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One Sentence Summary: Transcriptome sequencing improves the diagnostic rate for Mendelian disease in 
patients for whom genetic analysis has not returned a diagnosis.  
 
Abstract 
Exome and whole-genome sequencing are becoming increasingly routine approaches in Mendelian disease 
diagnosis. Despite their success, the current diagnostic rate for genomic analyses across a variety of rare 
diseases is approximately 25-50%. Here, we explore the utility of transcriptome sequencing (RNA-seq) as a 
complementary diagnostic tool in a cohort of 50 patients with genetically undiagnosed rare muscle 
disorders. We describe an integrated approach to analyze patient muscle RNA-seq, leveraging an analysis 
framework focused on the detection of transcript-level changes that are unique to the patient compared to 
over 180 control skeletal muscle samples. We demonstrate the power of RNA-seq to validate candidate 
splice-disrupting mutations and to identify splice-altering variants in both exonic and deep intronic regions, 
yielding an overall diagnosis rate of 35%. We also report the discovery of a highly recurrent de novo intronic 
mutation in COL6A1 that results in a dominantly acting splice-gain event, disrupting the critical glycine 
repeat motif of the triple helical domain. We identify this pathogenic variant in a total of 27 genetically 
unsolved patients in an external collagen VI-like dystrophy cohort, thus explaining approximately 25% of 
patients clinically suggestive of collagen VI dystrophy in whom prior genetic analysis is negative. Overall, 
this study represents a large systematic application of transcriptome sequencing to rare disease diagnosis 
and highlights its utility for the detection and interpretation of variants missed by current standard diagnostic 
approaches.    
 
Introduction  
The advent of exome (WES) and whole genome (WGS) sequencing has greatly accelerated our capacity to 
identify variants that explain many Mendelian diseases in both known and new disease genes. While these 
technologies are mainstays in Mendelian disease diagnosis, their success rate for detecting causal variants 
is far from complete, ranging from 25-50% (1-4). The primary challenge of these genome-based diagnostics 
is that the capacity of WES and WGS to discover genetic variants substantially exceeds our ability to 
interpret their functional and clinical impact (5-7).  
 
One approach to improve the interpretation of genetic variation is to integrate functional genomic information 
such as RNA-seq, which provides direct insight into transcriptional perturbations caused by genetic changes 
(8, 9). Analysis of cDNA of single genes has proven useful on a case-by-case basis to provide diagnoses to 
patients with Mendelian disorders (10-13), and RNA-seq has previously been used to observe the effect of 
pathogenic variants which were identified through DNA sequencing (14, 15). However, the use of 
transcriptome sequencing has not yet been assessed for discovery of pathogenic variants in a cohort of 
Mendelian disease patients. Such approaches have already proven useful for elucidating mechanisms of 
cancer and common disease (16, 17) but are not currently systematically applied to rare disease diagnosis.  
 
Here we describe the application of this technology to the diagnosis of patients with a range of primary 
muscle disorders, including myopathies and muscular dystrophies, using RNA obtained from affected 
muscle tissue (table S1). To investigate the value of RNA-seq for diagnosis, we obtained primary muscle 
RNA from 63 patients with putatively monogenic muscle disorders. Thirteen of these cases had been 
previously diagnosed with variants expected to have an effect on transcription, such as loss-of-function or 
essential splice site variants, allowing us to validate the capability of RNA-seq to identify transcriptional 
aberrations (table S2). The remaining cohort of 50 genetically undiagnosed patients included cases for 
whom DNA sequencing had prioritized variants predicted to alter RNA splicing or strong candidate genes, 
as well as cases with no strong candidates from genetic analysis (Fig. 1A, see Materials and Methods for 
inclusion criteria).  
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Results  
Importance of sequencing the disease-relevant tissue 
Recent large-scale studies have shown that gene expression and mRNA isoforms vary widely a
tissues, indicating that for many diseases, sequencing the disease-relevant tissue will be valuable fo
correct interpretation of genetic variation (18, 19). This is illustrated by the relative expression of k
muscle disease genes in skeletal muscle, whole blood, and fibroblast samples from the Genotype T
Expression Consortium project (GTEx) (fig. S1) (20). The majority of the most commonly disrupted gen
muscle disease are poorly expressed in blood and fibroblasts, suggesting RNA-seq from these e
accessible tissues may be underpowered to detect relevant transcriptional aberrations in certain genes
these reasons, we chose to pursue RNA-seq from primary muscle tissue biopsies, which are rou
performed as part of the diagnostic evaluation of undiagnosed muscle disease patients (21, 22). 
 
