
 1 

The impact of rare variation on gene expression across tissues 1 

Xin Li1†, Yungil Kim2†, Emily K. Tsang3†, Joe R. Davis4†, Farhan N. Damani2, Colby Chiang5, Zachary Zappala4,  2 
Benjamin J. Strober6, Alexandra J. Scott5, Andrea Ganna7,8,9, Jason Merker1, GTEx Consortium, Ira M. Hall5,10,11, 3 
Alexis Battle2* and Stephen B. Montgomery1,4* 4 

1 Department of Pathology, Stanford University, Stanford, CA. 2 Department of Computer Science, Johns Hopkins 5 
University, Baltimore, MD. 3 Biomedical Informatics Program, Stanford University, Stanford, CA. 4 Department of 6 
Genetics, Stanford University, Stanford, CA. 5 McDonnell Genome Institute, Washington University School of 7 
Medicine, St. Louis, MO. 6 Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD. 7 8 
Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA. 8 Program in Medical and 9 
Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA. 9 Stanley Center for Psychiatric 10 
Research, Broad Institute of MIT and Harvard, Cambridge, MA. 10 Department of Medicine, Washington University 11 
School of Medicine, St. Louis, MO. 11 Department of Genetics, Washington University School of Medicine, St. 12 
Louis, MO. 13 

†equal contribution 14 
*co-corresponding authors, alphabetical 15 
Correspondence to ajbattle@cs.jhu.edu, smontgom@stanford.edu 16 

Abstract 17 
Rare genetic variants are abundant in humans yet their functional effects are often unknown and 18 
challenging to predict. The Genotype-Tissue Expression (GTEx) project provides a unique opportunity to 19 
identify the functional impact of rare variants through combined analyses of whole genomes and multi-20 
tissue RNA-sequencing data. Here, we identify gene expression outliers, or individuals with extreme 21 
expression levels, across 44 human tissues, and characterize the contribution of rare variation to these 22 
large changes in expression. We find 58% of underexpression and 28% of overexpression outliers have 23 
underlying rare variants compared with 9% of non-outliers. Large expression effects are enriched for 24 
proximal loss-of-function, splicing, and structural variants, particularly variants near the TSS and at 25 
evolutionarily conserved sites. Known disease genes have expression outliers, underscoring that rare 26 
variants can contribute to genetic disease risk. To prioritize functional rare regulatory variants, we 27 
develop RIVER, a Bayesian approach that integrates RNA and whole genome sequencing data from the 28 
same individual. RIVER predicts functional variants significantly better than models using genomic 29 
annotations alone, and is an extensible tool for personal genome interpretation. Overall, we demonstrate 30 
that rare variants contribute to large gene expression changes across tissues with potential health 31 
consequences, and provide an integrative method for interpreting rare variants in individual genomes. 32 
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Introduction 33 
The recent and rapid expansion of human populations has led to an abundance of rare genetic variants 34 
some of which are expected to contribute to an individual’s genetic risk of disease1–4. However, 35 
prioritizing the subset of rare variants most likely to cause cellular and phenotypic changes from the tens 36 
of thousands of rare variants within each individual’s genome remains a major challenge. While genetic 37 
association analyses have successfully identified many common genetic risk factors for non-Mendelian 38 
traits, rare variants are private or at such low frequency that association studies become infeasible1,5. To 39 
overcome this challenge, multiple approaches for distinguishing pathogenic from benign rare variants 40 
have leveraged the genetic code to identify nonsense or other deleterious protein coding alleles1,6–8. Such 41 
variants not only inform individual genetic risk but are valuable natural gene knockouts that underlie 42 
extreme phenotypes and help predict potential drug targets. Unfortunately, no analogous code exists for 43 
identifying non-coding variants with functional consequences.  44 

Promising models have been developed to predict variant impact from diverse genomic features, 45 
including cis-regulatory element annotation and conservation status9–13. We hypothesized that 46 
incorporating each individual’s gene expression data would improve prioritization of functional rare 47 
variants. Indeed, for rare loss-of-function variants in protein-coding regions, allele-specific effects across 48 
multiple tissues have characterized the systemic impact of nonsense-mediated decay14,15. In single-tissue 49 
studies, rare non-coding variants, in aggregate, have been associated with outlier gene expression levels, 50 
suggesting their potential to drastically alter gene expression16–19. However, it remains unknown which 51 
categories of rare variation have the strongest impact on gene expression and how their consequences are 52 
reflected across multiple tissues. As whole genome sequencing becomes more prevalent, new means to 53 
understand rare variant biology and to prioritize the variants with important individual consequences will 54 
be essential to personal genomics and its integration in precision medicine. 55 

Extreme expression is shared across tissues 56 
To assess the impact of rare genetic variation on gene expression in diverse human tissues, we analyzed 57 
data from the Genotype Tissue Expression project (GTEx V6p), which includes 7,051 RNA-sequencing 58 
samples from 44 tissues in 449 individuals (median of 126 individuals per tissue and 16 tissues sampled 59 
per individual). We restricted rare variant analysis to the 123 individuals of European ancestry, but used 60 
the entire cohort for all other analyses (Extended Data Fig. 1). We defined rare variants as those with 61 
minor allele frequency below 1% within GTEx as well as within the European panel of the 1000 62 
Genomes project for single nucleotide variants (SNVs) and short insertions and deletions (indels)20. Each 63 
individual had a median of 43,739 rare SNVs, 4,835 rare indels and 59 rare structural variants (SVs) 64 
(Extended Data Fig. 2).  65 

Our analysis focused on individuals with extremely high or low expression of a particular gene compared 66 
with the rest of the cohort. We refer to these individuals as gene expression outliers. The GTEx data 67 
affords the ability to identify both single-tissue and multi-tissue expression outliers, with the latter 68 
showing consistent extreme expression for a gene across many tissues. To account for broad 69 
environmental or technical confounders, we removed hidden factors estimated by PEER21 from each 70 
tissue, which increased the predictive power of outlier expression across tissues (Extended Data Fig. 3). 71 
After confounder removal and data normalization, we identified both single-tissue and multi-tissue 72 
outliers among the entire cohort of 449 individuals. For each tissue, an individual was called a single-73 
tissue outlier for a particular gene if that individual had the largest absolute Z-score and the absolute 74 
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value was at least two. For each gene, the individual with the most extreme median Z-score taken across 75 
tissues was identified as a multi-tissue outlier for that gene provided the absolute median Z-score was at 76 
least two (Fig. 1a). Therefore, each gene had at most one single-tissue outlier per tissue and one multi-77 
tissue outlier. Under this definition an individual can be an outlier for multiple genes.  78 

Figure 1. Gene expression outliers and sharing between tissues. (a) A multi-tissue outlier. In this example, the 
individual has extreme expression values for the gene AKR1C4 in multiple tissues (red arrows) and the most extreme 
median expression value across tissues. (b) Outlier expression sharing between tissues, as measured by the 
proportion of single-tissue outliers that have |Z-score| ≥ 2 for the corresponding genes in each replication tissue. 
Tissues are hierarchically clustered by gene expression. (c) Estimated replication rate of multi-tissue outliers in a 
constant held-out set of tissues for different sets of discovery tissues. We compared outliers identified in the 
discovery set to the same number of randomly selected individuals (see Online methods). Due to incomplete tissue 
sampling, the number of tissues supporting each outlier is at least five but less than the size of the discovery set. 

