategies in our simulations (Fig. S4), we276

�nd that Manipulator, Matcher, and Pareto invade AS only for su�ciently high b/c . All these277

strategies have a positive utility for mutual cooperation; they also have a negative utility for278

the sucker’s outcome (u12 < 0). The success of AS and of cooperative strategies more gener-279

ally yield an average utility matrix of the AS type (Fig. 2), where average utilities are ordered as280

ū (D,D) > ū (D,C ) > ū (C,C ) > ū (C,D), which is di�erent than the ordering of the material pay-281

o�s, π (D,C ) > π (C,C ) > π (D,D) > π (C,D). The strategy Pareto increases in frequency in the282

stationary distribution for increasing b/c (Fig. 3A), as the analysis shows that it invades AS for283

high enoughb/c (Fig. S4). Strategies that are able to invade AS (Manipulator, Matcher, Pareto) can284

mutually invade one another and we indeed observe that an important number of invasions occur285

between AS, Manipulator, Matcher, Pareto (Fig. 2). As a consequence of the increasing success of286

strategies that positively value cooperation as a function of b/c , we observe that the overall coop-287

eration frequency in the population increases for increasing b/c (Fig. 3B). Even though previous288

work has shown that cooperative strategies in the iterated Prisoner’s Dilemma can be evolution-289

ary robust (6), we could not expect this for the particular type of learning strategies that we have290

decided to study.291

Contrasting the apparent success of conditionally cooperative strategies, a second major feature292

of our simulations is the success of Sel�sh. For all b/c , the simulation spends approximately 15-293

20% of the time in this strategy class, and for high b/c this makes Sel�sh the most represented294

strategy class in the stationary distribution (because of the decline of AS; Fig. 2 and Fig. 3A).295

Although this result could not be anticipated from our analysis of the replicator dynamics above,296

it is still consistent with the fact that Sel�sh was relatively stable (only Realistic could invade297

it). Analytically considering the invasion conditions between the 6 dominant strategy classes298

in the simulations (Fig. S4) reveals that Sel�sh is also relatively stable in this set, with only AS299

and Matcher being able to invade it. In our simulations, AS invades more frequently Sel�sh that300

Matcher does because, with our mutation scheme, an AS mutant is much more likely than a301

Matcher mutant to occur in a Sel�sh population given that we draw mutations from a doubly302
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Figure 3: E�ect of the bene�t-to-cost ratio, b/c . (A) Proportion of time the simulation spends in each
of the 16 strategy classes as a function of b/c , which is a measure of the stationary distribution. Colors
of strategies are as in Fig. 2 (see also Fig. S5). (B) Time average of the frequency of game outcomes in a
simulation run as a function of b/c (black lines); plain: (C,C ); dashed: (D,D). The frequency of the third
type of possible of outcome, (C,D), is the complementary ((C,D) and (D,C ) are the same outcome). The
red lines show the expected frequency of the corresponding game outcomes in the population if we draw
strategies randomly from a uniform distribution. Parameter values are as in Fig. 2.

exponential distribution centered at the resident phenotype.303

A �nal observation regarding strategy classes is that Anti-Cooperation is relatively successful304

for high b/c (Fig. 3A). Our invasion analysis in Fig. S4 shows that this strategy, despite having a305

positive utility for the sucker’s outcome, compensates by exploiting certain cooperative strate-306

gies, such as Pareto. At low b/c , Anti-Cooperation gets exploited by strategies that have positive307

utilities for defection (such as AS or Sel�sh; Fig. S3) but as b/c increases, Anti-Cooperation be-308

comes more stable against these strategies, which explains why it makes part of an important309

proportion of the stationary distribution of the evolutionary dynamics.310

3.2.2 Utilities explicitly depending on material payo�s311

In this section we perform additional simulations by constraining the utility function to be depen-312

dent on the material payo�s of the focal player and its opponent. This allows us to address more313

directly the question of whether (and, if any, what type of) other-regarding preferences evolve in314

our model. Speci�cally, for any game outcome a = (ai ,a−i ), we consider utility functions of the315
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form316

ui (a) = πi (a) + β (πi (a) + c + k ) (π−i (a) + c + k ) + απ−i (a) − γ |πi (a) − π−i (a) |. (4)

where (α ,β ,γ ) are player i’s genetically determined parameters. In this section we will be inter-317

ested in the evolution of these three parameters. In eq. 4, c is the negative of the sucker’s payo�318