Comparison of patient RNA-seq to a muscle RNA-seq reference panel  
Patient muscle samples were sequenced using the same protocol as in the GTEx project (20) and ana
using identical pipelines to minimize technical differences, with patients sequenced at or above the 
coverage as GTEx controls. From 430 skeletal muscle RNA-seq samples available through GTEx
selected a subset of 184 samples based on RNA-seq quality metrics including RNA integrity (RIN) 
and ischemic time, as well as phenotypic features such as age, BMI, and cause of death to more cl
match our patient samples.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Experimental design and quality control. A) Overview of the number of samples that underwent RNA-seq. We performed
13 previously genetically diagnosed patients, 4 patients in whom previous genetic analysis had identified an extended splice s
unknown significance (VUS), 12 patients in whom genetic analysis had identified a strong candidate gene, and 34 patients w
candidates from previous analysis. RNA-seq enabled the diagnosis of 35% of patients overall, with the rate, shown above the bar
depending on previous evidence from genetic analysis. B) PCA based on gene expression profiles of patient muscle samples
(n=61) and GTEx samples of tissues that potentially contaminate muscle biopsies shows that patient samples cluster closely with G
muscle. C) Overview of experimental set up and RNA-seq analyses performed. Our framework is based on identifying t
aberrations that are present in patients and missing in GTEx controls. Upon ensuring that GTEx and patient RNA-seq data were
we validated the capacity of RNA-seq to resolve transcriptional aberrations in previously diagnosed patients and performed analyse
splicing, allele imbalance, and variant calling in our remaining cohort of genetically undiagnosed muscle disease patients.  
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Comparison between our GTEx reference panel and patient muscle RNA-seq samples showed analogous 
quality metrics (table S3). Principal component analysis (PCA) of expression and splicing profiles 
demonstrated that patient muscle RNA-seq closely resembled control muscle when compared to tissues 
that potentially contaminate muscle biopsies, such as skin or fat, despite variation in the site of muscle 
biopsy across patients (Fig. 1B, fig. S2A, table S1). Based on this clustering, we removed two samples from 
analysis because their expression patterns clustered more closely with GTEx adipose tissue than muscle, 
consistent with tissue contamination or late-stage degenerative muscle pathology (fig. S2B). We also 
performed fingerprinting based on patient WES, WGS, and RNA-seq data to ensure the source of DNA 
sequencing and muscle RNA-seq data was the same individual. 
 
We explored the utility of analyzing patient RNA-seq data to detect aberrant splice events and allele-specific 
expression and performed variant calling from RNA-seq data to identify pathogenic events or to prioritize 
genes for closer analysis (Fig. 1C). We also identified outlier gene expression status in patients; however, 
this analysis was underpowered to prioritize candidate genes in our study (fig. S3). The resulting diagnoses 
were made primarily through detection of aberrant splice events in patients, with information on gene-level 
allele imbalance playing a complementary role. 
 
In previously diagnosed cases, manual evaluation of pathogenic essential splice site variants revealed a 
splice aberration such as exon skipping or extension, demonstrating that RNA-seq can help resolve the 
effect of variants on transcription (fig. S4A-F). To detect aberrant transcriptional events genome-wide, we 
developed an approach based on identifying high quality exon-exon splice junctions present in patients or 
groups of patients and missing in GTEx controls (code available at https://github.com/berylc/MendelianRNA-
seq). We performed splice junction discovery from split-mapped reads, considering only those that were 
uniquely aligned and non-duplicate. To account for library size and stochastic gene expression differences 
between samples, we performed local normalization of read counts based on read support for overlapping 
annotated junctions (fig. S5A, B). We then performed filtering of splice junctions based on the number of 
samples in which a splice junction is observed and the number of reads and normalized value supporting 
that junction in each sample. Our approach successfully re-identified all known pathogenic events in 
patients in whom manual evaluation had revealed aberrant splicing around splice variants previously 
identified through genomic testing. We defined filtering parameters that selectively identified these 
previously known aberrant splice events and applied them to our remaining cohort of undiagnosed patients. 
This method resulted in the identification of a median of 5, 26, and 190 potentially pathogenic splice events 
per sample in ~190 neuromuscular disease associated genes, OMIM genes, and all genes respectively (fig. 
S6), which required manual curation to interpret pathogenicity and led to the diagnoses made in this study. 
 
Diagnoses made via RNA-seq  
RNA-seq allowed the diagnosis of 17 previously unsolved families, yielding an overall diagnosis rate of 35% 
in this challenging subset of rare disease patients for whom extensive prior analysis of DNA sequencing 
data had failed to return a genetic diagnosis. We also identified splice disruption in other known and 
putatively novel disease genes in several patients; however, due to unavailability of additional information, 
such as parental DNA, we could not pursue these cases further (fig. S7). Detection of aberrant splicing led 
to the identification of a broad class of both coding and non-coding pathogenic variants resulting in a range 
of splice defects such as exon skipping, exon extension, exonic and intronic splice gain, which were 
validated by RT-PCR analysis (Fig. 2, Table 1, Supplementary Materials and Methods). RNA-seq patterns 
also helped pinpoint three structural variants in DMD that were subsequently confirmed by WGS (fig. S8).  
 