We identified a single-tissue expression outlier for almost all expressed genes (≥ 99%) in each tissue and 79 
a multi-tissue outlier for 4,919 of 18,380 tested genes (27%). Each individual was a single-tissue outlier 80 
for a median of 1,653 genes (83 per tissue) compared with a median of 10 genes as a multi-tissue outlier. 81 
We confirmed that known environmental factors of race, sex, and BMI were uncorrelated with the 82 
number of genes for which an individual was a multi-tissue outlier (Extended Data Fig. 4). We did 83 
observe a weak but statistically significant, positive correlation with ischemic time (Spearman ρ = 0.175, 84 
nominal P = 0.00022) and age (Spearman ρ = 0.101, nominal P = 0.033). Single-tissue outliers discovered 85 
in one tissue replicated in other tissues at rates up to 33%, with stronger replication rates among related 86 
tissues, such as the two skin tissues as well as the left ventricle and atrial appendage of the heart (Fig. 1b). 87 
Replication estimates were underestimated for tissues with smaller sample sizes but biased upward for 88 
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pairs of tissues with many overlapping individuals sampled (Extended Data Fig. 5). However, we 89 
confirmed that the overall sharing patterns were maintained when we accounted for sampling differences, 90 
using pairs of tissues with enough overlapping samples to assess the inflation directly. Single-tissue 91 
outliers were also detected as multi-tissue outliers at rates from 1.2% to 5.6%, with more overlap for 92 
tissues with more samples (Extended Data Fig. 6, Pearson r = 0.79, P = 1.4 x 10-10). While tissue-specific 93 
expression may partially explain the small overlap, the trend is most likely due to the inherent noise in the 94 
single-tissue analyses. Indeed, the replication rate for multi-tissue outliers was much higher than for 95 
single-tissue outliers and increased with the number of tissues used for discovery, highlighting the value 96 
of multiple tissue data for robust outlier detection (Fig. 1c). The difference in replication rate between 97 
outliers and randomly selected individuals was greater than could be explained by the bias from 98 
overlapping individuals in the discovery and replication sets.  99 

Functional rare variants underlie multi-tissue outliers 100 
We investigated the extent to which extreme expression could be explained by genetic variation. Here, we 101 
focused on the 123 individuals of European descent with whole genome sequencing (average coverage 102 
30X), among whom we identified 1,144 multi-tissue outliers. We evaluated the proportion of outliers with 103 
variants at different frequencies within 10 kb of the transcription start site (TSS) compared to 104 
corresponding genes in non-outliers to identify the effects of variants acting in cis. Multi-tissue outliers 105 
were more enriched for rare variants than common ones (Fig. 2a). This enrichment was most pronounced 106 
for structural variants (SVs), and larger for short insertions and deletions (indels) than for single 107 
nucleotide variants (SNVs). The enrichment for rare variants was markedly stronger for multi-tissue 108 
outliers compared to single-tissue outliers (Fig. 2b, Extended Data Fig. 7), a trend that became more 109 
striking at larger Z-score thresholds (Fig. 2b).  110 

As rare variants are often heterozygous, expression outliers driven by rare variants in cis should exhibit 111 
allele-specific expression (ASE). At multiple Z-score thresholds, both single-tissue and multi-tissue 112 
outliers were significantly enriched for ASE, as compared to non-outliers (two-sided Wilcoxon rank sum 113 
tests, each nominal P < 2.2 x 10-16). ASE was stronger for multi-tissue outliers than for single-tissue 114 
outliers, and increased with the Z-score threshold (Fig. 2c). This, along with the stronger rare variant 115 
enrichments for multi-tissue outliers, suggests that single-tissue outliers are less robust to non-genetic 116 
confounders.  117 
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Figure 2. Enrichment of rare variants and ASE in outliers. (a) Enrichment of SNVs, indels, and SVs within 10 
kb of the TSS of genes with outliers in the corresponding outlier individuals, as compared with the same genes in 
non-outlier individuals. For each frequency stratum, we calculated enrichment as a ratio of proportions. The 
numerator is the proportion of outliers with a variant whose frequency lies within the range, and the denominator is 
the corresponding proportion for non-outliers. Bars indicate 95% Wald confidence intervals. (b) Rare SNV 
enrichment for multi-tissue and single-tissue outliers at increasing Z-score thresholds. This threshold applies to the 
median absolute Z-score for multi-tissue outliers and the absolute Z-score for single-tissue ones. Text labels indicate 
the number of outliers at each threshold. (c) ASE, measured as the magnitude of the difference between the 
reference-allele ratio and the null expectation of 0.5. The non-outlier category is defined in the Online methods 
section. 

We aimed to identify the specific properties of rare genetic variants that induce large changes in gene 118 
expression. We evaluated the enrichment of diverse variant classes (Extended Data Table 1) in outliers 119 
compared with non-outliers. To capture both coding and non-coding variant classes, we evaluated 120 
variants in the gene body and up to 10 kb (200 kb for SVs and variants in enhancers) from the 121 
transcription start or end sites of genes with outliers. SVs, taken together, had the strongest enrichment, 122 
and their impact on gene expression across tissues is well characterized22. We also observed, in order of 123 
significance, enrichments for variants near splice sites, introducing frameshifts, at start or stop codons, 124 
near the TSS, outside of coding regions and among the top 1% of CADD or vertebrate PhyloP scores, and 125 
with other coding annotations (Fig. 3a). These results suggest that variants in coding regions contribute 126 
disproportionately to outlier expression. Indeed, we observed weakened enrichments for all variants types 127 
(SNVs, indels, and SVs) when excluding exonic regions (Extended Data Fig. 8).  128 
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 6 

Figure 3. Stratification of multi-tissue outliers by rare variant classes. (a) Enrichment of disjoint variant classes 
among outliers. Log odds ratio and 95% Wald CI calculated for each variant class by fitting a univariate logistic 
regression model of outlier status versus the variant class. We defined regions near transcription start sites (TSS) as 
250 bp upstream to 750 bp downstream of the most upstream annotated TSS. For each gene, we considered rare 
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variants in the gene body and within 10 kb of either end of the gene (200 kb for SVs). (b) Enrichment of functional 
annotations for rare SNVs and indels within 10 kb of the gene, including the gene body (200 kb for enhancers). (c) 
Proportion of genes with an outlier potentially explained by each rare variant class. Each outlier gene is counted, at 
most once, for the variant class with the most significant enrichment (as ordered from left to right). (d) Distribution 
of median Z-scores for each variant class. Positive values represent overexpression and negative values 
underexpression. (e) For each variant class, distribution of ASE effect sizes, the absolute difference between the 
reference-allele ratio and 0.5, averaged across tissues. Grey lines mark the median values among non-outliers.  