(−c) and is added to the realized payo� to ensure that the term multiplied by β is always posi-319

tive. The parameter k is here to allow the utility to vary as a function of β . Our utility function320

then measures the extent to which an individual is “additively” other-regarding (α ∈ [−1,1]),321

the extent to which he is “multiplicatively” other-regarding (β ∈ [−1,1]), and inequity aversion322

(γ ∈ [−1,1]). Even though this utility function can realize all of the 16 possible utility matrices323

discussed above, the structure of the phenotype space changes as compared to the above simula-324

tions where we let the utility matrix evolve in an unconstrained way (Fig. S5).325

Our simulations with the utility function in eq. 4 show that the selection pressure on other-326

regarding preferences increases with b/c (Fig. 4A and Fig. S8). The average value of β is close to327

0 for low enough b/c , but suddenly increases at a threshold value of b/c . For these higher b/c val-328

ues, the average β is approximately 0.5, indicating the evolution of multiplicative other-regard.329

The average values of α and γ are negative for low b/c , indicating respectively a combination of330

competitive preferences (valuing negatively other’s success) and inequity aversion. Both α and331

γ decrease in magnitude as b/c increases, but remain negative. This is a consequence of the fact332

that the selection pressure on α and γ decreases with increasing b/c , because the absolute dif-333

ference between the temptation to defect, b and the sucker’s payo�, −c , decreases. This pattern334

is accompanied by a general increase in the utility for mutual cooperation as a function of b/c335

(Fig. S7A in the SI). For high b/c , mutual cooperation becomes the preferred outcome of the evo-336

lutionarily stable utility function and mutual defection the least preferred outcome. In agreement337

with the above simulations for freely evolving utilities, AS is the dominant utility matrix for low338

b/c . The “Compliant” utility matrix (with all four utilities positive) becomes the dominant one339

for high b/c (Fig. S7B in the SI).340

Even though other-regarding preferences evolve for su�ciently high b/c , this is not accompa-341

nied by the evolution of increased e�ective mutual cooperation, even though the frequency of342

mutual defection decreases. However, this decrease is due to an increase in the asymmetric (C,D)343
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Figure 4: Results for the model where the utility depends explictly on material payo�s (eq. 4 with k = 2)
as a function of the bene�t-to-cost ratio, b/c . (A) Time average of α , β , γ in a simulation run. (B) Time
average of the frequency of game outcomes in a simulation run (similar to Fig. 3).

outcome (Fig. 4B). Overall cooperation is thus increasing but individuals do not coordinate on co-344

operating at the same time. This can be explained by the fact that the Compliant utility matrix345

that evolves for high b/c can learn any outcome (all pure equilibria are stable when all utilities346

are positive). However, the fact that mutual defection is the least preferred outcome implies that347

the probability to learn this equilibrium will be the lowest of the four outcomes.348

4 Discussion349

We presented a model of how intrinsic rewards that drive learning in social interactions evolve.350

Rewards capture the intrinsic preferences of individuals over states of the world, and constitute351

the fundamental building block of reinforcement learning. Because all behaviors are in part in-352