Cases diagnosed in this study highlight several key advantages of RNA-seq in rare disease diagnosis to 
confirm the pathogenicity of variants and to detect previously unidentified variation. In four patients with 
previously detected extended splice site variants of unknown significance (VUS), RNA-seq confirmed splice 
disruption in two patients (Fig. 1A, fig. S9A, B). The variants had no observable effect on local splicing 
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Figure 2: Types of pathogenic splice aberrations discovered in patients. RNA-seq identified a range of aberrations caused by both coding and 
non-coding variants such as A) exon skipping caused by an essential splice site variant in patient D7, B) exon extension caused by a donor +3 
A>C extended splice site variant in nemaline myopathy patient C9, where disruption of splicing at the canonical splice site results in splicing 
from intact GTA motifs from the intron, C) exonic splice-gain caused by a C>T donor splice site-creating variant in patient N22 with a donor + 5-
G sequence context, resulting in a stronger splice motif than the existing canonical splice site, and D) intronic splice gain in patient N33 caused 
by a C>T donor splice site-creating deep intronic variant. Evidence for wild type splicing in addition to the inclusion of the pseudo exon in the 
patient is in line with the milder Becker’s muscular dystrophy phenotype. Splice aberrations shown in B, C, and D result in the introduction of a 
premature stop codon to the transcript. 

patterns in the remaining two patients, emphasizing the value of RNA-seq in ruling out non-pathogenic VUS 
(fig. S9C, D).  
 
RNA-seq also led to the identification of an additional disruptive extended splice site variant missed by 
exome sequencing. In a nemaline myopathy patient with one previously detected recessive frameshift 
variant in the NEB gene, RNA-seq identified an exon extension event caused by an underlying variant at the 
+3 position of the donor site which led to the introduction of a premature stop codon to the transcript as the 
second recessive allele (Fig. 2B). The exon harboring this variant was not captured in the exome kit used to 
screen the patient (fig. S10), underlining the utility of RNA-seq at complementing WES to identify previously 
undetected variants. 
 
 Synonymous and missense variants in large, variation-rich genes such as TTN are exceptionally 
challenging to interpret and are often filtered out in DNA sequencing pipelines (23, 24). With RNA-seq, we 
were able to assign pathogenicity to a missense variant in TTN and two synonymous variants in RYR1 and 
POMGNT1 (fig. S11). In patient N22, the identified missense variant created a GT donor splice site for 
which the consensus motif included a G nucleotide in the +5 position, known to contribute to the strength of 
the splice site (25, 26). The well-conserved donor +5-G motif was missing in the competing canonical splice 
which 
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site, thus resulting in a stronger novel splice site and gain of splicing from the exon body (Fig. 2C). A similar 
mechanism was observed in RYR1, caused by a synonymous variant in a patient carrying a second 
pathogenic allele in the gene (fig. S11A). In an additional patient carrying an essential splice site variant in 
POMGNT1, we identified a synonymous variant disrupting an exonic splice motif and resulting in exon 
skipping (fig. S11B-D).  
 
In eight cases, RNA-seq aided in the identification of non-coding pathogenic variants. We identified splice 
site-creating hemizygous deep intronic variants in DMD that resulted in the creation of a pseudo-exon and 
led to a premature stop codon in the coding sequence in three patients (Fig. 2D, fig. S12).  Although RNA-
seq from a patient with severe Duchenne muscular dystrophy showed only splicing to the pseudo-exon (fig. 
S12), wildtype splicing between annotated exons was observed in two patients with a milder Becker 
muscular dystrophy phenotype, indicating the presence of residual functional DMD transcripts that explain 
the milder disease course. Such intronic variants are unobservable with WES and too abundant to be 
interpretable with WGS alone, emphasizing the utility of RNA-seq at resolving pathogenicity of these non-
coding variants 
 

Table 1: Diagnoses made in the study via patient muscle RNA-seq 
Patient Phenotype Gene Variants Variant Class Effect 

