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Accumulation of somatic mutations over time leads to tissue abnormalities, such as cancer. 11 
Somatic mutation rates vary across the genome in a cell-type specific manner, depending on 12 
the types of mutation processes

1-7
. Although recent studies have identified several 13 

determinants relevant to the establishment of the cancer mutation landscape
8-13

, these studies 14 
have yet to propose the major time point at which these factors come into play during cancer 15 
progression. Here, we analyzed whole genome sequencing data from two different types of 16 
precancerous tissues, monoclonal B-cell lymphocytosis and Barrett’s esophagus, and their 17 
matching cancer types along with 423 epigenetic features from normal tissues to determine 18 
the critical time point when chromatin features contribute to the formation of the somatic 19 
mutation landscape. Our analyses revealed that a subset of cell-of-origin associated 20 
chromatin features can explain more than 80% of the regional mutation variance for both 21 
types of precancerous tissues, comparable to the variance explained level for the genomes of 22 
matching cancer types. In particular, major significant chromatin features explaining the 23 
mutation landscape of Barrett’s esophagus and esophageal adenocarcinoma were derived 24 
from stomach tissues, indicating that mutation landscape establishment occurs mostly after 25 
environment-mediated epigenetic changes during gastric metaplasia. Analyses of the genome 26 
of esophageal squamous cell carcinoma tissues demonstrated that the proposed time point for 27 
mutation landscape establishment of Barrett’s esophagus and esophageal adenocarcinoma 28 
were specific to the occurrence of cell-type shift. Thus, our data suggest that the major time 29 
point for the mutation landscape establishment dictated by chromatin features is early in the 30 
process of cancer progression, and epigenetic changes due to environmental conditions at 31 
early stages can dramatically impact the somatic mutation landscape of cancer.  32 
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Recent advances in cancer genomics have so far revealed numerous somatic mutation 33 
landscapes for various cancer types, leading to a number of key findings. Identification of 34 
new driver gene mutations, deciphering clonal evolution structure and profiling tumor 35 
heterogeneity within and among different patients through examination of mutations, mainly 36 
at the gene level

1-7
, have successfully addressed the genes contributing to cancer progression 37 

and identified novel therapeutic targets. Beyond these gene-focused approaches, systematic 38 
analyses of mechanisms that could explain genomic regional variations in mutation rates 39 
across various cancer types could significantly extend our understanding about common 40 
contributors to the establishment of mutation landscapes before and during cancer 41 
progression. To this end, a number of studies have examined relationships between regional 42 
mutation frequencies across the genome and several types of features, including gene 43 
expression level, DNA sequence context, mutation profiles of nucleotide excision and 44 
mismatch repair genes, histone post-translational modifications, and open chromatin marks 45 
such as DNase-seq profiles

8-15
. Although these factors display high correlation with regional 46 

mutation rates, somatic mutation profiles used for the studies were limited to fully progressed 47 
tumors. Thus, it remains unknown whether the correlations between regional mutation 48 
frequencies and cell-of-origin chromatin marks are established either gradually during cancer 49 
progression or during a specific critical time period, either pre-or post-malignancy. Analyzing 50 
the mutation landscapes of precancerous, non-neoplastic tissues alongside matching cancer 51 
tissues could help to determine the major time points where chromatin marks shape the 52 
mutation landscape. 53 

Here, we analyzed a total of 38 precancerous lesions including monoclonal B cell 54 
lymphocytosis (MBL) and Barrett’s esophagus (BE) (methods). Representative matching 55 
cancer types were also analyzed, corresponding to a total of 144 tumor samples from chronic 56 
lymphocytic leukemia (CLL) and esophageal adenocarcinoma (EAC). In addition, a total of 57 
14 esophageal squamous cell carcinoma (ESCC) samples were analyzed to represent cancer 58 
without any defined precancerous stages during progression with a matching cell-of-origin.  59 

We performed principal coordinate analysis (PCOA) to test whether the average mutation 60 
rate differences reported previously

16,17
 were reflected in the level of 1 megabase window 61 

regional mutation frequencies. Consistent with the differences in average mutation frequency, 62 
both MBL samples and CLL samples were indistinguishably located and formed separate 63 
clusters based on immunoglobulin heavy chain variable region (IGHV) mutation status, a key 64 
marker for distinguishing either naive-B cells or memory B cell origin for both MBL and 65 
CLL

16,18
. These results indicate that cell-of-origin differences might dictate the differences in 66 

regional mutation frequencies, rather than cancer progression-based status alone (Fig. 1a). In 67 
contrast, individual BE tissues formed clusters with the EAC tissues separate from the ESCC 68 
tissues, suggesting that the matching of cancer progression history might serve as a stronger 69 
factor than the cell-of-origin context itself (Fig. 1b). Collectively, these results show 70 
similarity in regional variation in mutation frequencies of precancerous tissues and matching 71 
cancer types, indicating that the effect of cell-of-origin context might be cancer-type 72 
dependent.   73 