To identify the relationship between outlier expression and genomic annotation, we tested whether rare 129 
variants near genes with outliers had high conservation or CADD scores9 and whether they occurred in 130 
known regulatory regions. Multi-tissue outliers were strongly enriched for variants in promoter or CpG 131 
sites, and they had variants with higher conservation and CADD scores than non-outliers. We observed a 132 
weaker enrichment for variants in enhancers and transcription factor binding sites (Fig. 3b, Extended Data 133 
Fig. 9). By jointly considering major classes of variation, we observed that 58% of underexpression and 134 
28% of overexpression outliers had rare variants near the relevant gene, compared with 9% for non-135 
outliers (Fig. 3c). These results confirmed that rare variation is more likely to decrease expression23–25 and 136 
that overexpression outliers may more often be due to environmental factors. Some variant classes had 137 
strong directionality in their effect: duplications caused overexpression outliers, while deletions, start and 138 
stop codon variants, and frameshifts led to underexpression outliers (Fig. 3d). This directionality agrees 139 
with the expected regulatory effect of these variant types and offers further evidence for the role of 140 
genetic variation in outlier expression. There was also strong ASE for outliers carrying all categories of 141 
variants except those with only non-conserved variants or without any rare variants near the gene (Fig. 142 
3e), which suggests that common variants or non-genetic factors likely caused the extreme expression in 143 
those cases.  144 

Constrained genes rarely have multi-tissue outliers 145 
We hypothesized that rare functional variants and extreme expression in essential genes would be subject 146 
to selective pressure. Consistent with ongoing purifying selection against large, multi-tissue effects, rare 147 
promoter variants in outliers exhibited significantly lower allele frequencies in the UK10K cohort of 148 
3,781 individuals3 than those in non-outliers for the same genes (Fig. 4a, two-sided Wilcoxon rank sum 149 
test, P = 0.0013). Genes intolerant to loss-of-function mutations as curated by the Exome Aggregation 150 
Consortium26 were depleted of multi-tissue outliers and multi-tissue eQTLs (Fisher’s exact test, both P < 151 
2.2 x 10-16; Fig. 4b), which supports our hypothesis that altering expression levels of critical genes can be 152 
deleterious. We observed a similar depletion in genes resistant to missense variation (for genes with 153 
outliers P = 1.676 x 10-15 and for multi-tissue eGenes P < 2.2 x 10-16; Extended Data Fig. 10a). Genes 154 
with a multi-tissue outlier were enriched for multi-tissue eQTLs (two-sided Wilcoxon rank sum test P < 155 
2.2 x 10-16, Extended Data Fig. 10c,d). However, we found some evidence that genes with outliers were 156 
more constrained for missense and loss-of-function variation than genes with multi-tissue eQTLs 157 
(Tukey’s range test, missense Z-score P = 0.0044, probability of loss-of-function intolerance score P = 158 
0.086; Fig. 4b, Extended Data Fig. 10a).  159 
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Figure 4. Evolutionary constraint of genes with multi-tissue outliers. (a) Distributions of UK10K minor allele 
frequencies for promoter SNVs in outlier and non-outlier individuals at genes with multi-tissue outliers. (b) Odds 
ratio of being intolerant to loss-of-function variants, as defined by ExAC, for genes with multi-tissue outliers, genes 
with shared eQTLs (eGene), genes reported in the GWAS catalog, and OMIM genes. Bars represent 95% 
confidence intervals (Fisher’s exact test). (c) Depletion of disease genes among genes with multi-tissue outliers. 
Odds ratio of a gene having a multi-tissue outlier for each of eight sets of genes involved in complex traits or 
diseases. Bars represent 95% confidence intervals (Fisher’s exact test). 

We expected disease genes to be depleted of multi-tissue expression outliers in the general population 160 
since extreme expression at critical genes may have severe health consequences. We confirmed this 161 
among the GTEx individuals for two well curated disease gene lists: a list of genes involved in heritable 162 
cardiovascular disease (Cardio) and genes in the ACMG guidelines for incidental findings (Fig. 4c). For 163 
broader lists like the GWAS and OMIM catalogs, we found no significant evidence of depletion or 164 
enrichment. We observed a similar pattern for multi-tissue eQTL genes (Extended Data Fig. 10b). 165 
Nonetheless, outlier expression affected some important and actionable disease genes. We observed 166 
multi-tissue outliers for five ACMG genes, five high-risk cardiovascular disease genes, and 14 cancer 167 
genes (Extended Data Table 2, Supplementary Table 1). However, the direction of the known disease-168 
causing mutations and of the expression in the outlier individual were only consistent for a subset of the 169 
genes. Of the 20 unique genes from these lists, five had an underexpression outlier when the disease was 170 
caused by loss of the gene’s function. For example, one individual was an underexpression outlier 171 
(median Z-score of -3.5) for SDHAF2, a tumor suppressor on the ACMG list. SDHAF2 promotes 172 
assembly of the SDH complex, which functions in the citric acid cycle and the electron transport chain. 173 
Loss of SDHAF2 function impairs cellular respiration, which triggers hypoxia signalling and leads to the 174 
development of paragangliomas (neuroendocrine tumors)27,28. In addition to finding outliers in these 175 
highly curated disease gene lists, we found multi-tissue outliers for 784 ClinVar, 770 OrphaNet, 813 176 
OMIM and 1532 GWAS genes compared to the expectation under independence of 734, 734, 762, and 177 
1608, respectively (Extended Data Table 2, Supplementary Table 1). These results suggest that, although 178 
disease genes are depleted for multi-tissue outliers, due in part to selective pressure, extreme expression 179 
may contribute to disease risk.  180 

Expression data improves variant prioritization 181 
In addition to characterizing the regulatory impact of rare variation across the GTEx cohort in aggregate, 182 
we sought to prioritize candidate regulatory variants from each individual genome. Existing methods for 183 
predicting rare variant impact use epigenetic data and other genomic annotations derived from external 184 
studies9–13. We hypothesized that by integrating gene expression data from the same individual whose 185 
genome we seek to analyze, along with these external annotations, we could significantly improve our 186 
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identification of rare regulatory variants. We developed RIVER (RNA-Informed Variant Effect on 187 
Regulation), a probabilistic modeling framework that jointly analyzes personal genome and transcriptome 188 
data to estimate the probability that a variant has regulatory impact in that individual 189 
(https://github.com/ipw012/RIVER, see Online methods). RIVER is based on a generative model that 190 
assumes that genomic annotations (Extended Data Table 3), such as the location of a variant with respect 191 
to regulatory elements, determine the prior probability that variant is a functional regulatory variant, 192 
which is an unobserved variable. The functional regulatory variant status then influences whether nearby 193 
genes are likely to display outlier levels of gene expression in that person (Fig. 5a). RIVER is trained in 194 
an unsupervised manner. It does not require a labeled set of functional/non-functional variants; rather it 195 
derives its predictive power from identifying expression patterns that tend to coincide with particular rare 196 
variant annotations. 197 

 
Figure 5. Performance of RIVER for 
prioritizing functional regulatory variants. (a) 
RIVER probabilistic graphical model (see Online 
methods). (b) Predictive power of RIVER 
compared with a L2-regularized logistic regression 
model using only genomic annotations without 
gene expression data. Accuracy was assessed using 
matched, held out individuals sharing the same rare 
variants as observed individuals (see Online 
methods, AUCs compared with DeLong’s 
approach29). (c) Distribution of RIVER scores 
(shades of blue) as a function of scores from 
genomic annotation or gene expression alone. 
Pathogenic SNVs annotated in ClinVar are shown 
in red if they were likely regulatory (nonsense, 
splice-site, or synonymous) and orange otherwise 
(missense). The distributions of variant categories 
across absolute median Z-scores and predictions 
from genomic annotation are shown as histograms 
aligned opposite the corresponding axes. 