�uenced by learning, modeling the evolution of social behaviors in animals requires that we take353

into account how behavior is generated through learning within an individual’s lifespan. Within354

this framework, we were able to address the question of whether other-regarding preferences355

support the evolution of cooperation, under the constraint of reinforcement learning. Hence,356

our work bridges a gap between models of the evolution of preferences in games (20–23, 25) and357

neuro-behavioral studies of social interactions in the laboratory (33, 44, 45). Overall, our results358

indicate that multiple preference functions can be evolutionarily stable when individuals interact359

repeatedly in the Prisoner’s Dilemma. In particular, we �nd that evolutionarily successful pref-360
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erences are of two general types: (1) those that have a positive utility for mutual cooperation361

but a negative utility for being exploited; (2) sel�sh preferences that associate positive utilities362

to outcomes where their carriers defect, and have negative utility for cooperation. This is true363

in both our analytical results in replicator dynamics and the numerical simulations in the whole364

strategy set. Further simulations show that other-regarding preferences evolve for su��ciently365

high bene�t-to-cost ratio.366

Our results bring together �ndings from economics, psychology, and basic brain physiology in a367

unifying evolutionary framework to account theoretically for the apparent other-regarding be-368

havior of humans and other species. Economic theory relies on the concept of utility to capture369

behavior, but the utility function of an individual is by de�nition an internal construct that is dif-370

�cult to access (44). In the context of learning, utility can be equated to reward, because rewards371

are at the core of repeated behaviors (29). Empirically, one way to try to access the utility or re-372

ward function is to observe the pattern of activation in the brain when individuals make decisions.373

Neuro-behavioral studies of social decision-making provide empirical support for our �nding that374

positive preferences for cooperation are evolutionarily prevalent. These studies reveal that coop-375

eration can generate rewards in the human brain, which is consistent with the positive utility of376

winning strategies for mutual cooperation found in our model (33, 44, 45).377

While our model shows that evolution can lead to intrinsically rewarding mutual cooperation,378

such utilities do not necessarily correspond to pure other-regarding preferences. For low bene�t-379

to-cost ratios, competitive preferences that value other’s payo� negatively tend to evolve. In con-380

trast, for su�ciently high bene�t-to-cost ratio we see the evolution of conditional (multiplicative)381

other-regarding preferences, in agreement with previous results that found these preferences to382

be evolutionarily stable in continuous social dilemmas (20). On the other hand, one can interpret383

our results for the freely evolving utilities as re�ecting the evolution of the correct representation384

of real �tness e�ect of mutual cooperation, because mutual cooperation generates a positive e�ect385

on �tness. However, the “Realistic” utility function is not the only evolutionarily successful one386

in our model. For example, some evolutionarily successful preference functions value positively387

both mutual cooperation and mutual defection. These signs, together with a negative utility for388

the sucker’s outcome guarantee uninvadability by the Sel�sh preference function, because indi-389
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viduals with such preferences will learn to defect against Sel�sh. Therefore, our results do not390

show that natural selection leads to the correct representation of �tness e�ects in the brain in391

the context of learning. Another important distinction is that, even though the utility for the392

temptation to defect is the highest in the model with freely evolving utilities, this does not nec-393

essarily mean that there is no other-regard preferences. This fact is illustrated by our results for394

the constrained utility function, which capture cases where other-regard (e.g. a positive β) can395

evolve even if the values of other evolutionary parameters make the temptation outcome being396

more rewarding than mutual cooperation.397

Taken together, these results suggest that learning agents can be selected to have some other-398

regarding utilities, but these are unlikely to be “pure” other-regard. Rather, any evolved rewards399

from cooperation is predicted to be conditional on both parties cooperating. This lends partial400

theoretical support to empirical studies of cooperation that indicate that humans and animals401

have prosocial preferences but are also averse to inequity (46, 47).402

Our �nding that a diversity of utility functions are favored by natural selection is also consistent403

with empirical �ndings that humans in behavioral experiments tend to act according to distinct404

behavioral types. In particular, strategies that value cooperation positively can produce similar405

behavior to that of reciprocating strategies (repeating the action of the partner in the previous406