E2 
Nemaline 
myopathy 

NEB 
chr2:152,544,805 C>T 
chr2:152,520,057 C>T 

essential splice, 
extended splice 

exon skipping + exon 
extension, 

exon extension 

C9 
Nemaline 
myopathy 

NEB 
chr2:152,581,432  TG>T 
chr2:152,389,953 A>C 

frameshift, 
extended splice 

exon extension 

E4 Fetal akinesia TTN 
chr2:179,586,600 CAT>C 

chr2:179,446,219 ATACT>A 
frameshift, 

extended splice 
exon skipping 

C6 
Duchenne muscular 

dystrophy 
DMD chrX:32,366,860 A>C intronic variant intronic splice-gain 

N33 
Myalgia, 

myoglobunuria 
DMD chrX:32,274,692 G>A intronic variant intronic splice-gain 

C7 
Becker muscular 

 dystrophy 
DMD chrX:31,613,687 G>T intronic variant Intronic splice-gain 

N29 
Collagen VI-related 

dystrophy 
COL6A1 chr21:47,409,881 C>T intronic variant intronic splice-gain 

N30 
Collagen VI-related 

dystrophy 
COL6A1 chr21:47,409,881 C>T intronic variant intronic splice-gain 

N31 
Collagen VI-related 

dystrophy 
COL6A1 chr21:47,409,881 C>T intronic variant intronic splice-gain 

N32 
Collagen VI-related 

dystrophy 
COL6A1 chr21:47,409,881 C>T intronic variant intronic splice-gain 

N25 
Nemaline 
myopathy 

NEB 
chr2:152,355,017 G>T 
chr2:152,449,646G>A 

intronic variant, 
nonsense 

intronic splice-gain 

C11 
Congenital fiber-type 

disproportion 
RYR1 

chr19:38,958,362 C>T 
chr19:38,958,372 G>A 

synonymous, 
missense 

exonic splice gain 

N22 
Multi/minicore 

congenital myopathy 
TTN 

chr2:179,642,185 G>A 
chr2:179,523,240 CTTCT>C 

missense, 
frameshift 

exonic splice-gain 

C1 
Alpha 

dystroglycanopathy 
POMGNT1 

chr1:46,655,129 C>A 
chr1:46,660,532 G>A 

essential splice, 
synonymous 

exonic splice-gain, 
exon skipping 

C3 
Duchenne muscular 

dystrophy 
DMD chrX:31,790,694-31,798,498 inversion-deletion exon skipping 

C2 
Duchenne muscular 

dystrophy 
DMD chrX:31,378,946-151,194,962 inversion splice disruption 

C4 
Duchenne muscular 

dystrophy 
DMD chrX:32,521,820-35,180,380 inversion splice disruption 
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In two patients with no strong candidates from WES and WGS (N22 and N25) we identified heterozy
splice disruption in two commonly disrupted recessive muscle disease genes, NEB and TTN. These g
harbor regions with highly similar sequences, the so-called triplicate repeat regions (27, 28). Due to
sequence similarity, the region has poor mapping quality, resulting in low quality variant calls that are fi
by most current diagnostic pipelines. To identify possible pathogenic variants in the triplicated regio
NEB and TTN in these two patients, we developed a method based on remapping the triplicate region
de-triplicated pseudo-reference and performing hexaploid variant calling (fig. S13A-C). This method
applied to available WES/WGS and RNA-seq data for all patients and identified one novel nonsense
one novel frameshift variant in NEB and TTN in these two patients, which finalized their diagnoses (N2
N22, fig. S13D and E, respectively).  
 
Identification of a recurrent splice site-creating variant in collagen VI-related dystrophy. 
A notable example of the power of transcriptome sequencing is our discovery of a genetic subtype of se
collagen VI-related dystrophy, which is caused by mutations in one of three collagen 6 genes (COL
COL6A2, and COL6A3) (21). In four patients who had previously tested negative with deletion/duplic
testing and fibroblast cDNA sequencing of the collagen VI genes as well as clinical WES and WGS
identified an intron inclusion event in COL6A1 using RNA-seq (Fig. 3A). The splicing-in of this in
segment, which is missing in GTEx controls and all other patients in our cohort, is caused by a donor s
site-creating GC>GT variant that pairs with a cryptic acceptor splice site 72 bp upstream, creating a
frame pseudo-exon (Fig. 3B). This variant is missing in the 1000 Genomes Project dataset (29) as well 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Identification of a recurrent splice site-creating variant in four collagen VI-related dystrophy patients. A) Splicing in of the
was observed in four patients in our cohort (red) and missing in all other patients and GTEx samples (blue). B) Inclusion of the 2
segment is caused by a C>T donor splice site-creating variant which pairs with a AG splice acceptor site 72 bp upstream. The va
in a CpG nucleotide context, which likely explains its recurrent de novo status, and disrupts the Gly-X-Y repeat motifs of CO
inclusion event is observable in RT-PCR amplicons from patient muscle but is found at comparatively lower levels in cultured derm
derived from the patients, explaining why the pathogenic event was missed in all four patients through previous fibroblast cDNA se
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an in-house dataset of 5,500 control WGS samples. The resulting inclusion of 24 amino acids occurs within 
the N-terminal triple-helical collagenous G-X-Y repeat region of the COL6A1 gene, the disruption of which 
has been well-established to cause dominant-negative pathogenicity in a variety of collagen disorders (30). 
Of note, cDNA analysis shows that the aberrant transcript is observable in muscle but in much smaller 
amounts in cultured dermal fibroblasts, making the event identifiable by muscle transcriptome analysis 
despite being previously missed by fibroblast cDNA sequencing (Fig. 3C). Using this information, we 
genotyped the variant in a larger, genetically undiagnosed collagen VI-like dystrophy cohort and identified 
27 additional patients carrying the intronic variant. We confirmed that the variant had occurred as an 
independent de novo mutation in all 16 families for whom trio DNA was available. Based on this screening, 
we estimate that up to a quarter of all cases clinically suggestive of collagen VI-related dystrophy but 
negative by exon-based sequencing are due to this recurrent de novo mutation (Supplementary Materials 
and Methods).  
 