 

 

 

 

We applied RIVER to the GTEx cohort, training model parameters using 48,575 instances where an 198 
individual had at least one rare variant within 10 kb of the TSS of a gene with expression observed in at 199 
least five tissues. Here we assessed outliers using a more lenient threshold of |median Z-score| ≥ 1.5 with 200 
no restriction to a single individual per gene, both to obtain a larger set of outliers for training and to 201 
allow application to larger cohorts or external test instances. For evaluation, we held out pairs of 202 
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individuals at genes where only those two individuals shared the same rare variants. We then computed 203 
the RIVER score (the posterior probability of having a functional regulatory variant given both whole 204 
genome and RNA sequencing data) from one individual, and assessed the accuracy with respect to the 205 
second individual’s held out expression levels (see Online methods). Using this labeled test data, we 206 
evaluated the predictive accuracy of RIVER compared with a L2-regularized multivariate logistic 207 
regression model that uses genomic annotations alone, and observed a significant improvement by 208 
incorporating expression data (Fig. 5b, AUC for RIVER and the genomic annotation model were 0.638 209 
and 0.541, respectively, P = 3.5 x 10-4). Allele-specific expression was also enriched among the top 210 
RIVER instances compared with genome annotation models (Extended Data Fig. 11). Although RIVER 211 
was trained in an unsupervised manner, the learned model prioritized variants that were supported by both 212 
extreme expression levels for a nearby gene and genomic annotations suggestive of potential impact (Fig. 213 
5c). Rather than using a heuristic or manual approach, RIVER automatically learns the relationship 214 
between genomic annotations and changes in gene expression from data to provide a coherent estimate of 215 
the probability of regulatory impact. For instance, multi-tissue outliers with a large proportion of single-216 
tissue outliers were more likely to have high RIVER scores (Extended Data Fig. 12). Using a simplified 217 
supervised model, we estimated that even after accounting for the most informative genomic annotations 218 
or summary scores from state-of-the-art models including CADD and DANN, an individual was more 219 
likely to be an expression outlier if another individual with matched rare variants was an outlier (average 220 
log-odds ratio 2.76, Extended Data Table 4). This simplified approach supported the benefit of integrating 221 
gene expression data into variant prioritization. 222 

To investigate how RIVER might inform disease variant analysis, we intersected rare variants in the 223 
GTEx individuals with variants from ClinVar30 (Extended Data Table 5). We identified 27 pathogenic or 224 
risk variants present in 21 individuals, and evaluated the RIVER score of each (Fig. 5c). Overall, 225 
pathogenic variants scored higher than background variants (two-sided Wilcoxon rank sum test, P = 3.25 226 
x 10-9, Extended Data Fig. 13). We note that rare indels and SVs were not found nearby the genes in the 227 
individuals carrying these pathogenic variants. Considering that ClinVar is biased toward protein-coding 228 
variants, we observed that six of the 27 variants were annotated as nonsense, splice site, or synonymous 229 
variants, with the rest being missense. These likely regulatory variants had RIVER scores of 0.980 on 230 
average, putting them in the top 99.9th percentile. Among these, three individuals harbored the minor 231 
allele at two distinct pathogenic variants (rs113993991 and rs113993993) near SBDS, each associated 232 
with Shwachman-Diamond syndrome. This recessive syndrome causes systemic symptoms including 233 
pancreatic, neurological, and hematologic abnormalities31 and can disrupt fibroblast function32. The GTEx 234 
individuals were heterozygous for these variants and thus lacked the disease phenotype. Nonetheless, we 235 
saw extreme underexpression of SBDS across almost all tissues in these individuals, including brain 236 
tissues, fibroblasts, and pancreas (Extended Data Fig. 14). In another case, an individual harbored the 237 
minor allele of rs80338735, which is associated with cerebral creatine deficiency syndrome 2, shown to 238 
cause neurological deficiencies and also lead to low body fat33. The nearby gene GAMT showed the most 239 
extreme underexpression (Z-score < -4) in adipose (subcutaneous), although unfortunately no brain tissue 240 
was available for evaluation in this individual (Extended Data Fig. 14). These cases demonstrate that 241 
RIVER can provide an important and novel ability to prioritize disease-causing regulatory variants by 242 
integrating population-scale patterns of gene expression. 243 
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Discussion 244 
Using whole genome sequences and RNA-seq from 44 human tissues from the GTEx project, we 245 
identified high-confidence gene expression outliers and completed the largest study to date of rare 246 
variants impacting gene expression. Outliers were better explained by genetic variation when we 247 
combined expression data from multiple tissues. We found that rare structural variants, frameshift indels, 248 
coding variants, and variants near the transcription start site were most likely to have large effects on 249 
expression. These effects were often directional; for example, we saw duplications tended to cause 250 
overexpression while deletions and stop-gain variants caused underexpression. Rare coding variants can 251 
alter expression as much as non-coding variation, underscoring that expression data can reveal the 252 
molecular consequences of disrupting protein-coding regions. Consistent with the effects of purifying 253 
selection, less constrained genes were most likely to have multi-tissue outliers. However, we discovered 254 
examples of outliers for known disease genes where the previously known causal variant was protein-255 
coding and associated with altered expression. This highlights the benefit of population-scale functional 256 
genomics data for both non-coding and coding variant interpretation. 257 

Building on observations from the population analysis, we developed RIVER, which combines individual 258 
RNA-seq and whole genome data to predict which rare variants have large regulatory impact. Integrating 259 
genomic features with expression dramatically improved variant prioritization, supporting that gene 260 
expression data can help interpret variants with effects that are unclear from genome sequence alone. 261 
RIVER is an extensible predictive model for combining whole genome sequences with molecular 262 
phenotypes to identify high-impact variants. Therefore, our results suggest a general approach that can be 263 
applied to studies supplementing genomes with other molecular phenotypes, such as methylation34–36 and 264 
histone modification37,38. We anticipate that such integrative approaches will be essential for effective 265 
interpretation of genome-wide genetic variation on a personalized level. 266 