round), and Sel�sh can produce the behavior of non-cooperators; these two behavioral types have407

recently been found to represent the action sequence of many human participants in laboratory408

experiments (15, 48) and have been considered as plausible evolutionarily signi�cant behavioral409

rules in theoretical models (1, 2, 4, 6). Moreover, in addition to a diversity of preference types, our410

model also shows the potential for multiple behavioral outcomes in a population monomorphic411

for a given preference function. This is because of the fact that stochastic learning processes412

can converge to di�erent equilibrium pro�les, which provides another way for the behavioral413

variation observed in learning experiments (49).414

In conclusion, our model articulates four levels of determinants of behavior: (1) the biological415

rewards at the core of brain functioning; (2) the psychological preferences that determine which416

states of the world are rewarding; (3) the social interactions that a�ect changes in the states of the417

world; (4) the biological process of natural selection determining which behavioral mechanisms418
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prevail in an evolving population. We �nd that evolution of rewards for learning captures both419

the possibility of cooperation and a diversity of individual preferences that can be evolutionarily420

successful. These results show the promise of integrating learning based on evolving intrinsic421

rewards from social interactions as a proximate mechanism for understanding the nature of co-422

operation in humans and animals.423
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Supplementary Information

S1 Reinforcement learning538

In our learning model, individuals hold action values,Vi,t+1(ai ), for each action ai ∈ {C,D}. Adapt-539

ing the model of ref. (50), the learning rule of individual i in our model is to update action values540

according to541

Vi,t+1(ai ) = Vi,t (ai ) + γt1(ai ,ai,t )ui (ai ,a−i,t ), (S1.1)

where 1(ai ,ai,t ) is an indicator variable that equals 1 if ai = ai,t , and 0 otherwise, and γt ∈ (0,1)542

is a dynamic learning rate. This learning rate is decreasing as the game proceeds, which implies543

that the initial rounds of interaction are critical in determining the stable outcome of the learning544

process. Such a condition ensures that learning converges during an individual’s lifetime (40, 51).545

This assumption can be justi�ed by the fact that the situation (game) faced by the individuals is546

constant. Finally ui (ai ,a−i,t ) is the utility to i if he plays ai given that his opponent plays a−i,t547

at time t . Importantly, under the rule in eq. S1.1 an action that is not played at time t keeps the548

same action value at time t + 1, in contrast to traditional reinforcement learning, where actions549

that are not played for a long period of time tend to be forgotten, and hence their values decay to550

0. This feature, together with the fact that early experience is important, means that our model551

captures relatively fast-scale learning dynamics that converges to an equilibrium outcome rather552

than lifelong learning processes. Thus our model of repeated interactions need not be understood553

as implying that an individual is paired with a single opponent for its entire lifespan. Rather, an554

individual may play several repeated games with di�erent partners, and each of these repeated555

interactions is assumed to last long enough for learning to converge.556

We then assume that individuals want to choose the action with highest value Vi,t (ai ), but also557

have some tendency to explore the action with smaller value. A widely used choice rule to capture558

this principle is the logit-choice function,559

pi,t (ai ) =
exp[ξVi,t (ai )]∑

bi∈Ai exp[ξVi,t (bi )]
, (S1.2)

where ξ > 0 is the exploration parameter (the inverse 1/ξ can be seen as the noise level if we560

interpret this model as perturbed maximization of action values, 52) in choosing actions. In our561
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case, there are two actions,C and D, hence eq. S1.2 is a sigmoid function, which can be thought as562

a generalization of the threshold rule that chooses the action with greater value Vi,t (ai ). Eq. S1.2563

approaches such threshold function when ξ gets larger.564

S2 Behavioral analysis565

In this section, we show how we analyze behavioral interactions by focusing on one particu-566

lar example, Realistic vs. Other-regard (a Sagemath notebook that contains the analysis of all567

behavioral interactions is available on demand).568

Treating Realistic as player u and Other-regard as player v , one starts by verifying what behav-569