Evaluation of splice prediction algorithms and RNA-seq in alternative tissues 
Exons harboring the pathogenic variants identified in this study show low coverage in GTEx whole blood 
and fibroblast samples, indicating that a majority of these diagnoses likely could not have been made using 
RNA-seq from these tissues (fig. S14). Furthermore, many of the diagnoses made in this study could not 
have been made on genotype information alone, as splice prediction algorithms alone are currently 
insufficient to classify variants as causal (31, 32). Although existing in silico algorithms correctly predicted 
disruption for the two extended splice site variants of unknown significance in our study, they also generated 
false positive predictions for the remaining two extended splice site variants with no effect on splicing 
(Supplementary Materials and Methods, fig. S15A). In addition, existing algorithms showed poor specificity 
in identifying splice site-creating coding variants, identifying on average over 100 putative splice site-
creating rare variants (<1% population frequency in ExAC) exome-wide (fig. S15B).  
 
Discussion 
Our results show that RNA-seq is valuable for the interpretation of coding as well as non-coding variants, 
and can provide a substantial increase in diagnosis rate in patients for whom exome or whole genome 
analysis has not yielded a molecular diagnosis. In our cohort, RNA-seq led to the diagnosis of 66% of 
patients where clinical phenotyping and DNA sequencing prioritized a strong candidate gene. In 
comparison, through identifying aberrant splice events found in patients and missing in GTEx controls, we 
were able to diagnose 21% of patients with no strong candidates from WGS or WES.  
 
Our work illustrates the value of large multi-tissue transcriptome data sets such as GTEx to serve as a 
reference to facilitate the identification of extreme splicing or allele balance outlier events in patients. In the 
case of muscle disorders, our diagnoses were made primarily through direct identification of aberrations in 
splicing using the GTEx skeletal-muscle RNA-seq dataset as a reference panel. Our present work focused 
on identifying such aberrations in known muscle disease genes, and the considerably lower number of 
putatively pathogenic events identified in neuromuscular disease genes versus all genes underlines the 
advantage of a candidate gene list for this analysis Further improvements in filtering identified splice 
junctions to obtain a smaller list of candidate events will be useful to expand this work for new disease gene 
discovery. In addition, with increasing sample sizes and improvements in methods, RNA-seq can also be 
used to identify somatic variants and to detect regulatory variants upstream, through analysis of expression 
status and allelic imbalance. 
 
Access to the disease-relevant tissue for many Mendelian disorders remains a major barrier for the use of 
transcriptome sequencing in genetic diagnosis. The RNA-seq framework developed in this study can be 
adapted for rare diseases where biopsies are available, such as Mendelian disorders affecting heart, kidney, 
liver, skin, and other tissues. For example, during the preparation of this manuscript, the application of RNA-
seq to fibroblast samples for the genetic diagnosis of mitochondrial disease was reported in an unpublished 
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preprint (33). For disorders where biopsy of the disease-relevant tissue is unattainable, analyses are 
possible through identification of proxy tissues using databases such as GTEx and careful consideration of 
the expression status of the relevant genes in the proxy tissue. Alternatively, the framework developed in 
this study can also enable diagnoses through reprogramming patient cells into induced pluripotent stem 
cells and differentiation into disease-relevant tissues of interest.  
 
Evaluation of existing splice prediction algorithms for the splice-disrupting variants identified in the study 
highlights that information on DNA sequence alone does not currently match the ability of RNA-seq to 
identify the transcriptional consequences of variants on a genome-wide scale. The diagnoses made in our 
study with RNA-seq, particularly the discovery of the highly recurrent mutation in COL6A1, demonstrates 
that other such cryptic splice-affecting variants may contribute substantially to undiagnosed diseases that 
have evaded prior detection with exome or whole genome analysis.  
 
Overall, this work suggests that RNA-seq is a valuable component of the diagnostic toolkit for rare diseases 
and can aid in the identification of new pathogenic variants in known genes as well as new mechanisms for 
Mendelian disease.  
 