Online methods 267 
Study population 268 
All human subjects were deceased donors. Informed consent was obtained for all donors via next-of-kin 269 
consent to permit the collection and banking of de-identified tissue samples for scientific research. 270 
 271 
Whole genome sequence and multi-tissue RNA-seq data 272 
Whole genome sequencing (WGS) VCF files from the GTEx V6 release were downloaded from the 273 
dbGaP. In addition, we downloaded RPKM, read counts, and allele-specific expression data comprising 274 
8,555 RNA-seq samples from 53 tissues and 544 individuals. Of these individuals, 520 have whole 275 
exome sequencing and 148 have additional whole genome sequencing. 276 

Correction for technical confounders 277 
We restricted our expression analyses to the 449 individuals and 44 tissues for which sex and the top three 278 
genotype principal components, which capture major population stratification, were available. For each 279 
tissue, we log2-transformed all expression values (RPKM + 2). We then standardized the expression of 280 
each gene to encourage normality while preventing shrinkage of outlier expression values caused by 281 
quantile normalization. To remove unmeasured batch effects and other confounders, for each tissue 282 
separately, we estimated hidden factors using PEER21 on the transformed expression values. In each 283 
tissue, we defined expressed genes as those with at least 10 individuals with RPKM > 0.1 and read count 284 
> 6. Genes falling below these thresholds were discarded from the analysis for that tissue. The number of 285 
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PEER factors estimated per tissue was determined by sample size (N): 15 factors for N < 150, 30 factors 286 
for 150 ≤ N ≤ 250, and 35 factors for N > 250. We regressed out the PEER factors, the top three genotype 287 
principal components, and sex (where appropriate) from the transformed expression data for each tissue 288 
using linear regression. Finally, we standardized the expression residuals for each gene, which yielded Z-289 
scores.  290 

Single-tissue and multi-tissue outlier discovery 291 
Single-tissue and multi-tissue outlier calling was restricted to autosomal lincRNA and protein coding 292 
genes. In addition to the constraints described in the main text, we only tested for multi-tissue outliers 293 
among individuals with expression measurements for the gene in at least five tissues. To reduce cases 294 
where non-genetic factors may cause widespread outliers, we removed eight individuals that were multi-295 
tissue outliers for 50 or more genes from all downstream analyses. These individuals were also removed 296 
before single-tissue outlier discovery. 297 

Replication of expression outliers 298 
We evaluated the replication of single-tissue outliers between pairs of tissues. We calculated the 299 
proportion of outliers discovered in one tissue that had a |Z-score| ≥ 2 for the same gene in the replication 300 
tissue. We also required that the replication Z-score have the same sign as the Z-score in the discovery 301 
tissue. Since each tissue had a different number of samples and certain groups of tissues were sampled in 302 
a specific subset of individuals, we evaluated the extent to which replication was influenced by the size 303 
and the overlap of the discovery and replication sets. To make pairs of tissues comparable, we repeated 304 
the replication analysis with the discovery and replication in exactly 70 individuals for each pair of tissues 305 
with enough overlapping samples. We compared the replication patterns in this subsetted analysis to those 306 
obtained by using all individuals for discovery and replication. To estimate the extent to which individual 307 
overlap biased replication estimates, for each pair of tissues with a sufficient number of samples, we 308 
defined three disjoint group of individuals: 70 individuals with data for both tissues, 69 distinct 309 
individuals with data in the first tissue, and 69 distinct individuals with data in the second tissue. We 310 
discovered outliers in the first tissue using the shared set of individuals. Then we tested the replication of 311 
these outliers in the discovery individuals in the second tissue. Finally, for each gene, we added the 312 
identified outlier to distinct set of individuals and tested the replication again in the second tissue. We 313 
repeated the process running the discovery in the second tissue and the replication in the first one. We 314 
compared the replication rates when using the same or different individuals for the discovery and 315 
replication. 316 

We assessed the confidence of our multi-tissue outliers using cross-validation. Specifically, we separated 317 
the tissue expression data randomly into two groups: a discovery set of 34 tissues and a replication set of 318 
10 tissues. For t = 10, 15, 20, 25, and 30, we randomly sampled t tissues from the discovery set and 319 
performed outlier calling as described above. To assess the replication rate, we computed the proportion 320 
of outliers in the discovery set with |median Z-score| ≥ 1 or 2 in the replication set. We set no restriction 321 
on the number of tissues required for testing in the replication set. To calculate the expected replication 322 
rate, we randomly selected individuals in the discovery set requiring that each individual show expression 323 
in at least five tissues for the gene. We then computed the replication rate for this background using the 324 
procedure described above. We repeated this process 10 times for each discovery set size. 325 
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Quality control of genotypes and rare variant definition 326 
We restricted our rare variant analyses to individuals of European descent, as they constituted the largest 327 
homogenous population within our dataset. We considered only autosomal variants that passed all filters 328 
in the VCF (those marked as PASS in the Filter column). Minor allele frequencies (MAF) within the 329 
GTEx data were calculated from the 123 individuals of European ancestry with whole genome 330 
sequencing data. The MAF was the minimum of the reference and the alternate allele frequency where the 331 
allele frequencies of all alternate alleles were summed together. Rare variants were defined as having 332 
MAF ≤ 0.01 in GTEx, and for SNVs and indels we also required MAF ≤ 0.01 in the European population 333 
of the 1000 Genomes Project Phase 3 data20. We also sought to ensure that population structure among 334 
the individuals of European descent was unlikely to confound our results. Therefore, we verified that the 335 
allele frequency distribution of rare variants included in our analysis (within 10 kb of a protein coding or 336 
lincRNA gene, see below) was similar for the five European populations in the 1000 Genomes project 337 
(Extended Data Fig. 1b). 338 

Enrichment of rare and common variants near outlier genes 339 
We assessed the enrichment of rare SNVs, indels, and SVs near outlier genes. Proximity was defined as 340 
within 10 kb of the TSS for all analyses, with the exception of Fig. 3 where we included all variants 341 
within 10 kb of the gene, including the gene body, (200 kb for enhancers and SVs) to also capture coding 342 
variants. For each gene with a multi-tissue outlier, we chose the remaining set of individuals tested for 343 
multi-tissue outliers at the same gene as our set of non-outlier controls. We only included genes that had 344 
both a multi-tissue outlier and at least one control. We stratified variants of each class into four minor 345 
allele frequency bins (0-1%, 1-5%, 5-10%, 10-25%) to compare the relative enrichments of rare and 346 
common variants. We also assessed the enrichment of SNVs at different Z-score cutoffs. Enrichment was 347 
defined as the ratio of the proportion of outliers with a rare variant within 10 kb of the transcription start 348 
site (TSS) to the proportion of non-outliers with a rare variant in the same window. This enrichment 349 
metric is equivalent to the relative risk of having a nearby rare variant given outlier status. We used the 350 
asymptotic distribution of the log relative risk to obtain 95% Wald confidence intervals. Within our set of 351 
European individuals, we observed some individuals with minor admixture that had relatively more rare 352 
variants than the rest (Extended Data Fig. 2b). We confirmed that inclusion of these admixed individuals 353 
did not substantially affect our results (Extended Data Fig. 2c). We also calculated rare variant 354 
enrichments when restricting to variants outside protein-coding and lincRNA exons in Gencode v19 355 
annotation (extending internal exons by 5 bp to capture canonical splice regions). 356 