ioral equilibria of eq. 1 (Fig. S1) exist for this particular interaction (see Fig. S2 for the vector �eld570

of this interaction). Recall that the utilities of Realistic have the signs u11 > 0, u12 < 0, u21 > 0,571

u22 = 0. The utilities of Other-regard have the signs v11 > 0, v12 > 0, v21 < 0, v22 < 0. Con-572

sequently, the equilibria that do not exist are the two interior equilibria as well as
(
0, v22

v12+v22

)
,573

(
u22

u12+u22
,0

)
, and

(
1, v21

v11+v21

)
. For example, the latter equilibrium does not exist because v21

v11+v21
is574

either negative (when |v11 | > |v21 |) or greater than 1 (when |v11 | < |v21 |), which is impossible for575

a probability.576

We then calculate the Jacobian matrix associated to eq. 1, evaluate it at each equilibrium, and577

calculate its eigenvalues. The pure equilibria (0,0), (1,0), (0,1), and (1,1) are straightforward to578

analyze because the sign of the eigenvalues are opposite to the sign of the utilities of the players.579

For example, the equilibrium (1,1) has the associated eigenvalues (−ξu11,−ξv11), which makes it580

locally stable. The equilibrium (0,1) is also locally stable because it has the associated eigenvalues581

(−ξu21,−ξv12), which are both negative. The equilibria where one player is mixing require a little582

more work. The equilibrium
(

u21
u11+u21

,1
)

has eigenvalues583

(
−ξ u21v11 + u11v12

u11 + u21
,ξ

u11u21
u11 + u21

)
. (S2.1)

Solving the inequality584

−ξ u21v11 + u11v12
u11 + u21

< 0. (S2.2)
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shows that this is always true given the signs of u and v. The second eigenvalue585

ξ
u11u21

u11 + u21
(S2.3)

is always positive, making the equilibrium
(

u21
u11+u21

,1
)

a saddle.586

S3 Fitness computation587

In this Appendix, we delineate the logic behind the computation of the �tnesses in Table 1 for the588

interaction between Realistic and Other-regard. The other �tnesses are computed similarly.589

As we have proven in Appendix S2, the interaction between Realistic and Other-regard can lead590

to two possible behavioral equilibria, (1,1) or (0,1). Because the original learning dynamics is591

stochastic, it may reach either equilibrium, but we cannot determine which one analytically.592

Indeed, the theory of stochastic approximations does not provide precise predictions about the593

lock-in probabilities in local attractors. Hence, in the analysis of the model we treat the probability594

qro to get attracted in the mutual cooperation equilibrium, (1,1), as a free parameter. Hence the595

probability to reach the equilibrium (0,1) is 1−qro. The payo� to the players at equilibrium (1,1)596

is b −c for both players. At equilibrium (0,1), Realistic obtains b and Other-regard −c . Weighting597

these payo�s by the lock-in probabilities gives598

( fro, for) = (qro(b − c ) + (1 − qro)b,qro(b − c ) + (1 − qro) (−c )) , (S3.1)

which are the entries of the corresponding �tnesses in Table 1 of the main text.599

S4 Replicator dynamics and evolutionary equilibria600

We evaluate the evolutionary competition between Realistic, Other-regard, Sel�sh, and Manip-601

ulator using the 4-dimensional replicator dynamics. In order to do so, we need to construct the602

evolutionary �tness matrix, i.e., computing the �tness, fuv , of a strategyu when matched with an-603

other strategyv in the repeated game. We need to do so for all strategies u, v ∈ {r,o,m,s}, where604

we denote a strategy by its initial (i.e., r denotes Realistic, etc.). Having obtained such �tnesses,605
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one can then call x = (xr,xo,xm,xs) the vector of frequencies in the population (xr+xo+xm+xs =606