Methods 
Study design 
We sought to explore the utility of transcriptome sequencing as a complementary diagnostic tool to exome 
and whole genome analysis. We reasoned that RNA-seq would allow us to interpret variants previously 
identified through genetic analysis and may pinpoint genetic lesions that may have eluded DNA sequencing. 
To interpret transcriptional aberrations seen in patients, we obtained a reference panel of 184 sets of 
skeletal muscle RNA-seq data from the Genotype Expression Consortium (GTEx) project. Our framework 
was based on identifying transcriptional aberrations present in patients that are missing in GTEx controls. 
We first validated the capacity of RNA-seq to resolve transcriptional aberrations in thirteen patients with 
prior genetic diagnosis and then analyzed the remaining fifty genetically undiagnosed patients to detect 
aberrant splice events and allele-specific expression and performed variant calling from RNA-seq data to 
identify pathogenic events or to prioritize genes for closer analysis  
 
Clinical sample selection 
Patient cases with available muscle biopsies were referred by clinicians from March 2013 through June 
2016. Samples fell into four broad categories: 
 

1. patients for whom previous genetic analysis had resulted in a diagnosis with at least one loss-
of-function or essential splice site variant, serving as positive controls to assess the capability of 
RNA-seq to identify the transcriptional effect of the variants (n = 13, patient IDs starting with ‘D’).  
 

2. patients with candidate extended splice site variants that had been categorized as variants of 
unknown significance for which assignment of pathogenicity would result in a complete 
diagnosis for the patient (n=4, patient IDs starting with ‘E’).  
 

3. patients for whom a strong candidate gene was implicated due to either a well-defined 
monogenic disease phenotype, such as patients with clear Duchenne muscular dystrophy 
evidenced by clinical diagnosis and loss of dystrophin expression (n=6), or to the presence of 
one pathogenic heterozygous variant identified in a gene matching the patient’s phenotype, 
without a second pathogenic variant in that gene (n= 6, patient IDs starting with ‘C’). 

 
4. patients with no strong candidates based on previous genetic analysis such as exome or whole 

genome sequencing (n=34, patient IDs starting with ‘N’) 
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Patients that fit categories 2-4 are referred to as undiagnosed prior to RNA-seq and constitute the 
denominator for the 35% diagnosis rate. All patients had prior analysis of exome and/or whole genome 
sequencing data, except two cases (patients E4 and D11) for whom targeted sequencing had identified a 
candidate extended and essential splice site variant, respectively. We favored cases with previous trio 
exome or whole genome sequencing: 29/63 patients had complete trios, with 3 additional patients having 
one parent sequenced. Although age of onset was not considered as an exclusion criterion, a majority of the 
patients in the cohort had a congenital or early-childhood onset primary muscle disorder. 
 
Muscle biopsies or RNA were shipped frozen from clinical centers via a liquid nitrogen dry shipper and 
stored in liquid nitrogen cryogenic storage. Before submission to the sequencing platform, all muscle 
samples were visually inspected, photographed, cut into 50 μm sections on Leica CM 1950 model cryostat, 
and transferred to pre-chilled cryotubes in preparation for RNA extraction. When muscle arrived embedded 
in OCT, 8 μm transverse cryosections were mounted on positively charged Superfrost plus slides (VWR, 
48311-703) and stained with hematoxylin and eosin (H&E) to assess the relative proportion of muscle 
versus fibrosis and adipose infiltration as well as the presence of overt freeze-thaw artifact. All samples 
analyzed with H&E showed muscle quality sufficient to proceed to RNA-seq. 

 
RNA sequencing 
RNA was extracted from muscle biopsies via the miRNeasy Mini Kit from Qiagen per kit instructions. All 
RNA samples were measured for quantity and quality. Samples had to meet the minimum cutoff of 250 ng 
of RNA and RNA Quality Score (RQS) of 6 to proceed with RNA-seq library prep. A fraction of samples 
falling below an RQS of 6 were also submitted for sequencing. All samples submitted had a range of RQSs 
between 3.5-8. 
 
Sequencing was performed at the Broad Institute Genomics Platform using the same non-strand-specific 
protocol with poly-A selection of mRNA (Illumina TruSeq) used in the GTEx sequencing project (20), to 
ensure consistency of our samples with GTEx control data. Paired end 76 bp sequencing was performed on 
Illumina HiSeq 2000 instruments, with sequence coverage of 50M or 100M. One sample (patient N33) was 
sequenced to higher depth at 500M reads to permit downsampling analysis of the effects of increasing 
RNA-seq depth. 
  