To measure the informativeness of variant annotations (Extended Data Table 1), we used logistic 357 
regression to model outlier status as a function of the feature of interest, which yielded log odds ratios 358 
with 95% Wald confidence intervals. Note that for the feature enrichment analysis in Fig. 3b and 359 
Extended Data Fig. 9, we required that outliers and their gene-matched non-outlier controls have at least 360 
one rare variant near the gene. We scaled all features, including binary features, to have mean 0 and 361 
variance 1 to facilitate comparison between features of different scale. We also calculated the proportion 362 
of overexpression outliers, underexpression outliers and non-outliers with a rare variant near the gene 363 
TSS (within 10 kb for SNVs and indels and 200kb for SVs). To each outlier instance, we assigned at most 364 
one of the 12 rare variant classes we considered, which are listed in Fig. 3. If an outlier had rare variants 365 
from multiple classes near the relevant genes, we selected the class that was most significantly enriched 366 
among outliers.  367 
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Annotation of variants 368 
We obtained annotations for SV categories from Chiang et al.22. We computed features for rare SNVs and 369 
indels using three primary data sources: Epigenomics Roadmap39, CADD v1.29, and VEP v8040. We 370 
downloaded the promoter and enhancer annotation tracks produced by the Epigenomics Roadmap Project 371 
(http://www.broadinstitute.org/~meuleman/reg2map/HoneyBadger2_release/). We mapped 28 unique 372 
tissues in the GTEx Project to 19 tissue groups in the Roadmap Project. Using these annotations, for each 373 
individual, we then assessed whether each SNV or indel overlapped a promoter or enhancer region in at 374 
least one of the 19 Roadmap tissue groups. We obtained features including conservation, chromatin 375 
segmentation, and deleteriousness from the full annotation tracks of the CADD v1.2 release (downloaded 376 
15/05/2015; http://cadd.gs.washington.edu/download). We intersected the rare variants segregating in 377 
each individual with the CADD annotation and extracted the conservation features. Finally, we obtained 378 
protein-coding and transcription-related annotations from VEP. This information was provided in the 379 
GTEx V6 VCF file. Using the pipeline described above, we generated features at the site-level for all 123 380 
European individuals with WGS data. We then collapsed these features to generate gene-level features. 381 
The collapsed features are described in Extended Data Tables 1 and 3.  382 

Allele-specific expression (ASE) 383 
We only considered sites with at least 30 total reads and at least five reads supporting each of the 384 
reference and alternate alleles. To minimize the effect of mapping bias, we filtered out sites that showed 385 
mapping bias in simulations41, that were in low mappability regions 386 
(ftp://hgdownload.cse.ucsc.edu/gbdb/hg19/bbi/wgEncodeCrgMapabilityAlign50mer.bw), or that were 387 
rare variants or within 1 kb of a rare variant in the given individual (the variants were extracted from 388 
GTEx exome sequencing data). The first two filters were provided in the GTEx ASE data release (Aguet 389 
et al., GTEx cis-eQTL paper, co-submitted). The third filter was applied to eliminate potential mapping 390 
artefacts that mimic genetic effects from rare variants. We measured ASE effect size at each testable site 391 
as the absolute deviation of the reference allele ratio from 0.5. For each gene, all testable sites in all 392 
tissues were included. We compared ASE in single-tissue and multi-tissue outliers at different Z-score 393 
thresholds to non-outliers using a two-sided Wilcoxon rank sum test. To obtain a matched background, 394 
we only included a gene in the comparison when ASE data existed for both the outlier individual and at 395 
least one non-outlier. In the case of single-tissue outliers, we also required the tissue to match between the 396 
outlier and the non-outlier. All individuals that were neither multi-tissue outliers for the given gene nor 397 
single-tissue outliers for the gene in the corresponding tissue were included as non-outliers. 398 

Allele frequency measurements in UK10K 399 
UK10K3 VCF files of whole genome cohorts were downloaded from https://www.ebi.ac.uk. We merged 400 
the Avon Longitudinal Study of Parents and Children (ALSPAC) EGAS00001000090 and the 401 
Department of Twin Research and Genetic Epidemiology (TWINSUK) EGAS00001000108 datasets for a 402 
total of 3,781 individuals. We counted the occurrence of all rare GTEx SNVs in Epigenomics Roadmap-403 
annotated promoter regions among the UK10K samples. GTEx variants absent from the UK10K cohorts 404 
were assigned a count of 0.  405 

Enrichment of genes with multi-tissue outliers as eGenes 406 
We defined multi-tissue eGenes using two approaches. The first, referred to as the tissue-by-tissue 407 
approach, considered cis-eQTL effects individually for each tissue and ignored sharing of effects between 408 
tissues. For this first approach, we obtained lists of significant eGenes (FDR ≤ 0.05) for each of the 44 409 
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tissues from the GTEx V6p release. The second approach defined cis-eQTLs with shared effects across 410 
tissues using the RE2 model as part of the Metasoft software42. The GTEx Consortium performed shared 411 
cis-eQTL discovery using this model for 19,172 autosomal lincRNA and protein coding genes with cis-412 
eQTLs passing the significance level (FDR ≤ 0.05) in at least one of the 44 tissues in the tissue-by-tissue 413 
analysis (Aguet et al., GTEx cis-eQTL paper, co-submitted). Using these results, we chose for each gene 414 
the variant with the lowest nominal P-value from the RE2 model. We then determined the number of 415 
tissues in which this variant-gene pair showed a cis-eQTL effect; we used as our threshold an m-value ≥ 416 
0.942. For each of the 18,380 genes tested for multi-tissue outliers, we calculated the number of tissues in 417 
which the gene appeared as a significant eGene (approach 1) or had a shared eQTL effect (approach 2). 418 
We compared this value for genes with and without a multi-tissue outlier with a two-sided Wilcoxon rank 419 
sum test.  420 

Finally, we wanted to show that this enrichment of outlier genes as multi-tissue eGenes was not 421 
confounded by gene expression level. To this end, using the Metasoft results, we stratified genes tested 422 
for multi-tissue outliers into RPKM deciles and repeated the comparison between genes with and without 423 
a multi-tissue outlier. 424 