1) and de�ne the average �tness of type u when the population is in state x as607

fu (x) =
∑

v∈{r,o,m,s}
xv fuv , u ∈ {r,o,m,s}. (S4.1)

We then use the continuous-time replicator dynamics to assess the long-term frequencies of608

strategies in the population, i.e.,609

ẋu = xu
(
fu (x) − f̄ (x)

)
, u ∈ {r,o,m,s}, (S4.2)

where610

f̄ (x) =
∑

u∈{r,o,m,s}
xu fu (x), (S4.3)

is the average �tness in the population at state x.611

Solving for the equilibria of eq. S4.2, we �nd that there is an equilibrium with Realistic, Other-612

regard, and Sel�sh, given by613




xr =
c

bqro
,

xo =
(b−c )qrr
bq2

ro
,

xs = 1 − xr − xo.

(S4.4)

We �nd another 3-strategy equilibrium with Realistic, Manipulator, and Sel�sh, with the frequen-614

cies615




xr =
cqrmu22 (−bu12+c[u12+u22])

(b−c )2 (q2
rm−qrr) (u12[u12+u22])−bcq2

rmu
2
22
,

xm =
(b−c )cqrru22 (u12+u22)

(b−c )2 (q2
rm−qrr) (u12[u12+u22])−bcq2

rmu
2
22
,

xs = 1 − xr − xm.

(S4.5)

There exists a 2-strategy equilibrium with Realistic and Other-regard who are in frequencies616




xr =
−c (1−qro)

(b−c ) (qrr−qro)
,

xo = 1 − xr.
(S4.6)

Sel�sh invades the latter mix of Realistic and Other-regard, and makes part of the equilibrium617

when618

qrr < q2
ro and b

c
>
qro − qrr

q2
ro − qrr

, (S4.7)
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which is obtained by �nding the conditions under which the �tness of Sel�sh at the equilibrium619

of eq. S4.6, fs(x∗ro), is higher than the average �tness in the population, f̄ (x∗ro). When this occurs620

the equilibrium consisting of Realistic, Other-regard, and Sel�sh (eq. S4.4) becomes stable.621
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Supplementary tables

Table S1: Classi�cation of behavioral outcomes amongst the 4 strategies considered.

Interaction Stable equilibria

R vs. R (1,1) and (0,0)

R vs. O (0,1) and (1,1)

R vs. M (1,1) and (0, v22
v12+v22

)

R vs. S (0,0)

O vs. O (1,1)

O vs. M (1,0) and (1,1)

O vs. S (1,0)

M vs. M (1,1)∗

M vs. S ( u22
u12+u22

,0)

S vs. S (0,0)
*for |u12 | < |u21 |, another equilibrium, ( u22

u12+u22
,0), becomes stable but we place ourselves in the conditions where

this condition does not hold.
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Supplementary �gures

(0,0) (1,0)

(0,1) (1,1)

(
0, v22

v12+v22

)

(
u22

u12+u22
,0

)

(
1, v21

v11+v21

)

(
u21

u11+u21
,1

)

pu

p v

Figure S1: The ten generic behavioral equilibria in a 2×2 game between a player with utility func-

tionu, and his opponent with utility functionv . The two interior equilibria have long expressions

that are not shown here.
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Figure S1: Vector fields (gray arrows) and stochastic trajectories (colored lines) for the 10 possible
behavioral interactions between the 4 strategies Realistic, Other-regard, Manipulator, and Selfish.
In each panel, on the x-axis is represented the probability that the row player cooperates (p1),
while on the y-axis, this is the probability that the column player cooperates (p2). The stochastic
trajectories are started from the center of the state space (p1, p2) = (1

2 , 1
2) and dots on it represent

interaction rounds between the players. Circles represent equilibria: a white-filled circle is a source
(both associated eigenvalues are positive); a gray-filled circle is a saddle (one positive and one
negative associated eigenvalue); a black circle is a sink (both associated eigenvalues are negative).
The red circle in the Realistic-Realistic interaction is a degenerate equilibrium with both zero
eigenvalues, but it turns out to be locally stable. These plots were generated by setting positive
utilities close to 1 and negative utilities close to -1 (which is why mixed equilibria always appear
close to 0.5).