Selection of GTEx controls 
GTEx data were downloaded from dbGaP (http://www.ncbi.nlm.nih.gov/gap) under accession 
phs000424.v6.p1. From 430 available GTEx skeletal muscle RNA-seq samples, we selected 184 samples 
based on RNA Integrity (RIN) score (between 6 and 9), number of non-duplicate uniquely mapped read 
pairs (between 35M and 75M), and ischemic time (<12 hours) to remove any samples that were outliers for 
these quality metrics. GTEx samples were further filtered to remove samples with known clinical conditions 
such as Klinefelter’s syndrome or those for whom death followed after long or intermediate term illness or 
medical intervention (Hardy Scale 0, 3, or 4). Overall, approximately 80% of GTEx samples with available 
muscle RNA-seq are above the age of 40 (median age 54) and have BMI over 25 (median BMI 27). Thus 
we selected samples to enrich for younger GTEx donors to more closely match our patient cohort. All 
samples below the age of 50 were selected, resulting in 76 samples with high quality RNA-seq data. We 
then added older samples back on the criterion that their BMI was below 30. This resulted in a total of 184 
GTEx control samples for our reference panel, with comparable male and female sample count (105 male 
and 79 female). This filtering method also enriched RNA-seq data from organ donors and surgical donors as 
opposed to postmortem samples (72% of selected GTEx controls are derived from surgical or organ donors 
vs 45% in the unfiltered dataset). A full list of GTEx sample IDs used as the reference panel can be found in 
table S4.   
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RNA sequencing alignment and quality-control 
GTEx BAM files downloaded from dbGAP were realigned after conversion to FASTQ files with Picard 
SamToFastq. Both patient and GTEx reads were aligned using Star 2-Pass version v.2.4.2a using hg19 as 
the genome reference and Gencode V19 annotations. Briefly, first pass alignment was performed for novel 
junction discovery, and the identified junctions were filtered to exclude unannotated junctions with less than 
5 uniquely mapped read support, as well as junctions found on the mitochondrial genome. These junctions 
were then used to create a new annotation file, and second-pass alignment was performed as 
recommended by the STAR manual to enable sensitive junction discovery. Duplicate reads were marked 
with Picard MarkDuplicates (v.1.1099). 
 
Quality metrics for patient and GTEx RNA-seq data were obtained by running RNA-seQC (v1.1.8) on STAR 
aligned BAMs (34). PCA on gene expression was performed based on RPKM values calculated by RNA-
seQC. Two samples (D6 and N3) were removed due to outlier status in PCA, consistent with a high 
proportion of non-muscle tissue in the samples (fig. S2B). For GTEx samples, the expression and exon-level 
read count data were downloaded from dbGAP under accession phs000424.v6. For PCA of exon inclusion 
metrics, we obtained PSI values for GTEx samples as described in (35). 
 
To ensure that patient DNA and RNA data were identity-matched, we compared variants identified in WES, 
WGS, and RNA-seq data. WES, WGS, and RNA-seq data were joint-genotyped for a set of ~5,800 common 
SNPs collated by Purcell et al. (36) using Genome Analysis Toolkit (GATK) HaplotypeCaller package 
version 3.4. We then calculated pairwise inheritance by descent (IBD) estimates between DNA and RNA-
seq data using PLINK (v1.08p). Relatedness coefficients for WES, WGS, and RNA-seq data from the same 
individual ranged from 0.67-1.00 across our samples (mean = 0.9), compared to a range of 0-0.18 (mean= 
0.001) for non-matching individuals, confirming that the sources for DNA and RNA-seq were the same for 
each patient in our dataset.  
 
Exome and whole genome sequencing 
Whole exome sequencing on DNA samples (>250 ng of DNA, at >2 ng/μl) was performed using Illumina or 
Agilent SureSelect v2 exome capture. The exome sequencing pipeline included sample plating, library 
preparation (2-plexing of samples per hybridization), hybrid capture, sequencing (76 bp paired reads) and 
sample identification QC check. Hybrid selection libraries covered >80% of targets at 20x with a mean target 
coverage of >80x. The exome sequencing data were de-multiplexed, and each sample's sequence data 
were aggregated into a single Picard BAM file. Whole genome sequencing was performed on 500 ng to 1.5 
µg of genomic DNA using a PCR-free protocol. These libraries were sequenced on the Illumina HiSeq X10 
with 151 bp paired-end reads and a target mean coverage of >30x. 
 
Exome and genome sequencing data were processed through a Picard-based pipeline, using base quality 
score recalibration (BQSR) and local realignment at known indels. The BWA aligner was used for mapping 
reads to the human genome build 37 (hg19). Single Nucleotide Polymorphisms (SNPs) and 
insertions/deletions (indels) were jointly called across all samples using GATK HaplotypeCaller. Default 
filters were applied to SNP and indel calls using the GATK Variant Quality Score Recalibration (VQSR), and 
variants were annotated using Variant Effect Predictor (VEP v78); additional information on this pipeline is 
provided in Supplementary Section 1 of (37). The variant call set was uploaded to the seqr analysis platform 
(seqr.broadinstitute.org) to perform variant filtering using inheritance patterns, functional annotation, and 
variant frequency in reference databases including ExAC (37) and 1000 Genomes (29). 
 