Whole-genome analyses of distinct cancer types depict cell-of-origin chromatin marks as the 74 
strongest feature explaining the cancer mutation landscape, with a number of proposed 75 
mechanisms

10
. Based on the IGHV mutation status-based clustering of MBL and CLL tissues 76 

in PCOA, we hypothesized that differential IGHV mutation status would correlate with 77 
distinct chromatin features explaining the regional mutation variation, and similar chromatin 78 
features would come up as significant when comparing IGHV mutation type-matching MBL 79 
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and CLL genomes. To confirm the former part of the hypothesis, we first employed a random 80 
forest regression-based chromatin feature selection algorithm to identify significant 81 
chromatin features explaining the variance in regional mutation rates for different sample 82 
groups. Indeed, significant chromatin features explaining regional mutation variations were 83 
different between IGHV unmutant and groups (Extended Data Fig. 1a). Top-ranked 84 
chromatin features for both groups were derived from CD19-positive cells, which is expected 85 
since the CD19 marker cannot distinguish between naive and memory B cells. To further 86 
examine whether the differences in chromatin features were cell-type dependent, we 87 
performed chromatin feature selection after removing the 1Mbp regions containing IGHV 88 
mutation status-associated differential DNA methylation SNPs, which also highly overlaps 89 
with differential DNA methylation SNPs between naive and memory B cells

19-21
. This 90 

approach resulted in 3 out of 4 top significant chromatin features between the IGHV-mutant 91 
and unmutant groups (Extended Data Fig. 1b), implying that the differential chromatin 92 
features explaining mutation frequency landscapes of distinct IGHV mutation status might 93 
actually correlate with differences in cell-of-origin context. Next, we compared chromatin 94 
features that might explain regional mutation variations across the genomes of IGHV-95 
mutation-status-matched MBL and CLL tissues. Due to the limits of sample size and average 96 
mutation rate of the samples, only IGHV-mutant MBL and CLL genomes were subjected to 97 
further analyses. Notably, the top two ranked chromatin features were identical between 98 
IGHV-mutant MBL and CLL samples (Fig. 2a), implicating that the subset of chromatin 99 
marks might commonly dictate the formation of regional mutation landscape for both pre-100 
cancerous tissues and matching cancer type. Additional examination of simple correlation 101 
between regional mutation frequency and histone modification levels derived from CD19-102 
positive cells at the 1 megabase-level revealed marginal differences between MBL and CLL 103 
tissues (Fig. 2b and Extended Data Fig. 2a). The correlation between the CD19 DNase1-seq 104 
profile and regional mutation frequency was higher for CLL than MBL for chromosome 2 105 
(Fig. 2c) and other chromosomes (Extended Data Fig. 3a), but this finding might be due to 106 
the different number of samples between MBL and CLL, as the correlation score for MBL at 107 
chromosome 2 was highly similar to the correlation scores for CLL (0.76 vs. 0.75) after 108 
sample-number matching. These results demonstrate that the cell-of-origin chromatin context, 109 
defined by the IGHV mutation status, serves a major role in shaping the mutation landscape 110 
of both MBL and CLL tissues, suggesting that the cell-of-origin chromatin landscape could 111 
govern the establishment of the somatic mutation landscape for CLL early in cancer 112 
progression, even before the precancerous cell type, MBL, is apparent.  113 

Cell type shift, represented as gastric metaplasia, is one of the main hallmarks in the 114 
development of BE

22
. Thus, one could assume that the critical time point for the 115 

establishment of the mutation landscape for BE could be either before or during the course of 116 
cell type shift, or after its completion. Chromatin feature selection analysis of the mutation 117 
landscape of BE and EAC tissues confirmed that high-ranked chromatin features were 118 
derived from the stomach tissue type (Extended Data Fig. 4) for both tissues, without any 119 
significant esophageal chromatin features. Simple correlation between regional mutation 120 
frequency and histone modification marks from stomach and esophagus tissues revealed 121 
marginal differences between BE and EAC tissues (Extended Data Fig. 2b, c), and this 122 
pattern was also consistent with the correlation to stomach tissue DNase I hypersensitivity 123 
profile (Extended Data Fig. 3b). Moreover, six features covering all stomach chromatin 124 
features subjected to the feature selection analysis solely explained over 80% of the regional 125 
mutation variance for both BE and EAC tissues, which is unlikely to be random (p value < 126 
2.2e-16) (Extended Data Fig. 5). These results imply that the major time point of mutation 127 
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landscape establishment for BE is most likely to be after the cell type shift into stomach 128 
mucosa-like cells. Chromatin feature selections on subgroups of somatic mutations for BE 129 
and EAC based on overlap and uniqueness of the mutations shared common top-ranked 130 
stomach chromatin features (Fig. 3a). In addition, chromatin feature selection on sample 131 
subgroups with respect to dysplasia grade revealed that the top features all originated from 132 
stomach tissue (Extended Data Fig. 6) and the variance explained level for all of the 133 
dysplasia-based subgroups using six stomach tissue chromatin features were similar to the 134 
variance explained level using all 423 chromatin features (Fig. 3a). This finding was 135 
consistent with the high correlation to stomach tissue DNase I hypersensitivity profile 136 
(Extended Data Fig. 3c). From all of these results, we infer an early time point for 137 
establishment of the mutation landscape for EAC, even prior to the occurrence of dysplasia 138 
for BE, but most likely after epigenetic changes due to gastric metaplasia.  139 