Evolutionary constraint of genes with multi-tissue outliers 425 
We obtained gene level estimates of evolutionary constraint from the Exome Aggregation Consortium26 426 
(http://exac.broadinstitute.org/, ExAC release 0.3). By jointly analyzing the patterns of exonic variation in 427 
over 60,000 exomes, the ExAC database can be used to rank evolutionary constraint of genes based on 428 
their tolerance for synonymous, missense, and loss-of-function variation. We intersected the 17,351 429 
autosomal lincRNA and protein coding genes with constraint data from ExAC with the 18,380 genes 430 
tested for multi-tissue outliers from GTEx, yielding 14,379 genes for further analysis (3,897 and 10,482 431 
genes with and without an outlier, respectively). We examined three functional constraint scores from the 432 
ExAC database: synonymous Z-score, missense Z-score, and probability of loss-of-function intolerance 433 
(pLI). We defined sets of synonymous and missense intolerant genes as genes with a synonymous or 434 
missense Z-score above the 90th percentile. We defined loss-of-function intolerant genes as those with a 435 
pLI score above 0.9 following the guidelines provided by the ExAC consortium. We then tested for the 436 
enrichment of genes with multi-tissue outliers in the lists of synonymous, missense, and loss-of-function 437 
intolerant genes. We calculated odds ratios and 95% confidence intervals using Fisher’s exact test. We 438 
repeated this analysis for three other gene lists: 19,172 multi-tissue eGenes from GTEx V6p defined using 439 
Metasoft42, 9,480 reported GWAS genes from the NHGRI-EBI catalog43 (http://www.ebi.ac.uk/gwas 440 
accessed 30/11/2015), and 3,576 OMIM genes (http://omim.org/ accessed 26/5/2016). Multi-tissue 441 
eGenes were ranked by nominal P-value from the RE2 random effects model implemented in Metasoft. 442 
The top 3,879 multi-tissue eGenes were classified as shared eGenes, while the remaining 11,386 genes 443 
were considered as a background. The number of shared eGenes was chosen to match the number of 444 
multi-tissue outlier genes in the intersection with the ExAC database.  445 

We tested for a difference in the mean constraint for genes with multi-tissue outliers and genes with 446 
multi-tissue eQTLs using ANOVA. For each of the three constraint scores in ExAC, we treated the score 447 
for each gene as the response and the status of the gene as having a multi-tissue outlier and/or a multi-448 
tissue eQTL as a categorical predictor with four classes. After fitting the model, we performed Tukey’s 449 
range test to determine whether there was a significant difference in the mean constraint between genes 450 
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with a multi-tissue outlier but no multi-tissue eQTL and genes with a multi-tissue eQTL but no multi-451 
tissue outlier. 452 

Overlap of genes with multi-tissue outliers and disease genes 453 
We examined the enrichment of genes with multi-tissue outliers in eight disease gene lists. A summary of 454 
these lists can be found in Extended Data Table 2. We tested for enrichment or depletion by comparing 455 
each disease gene list to the 18,380 genes tested for multi-tissue outliers. We computed odds ratios and 456 
95% confidence intervals using Fisher’s exact test. We compared the enrichments for genes with multi-457 
tissue outliers to genes with shared eQTL effects as defined by the Metasoft approach. Like the ExAC 458 
enrichment analysis, we chose the top 4,919 shared eGenes (ranked by P-value from the RE2 model) to 459 
match the number of genes with multi-tissue outliers.  460 

Heritable cancer predisposition and heritable cardiovascular disease gene lists were curated by local 461 
experts in clinical and laboratory-based genetics in the two respective areas (Stanford Medicine Clinical 462 
Genomics Service, Stanford Cancer Center's Cancer Genetics Clinic, and Stanford Center for Inherited 463 
Cardiovascular Disease). Genes were included if both the clinical and laboratory-based teams agreed 464 
there was sufficient published evidence to support using variants in these genes in clinical decision 465 
making. 466 

RIVER integrative model for predicting regulatory effects of rare variants 467 
RIVER (RNA-Informed Variant Effect on Regulation) is a hierarchical Bayesian model that predicts the 468 
regulatory effects of rare variants by integrating gene expression with genomic annotations. The RIVER 469 
model consists of three layers: a set of nodes G = G1 ... GP in the topmost layer representing P observed 470 
genomic annotations over all rare variants near a particular gene, a latent binary variable FR in the middle 471 
layer representing the unobserved functional regulatory status of the rare variants, and one binary node E 472 
in the final layer representing expression outlier status of the nearby gene. We model each conditional 473 
probability distribution as follows: 474 

𝐹𝑅 | 𝑮 ~ Bernoulli(𝜓) ,     𝜓 =  logit!!(𝜷′𝑮) 
𝐸 | 𝐹𝑅 ~ Categorical(𝜽!") 

𝛽!  ~ 𝒩 0,
1
𝜆

 

𝜽!"  ~ Beta 𝐶,𝐶  

with parameters β and θ and hyper-parameters λ and C.  475 

Because FR is unobserved, the RIVER log-likelihood objective over instances n = 1, …, N 476 
log 𝑃 𝑬!,𝑮!,𝐹𝑅! 𝜷,𝜽)!

!"!!!
!
!!!  is non-convex. We therefore optimize model parameters via 477 

Expectation-Maximization44 (EM) as follows: 478 

In the E-step, we compute the posterior probabilities (𝜔!
(!)) of the latent variables FRn given current 479 

parameters and observed data. For example, at the ith iteration, the posterior probability of FRn = 1 for the 480 
nth instance is  481 

ω!!
(!) = 𝑃 𝐹𝑅! = 1 𝑮!,𝜷(!),𝐸!,𝜽(!)   482 

=
𝑃 𝐹𝑅!  = 1 𝑮!, 𝜷(𝒊)) 𝑃(𝑬!|𝐹𝑅! = 1,𝜽(𝒊))

𝑃 𝐹𝑅! 𝑮!, 𝜷(𝒊)) ∙ 𝑃(𝑬!|𝐹𝑅!,𝜽(𝒊))!
!"!!!

 

ω!!
(!) = 1 −  ω!!
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In the M-step, at the ith iteration, given the current estimates ω(i), the parameters (β(i + 1)*) are estimated as  483 

argmax𝜷(𝒊!𝟏) log 𝑃 𝐹𝑅! 𝑮!,𝜷 !!!!
!"!!! ∙ ω!",!

(!)!
!!! − !