Identification of pathogenic splice events 
Splice junctions were identified from split-mapped reads, considering only uniquely aligned, non-duplicate 
reads that passed platform/vendor quality controls. For each splice junction we noted:  
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1. the genomic coordinates 
2. the gene in which the junction was observed based on Gencode v.19 
3. the number of samples in which the splice junction was observed 
4. the number of total reads supporting the junction in 245 samples (184 GTEx and 61 patient) 
5. the per-sample read support for the junction  

 
We then performed local normalization of per-sample read support based on the support for the highest 
shared annotated junction (fig. S5A). For example, an exon-skipping event harbors two annotated exon-
intron junctions, and we normalize this by the maximum of read count support for canonical splicing at these 
two wildtype junctions. This local normalization allows for filtering low-level mapping noise and accounts for 
stochastic gene expression and library size differences between samples (fig. S5B). 
 
To identify pathogenic splice events, splice junctions in protein coding genes were filtered in terms of the 
number of samples a splice junction is present in and the number of reads and the normalized value 
supporting that junction. Specifically, we defined a sensitive cutoff at which an aberrant splice event is seen 
with at least 5% of the read support compared to the shared annotated junction, with at least 2 reads 
supporting the event. We also required a splice junction to contain at least one annotated exon-exon 
junction, indicating that the event was spliced into an existing transcript (fig. S5A). We performed analysis 
on a per-sample basis, each time requiring the normalized value of a given splice junction to be maximum in 
that sample and twice that of the next highest sample, allowing us to search for unique events in the patient.  
 
All candidate pathogenic splice events were manually evaluated using the Integrative Genome Viewer 
(IGV). This resulted in the identification of aberrant splicing at 8/9 pathogenic essential splice site variants 
and resulted in the diagnosis of 10/17 patients in the study. A splice aberration was not observed around an 
essential splice site variant found in TTN in patient D5 due to insufficient number of reads mapping to the 
local region (fig. S4E). We extended filtering parameters to identify splice junctions present in fewer than 10 
samples, but with high read support in each sample, allowing us to identify the intronic splice-gain event 
present in 4 patients in COL6A1 (Fig. 3A). We note that this approach would also identify putatively 
pathogenic splice aberrations for which there are GTEx carriers. The remaining 3 Duchenne muscular 
dystrophy patients were diagnosed through manual analysis of splicing patterns in DMD and resulted in the 
identification of splice disruption. Overlapping structural variants at these regions were confirmed by 
subsequent WGS (fig. S8).e (38) d(39)m,(40) asja (41) dda (42) kja (43) jj (44) kl (45) jk (46)  
 
Statistical analysis and code availability 
Our approach for evaluating outlier status for allele imbalance in patients involved defining the 95% 
confidence interval (95% CI: mean ± 2 SD) of mean allele balance in GTEx individuals for each gene and 
identifying patients for whom the gene-level allele balance fell outside of the range. Comparison between 
GTEx and patient RNA-seq data quality metrics relied on a t-test for significance. Data processing, analysis, 
and figure generation were performed using scripts written in Python 2.7 and R 3.2; code for identifying and 
filtering splice junctions and for variant calling in the triplicate regions of NEB and TTN is available at  
https://github.com/berylc/MendelianRNA-seq.  
 
Supplementary Materials and Methods  
Fig S1: Expression of commonly disrupted muscle disease genes in muscle, blood, and fibroblasts 
Fig S2: PCA based on PSI metrics and gene expression of GTEx and patient samples 
Fig S3: Overview of results from expression outlier analysis  
Fig S4: Evaluation of RNA-seq around pathogenic essential splice site variants previously identified by 
genetic analysis 
Fig S5: Overview of splice junction filtering approach 
Fig S6: Number of potentially pathogenic splice events identified per patient 
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Fig S7: Examples of splice disruption in patients with no diagnosis at the completion of the study 
Fig S8: Identification of aberrant splicing overlapping structural variants with RNA-seq 
Fig S9: Resolving the effect of extended splice site variants with RNA-seq 
Fig S10: Identification of a splice-disrupting extended splice variant missed by prior WES 
Fig S11: Assignment of pathogenicity to missense and synonymous variants with RNA-seq 
Fig S12: Identification of pathogenic noncoding varants with RNA-seq 
Fig S13: Overview of triplicate region remapping 
Fig S14: Comparison of the number of reads aligning to exons harboring pathogenic variants identified in 
the study in GTEx muscle, whole blood, and fibroblast tissues 
Fig S15: Evaluation of splice prediction algorithms 
Fig S16: Identification of allele imbalance with RNA-seq 
Table S1: Overview of clinical cases that underwent RNA-seq (provided as an Excel file) 
Table S2: Summary of patients previously diagnosed by genetic analysis 
Table S3: Comparison of quality metrics between patient and GTEx RNA-sequencing samples  
Table S4: List of GTEx control skeletal muscle RNA-seq samples (provided as an Excel file) 
Table S5: PCR conditions and primers used for RT-PCR validation of splice aberrations identified via RNA-
seq and Sanger sequencing of cDNA 
Table S7: PCR conditions and primers used for genomic Sanger sequence validation of variants identified 
in patients 
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