36

Figure S2: Vector �elds (gray arrows) and stochastic trajectories (colored lines) for the 10 possible behav-

ioral interactions between the 4 strategies Realistic, Other-regard, Manipulator, and Sel�sh. In each panel,

on the x-axis is represented the probability that the row player cooperates (p1), while on the y-axis, this

is the probability that the column player cooperates (p2). The stochastic trajectories are started from the

center of the state space (p1,p2) = ( 1
2 ,

1
2 ) and dots on it represent interaction rounds between the players.

Circles represent equilibria: a white-�lled circle is a source (both associated eigenvalues are positive); a

gray-�lled circle is a saddle (one positive and one negative associated eigenvalue); a black circle is a sink

(both associated eigenvalues are negative). The red circle in the Realistic-Realistic interaction is a degener-

ate equilibrium with both zero eigenvalues, but it turns out to be locally stable. These plots were generated

by setting positive utilities close to 1 and negative utilities close to -1 (which is why mixed equilibria always

appear close to 0.5). 32
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Figure S2: Vector fields (gray arrows) and stochastic trajectories (colored lines) for the 15 possible behavioral interactions
between the 6 dominant strategies in the simulations: Avoid Sucker’s Payo↵, Matcher, Manipulator, Pareto, Selfish, and
Anti-Cooperation. Otherwise similar to Fig. S1.

37

Figure S3: Vector �elds (gray arrows) and stochastic trajectories (colored lines) for the 15 possible behavioral interactions between

the 6 dominant strategies in the simulations: Avoid Sucker’s Payo�, Matcher, Manipulator, Pareto, Sel�sh, and Anti-Cooperation.

Otherwise similar to Fig. S2.
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Figure S4: Invasion diagram amongst the successful strategy classes in the evolutionary simulations with associated invasion condi-

tions (similar to Fig. 1B). When we write “True”, the invasion condition exists but is too long to be displayed here (a Mathematica

notebook containing these conditions is available on demand). Name legend: A=“Avoid Sucker’s Payo�”; T=“Matcher”; P=“Pareto”;

N=“Anti-cooperation”; S=“Sel�sh”; M=“Manipulator”.
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Figure S5: Phenotype space for the model where the utility depends explictly on material payo�s

(eq. 4 with k = 2) as a function of β (x-axis), α (y-axis), γ (rows), and b/c (columns). Under the

panels depicting the phenotype space, we show the color code of strategies (colors are under the

corresponding utility matrix).
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Figure S6: Results for the model where the utility depends explictly on material payo�s (eq. 4)

as a function of the bene�t-to-cost ratio, b/c (identical to Fig. 4 except that k = 5). (A) Time

average of α , β , γ in a simulation run. (B) Time average of the frequency of game outcomes in a

simulation run (similar to Fig. 3B and 4B).
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Figure S7: Additional results for the model where the utility depends explictly on material payo�s

(eq. 4 with k = 2) as a function of the bene�t-to-cost ratio, b/c . (A) Time average in a simulation

run of the four utilities associated to each game outcome. (B) Proportion of time a simulation run

spends in each strategy class (similar to Fig. 3A; see Fig. S5 for color code of strategies).
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Figure S8: Stationary distributions of the traits measuring additive other-regard (α ), multiplicative

other-regard (β), and inequity aversion (γ ) for various bene�t-to-cost ratios (b/c) and values of

k (see main text for de�nition, eq. 4) when constraining the utility function to explicitly depend

on the material payo�s. In each sub�gure, a column of values for a given bene�t-to-cost ratio

represents the stationary distribution of the trait, where darker shading corresponds to a higher

frequency.
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