!
𝜷(!!!) !, 484 

where λ is an L2 penalty hyper-parameter derived from the Gaussian prior on β. 485 

The parameters θ get updated as: 486 

𝜃!"
(!!!) = I(𝐸! = 𝑡)

𝑵

𝒏!𝟏

∙ ω!,!
! + 𝐶, 

where I is an indicator operator, t is the binary value of expression En, s is the possible binary values of 487 
FRn, and C is a pseudo count derived from the Beta prior on θ. The E and M steps are applied iteratively 488 
until convergence. 489 

RIVER application to the GTEx cohort 490 
As input, RIVER requires simply a set of genomic features G and a set of corresponding expression 491 
outlier observations E, each over a set of instances representing one gene in one individual. Using the 492 
variant annotations described above, we generated genomic features at the site-level for the 116 European 493 
individuals with GTEx WGS data that had fewer than 50 multi-tissue outliers. We then collapsed these 494 
features for all rare SNVs within 10 kb of each TSS to generate gene-level features with relevant 495 
computational operators: a binary indicator implying a presence/absence of any rare SNV in each of the 496 
VEP features, total number of rare SNVs in each of the VEP features, chromatin states from 497 
ChromHMM, and Segway segmentations, and a maximum value over all nearby rare SNVs for the rest of 498 
the features. The collapsed features are described in Extended Data Table 3. This produces a matrix of 499 
genomic features G of size (116 individuals x 1,736 genes) x (112 genomic features), which we 500 
standardize within features (columns) before use. The corresponding multi-tissue outlier values E were 501 
computed using PEER-corrected gene expression Z-scores from each tissue. For each gene, we defined 502 
any individual with |median Z-score| ≥ 1.5 as an outlier if the expression was observed in at least five 503 
tissues; the remaining individuals were labeled as non-outliers for the gene. In total, we extracted 48,575 504 
instances where an individual had at least one rare variant within 10 kb of TSS of a gene. We then 505 
incorporated standardized genomic features (G nodes in Fig. 5a) and multi-tissue outlier states (E node in 506 
Fig. 5a) as input to RIVER. 507 

To train and evaluate RIVER on the GTEx cohort, we first identified 3,766 instances of individual and 508 
gene pairs where two individuals had the same rare SNVs near a particular gene. We used these instances 509 
for evaluation as described below. We held out those instances and trained RIVER parameters with the 510 
remaining instances. RIVER requires two hyper-parameters λ and C. To select λ, we first applied a 511 
multivariate logistic regression with features G and response variable E, selecting lambda with the 512 
minimum squared error via 10-fold cross-validation (we selected λ = 0.01). We selected C = 50, informed 513 
simply by the total number of training instances available, as validation data was not available for 514 
extensive cross-validation. Initial parameters for EM were set to θ = (P(E = 0 | FR = 0), P(E = 1 | FR = 0), 515 
P(E = 0 | FR = 1), P(E = 1 | FR = 1)) = (0.99, 0.01, 0.3, 0.7) and β from the multivariate logistic 516 
regression above, although different initializations did not significantly change the final parameters 517 
(Extended Data Table 6).  518 
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The 3,766 held out pairs of instances from individuals with an identical rare variant were used to create a 519 
labeled evaluation set. For one of the two individuals from each pair, we estimated the posterior 520 
probability of a functional rare variant P(FR | G, E, β, θ). The outlier status of the second individual, 521 
whose data was not observed either during training or prediction, was then treated as a “label” of the true 522 
status of functional effect FR. Using this labeled set, we compared the RIVER score to the posterior P(FR 523 
| G, β) estimated from the plain multivariate logistic regression model with genomic annotations alone. 524 
We produced ROC curves and computed AUC for both models, testing for significant differences using 525 
DeLong’s method29. This metric relies on outlier status reflecting the consequences of rare variants—526 
pairs of individuals who share rare variants tend to have highly similar outlier status even after regressing 527 
out effects of common variants (Kendall’s tau rank correlation, P < 2.2 x 10-16). As a second metric, we 528 
also evaluated performance of both the genomic annotation model and RIVER by assessing ASE. We 529 
tested the association between ASE and model predictions using Fisher's Exact Test. High allelic 530 
imbalance, defined by a top 10% threshold on median absolute deviation of the reference-to-total allele 531 
ratio from an expected ratio (0.5) across 44 tissues, was compared to posterior probabilities of rare 532 
variants being functional from both models with four different thresholds (top 10% – 40%).  533 

Supervised model integrating expression and genomic annotation 534 
To assess the information gained by incorporating gene expression data in the prediction of functional 535 
rare variants, we applied a simplified supervised approach to a limited dataset. We used the instances 536 
where two individuals had same rare variants to create a labeled training set where the outlier status of the 537 
second individual was used as the response variable. We then trained a logistic regression model with just 538 
two features: 1) the outlier status of the first individual and 2) a single genomic feature value such as 539 
CADD or DANN. We estimated parameters from the entire set of rare-variant-matched pairs using 540 
logistic regression to determine the log odds ratio and corresponding P-value of expression status as a 541 
predictor. While this approach was not amenable to training a full predictive model over all genomic 542 
annotations jointly, given the limited number of instances, it provided a consistent estimate of the log 543 
odds ratio of outlier status. We tested five genomic predictors: CADD, DANN, transcription factor 544 
binding site annotations, PhyloP scores, and one aggregated feature, posterior probability from a 545 
multivariate logistic regression model learned with all genomic annotations (Logistic) (Extended Data 546 
Table 4). 547 

RIVER assessment of pathogenic ClinVar variants 548 
We downloaded pathogenic variants from the ClinVar database30 (accessed 04/05/2015). We searched for 549 
the presence of any of these disease variants within the set of rare variants segregating in the GTEx 550 
cohort. Using the ClinVar database, we then manually curated this set of variants, classifying them as 551 
pathogenic only if there was supporting clinical evidence of their role in disease. Specifically, any disease 552 
variant reported as pathogenic, likely pathogenic, or a risk factor for disease was considered pathogenic. 553 
To explore RIVER scores for those pathogenic variants, all instances were used for training RIVER. We 554 
then computed a posterior probability P(FR | G, E, β, θ) for each instance coinciding with a pathogenic 555 
ClinVar variant. 556 

Stability of estimated parameters with different parameter initializations 557 
We tried several different initialization parameters for either β or θ to explore how this affected the 558 
estimated parameters. We initialized a noisy β by adding K% Gaussian noise compared to the mean of β 559 
with fixed θ (for K = 10, 20, 50 100, 200, 400, 800). For θ, we fixed P(E = 1 | FR = 0) and P(E = 0 | FR = 560 
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0) as 0.01 and 0.99, respectively, and initialized (P(E = 1 | FR = 1), P(E = 0 | FR = 1)) as (0.1, 0.9), (0.4, 561 
0.6), and (0.45, 0.55) instead of (0.3, 0.7) with β fixed. For each parameter initialization, we computed 562 
Spearman rank correlations between parameters from RIVER using the original initialization and the 563 
alternative initializations. We also investigated how many instances within top 10% of posterior 564 
probabilities from RIVER under the original settings were replicated in the top 10% of posterior 565 
probabilities under the alternative initializations (Accuracy in Extended Data Table 6).    566 

Code availability 567 
RIVER is available at https://github.com/ipw012/RIVER. Additionally, the code for running analyses and 568 
producing the figures throughout this manuscript is available separately 569 
(https://github.com/joed3/GTExV6PRareVariation). 570 

Data availability 571 
The GTEx V6 release genotype and allele-specific expression data are available from dbGaP (study 572 
accession phs000424.v6.p1; http://www.ncbi.nlm.nih.gov/projects/gap/cgi-573 
bin/study.cgi?study_id=phs000424.v6.p1). Expression data from the V6p release and eQTL results are 574 
available from the GTEx portal (http://gtexportal.org).  575 
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