To ensure that the chromatin features shaping the mutation landscape of BE and EAC were 140 
not common to any esophageal cancer type, we analyzed the genome of ESCC, another 141 
cancer type derived from the esophageal squamous epithelium without any precancerous 142 
stages with cell type shift. Although the regional mutation frequency of ESCC correlated 143 
with histone modification marks from stomach and esophagus tissues in a similar manner 144 
(Extended Data Fig. 2d), chromatin feature selection revealed a subset of squamous cell type 145 
and esophagus chromatin features that were significant and distinct from BE and EAC 146 
(Extended Data Fig. 7). Moreover, measuring the level of variance explained values per 147 
tissue or cell type categories showed stomach chromatin features to be the strongest ones for 148 
BE and EAC, reaching higher than 90% of the variance level explained by the 423 total 149 
chromatin features, whereas esophageal chromatin features were dominant for ESCC (Fig. 4). 150 
Notably, the variance explained values for each category displayed non-significant 151 
relationship with simple correlations between the chromatin marks from different tissue or 152 
cell types (BE rs = 0.36, EAC rs = 0.36, ESCC rs = 0.18).  These results imply a distinct 153 
process of mutation landscape establishment for these cancer types that varies depending on 154 
the presence of precancerous tissues with cell-type shifts. 155 

In conclusion, our data suggest that the major time point for the establishment of the mutation 156 
landscape governed by chromatin marks could be early, even prior to the phenotypic 157 
emergence of precancerous tissues. Results from BE and EAC also raise the possibility that 158 
epigenetic changes due to environmental insults, represented as a cell type shift, could serve 159 
as a primary role by affecting the course of the establishment of the mutation landscape 160 
(Extended Data Fig. 8). Further comprehensive studies to decipher the mutation landscape of 161 
other precancerous tissues with metaplasia and discover the exact mechanisms controlling the 162 
timing of mutation landscape establishment would lead to a better understanding of the effect 163 
of epigenetic marks on shaping the precancerous tissues and matching cancer genome and 164 
help identify possible biomarkers for early-stage detection of cancer.   165 
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METHODS 166 
 167 
Data 168 
For the purposes of our project, we used somatic mutation data from CLL, MBL, BE, EAC, 169 
and ESCC tissues. In the case of CLL and MBL genome data, total mutations were acquired 170 
from Supplementary Table 2 of the publication

16
, consisting of 136 samples (13 IGHV-171 

mutant MBL, 2 IGHV-unmutant MBL, 52 IGHV-mutant CLL and 69 IGHV-unmutant CLL). 172 
In the case of Barrett’s esophagus, esophageal adenocarcinoma, and ESCC, data use were 173 
authorized from ICGC (http://icgc.org) and BGI (http://www.genomics.cn/) before use. A 174 
total of 23 pairs of Barrett’s esophagus and matching esophageal adenocarcinoma genomics 175 
data

17
 were authorized from ICGC and genome data of 14 ESCC samples

23
 were acquired 176 

from BGI. These data sets were subsequently analyzed following the standard GATK 177 
pipeline (https://www.broadinstitute.org/gatk/) and somatic variants were called using the 178 
MuTect algorithm

24
 (https://www.broadinstitute.org/cancer/cga/mutect).  179 

Epigenomics and chromatin data were from the NIH Roadmap Epigenomics Mapping 180 
Consortium

25
 and ENCODE

26
.  NIH Roadmap Epigenomics data were accessible from the 181 

NCBI GEO series GSE18927, referring to the University of Washington Human Reference 182 
Epigenome Mapping Project. 183 
To calculate the regional mutation density and mean signal of chromatin features, all 184 
autosomes were split in 1-Mbp regions followed by filtering out regions containing 185 
centromeres, telomeres and low quality unique mappable base pairs. To determine regional 186 
mutation density and histone modification profiles, we counted the total number of somatic 187 
mutations or ChIP-seq reads per each 1 megabase region. For analyzing the DNase I 188 
hypersensitivity and Repli-seq data, scores of DNase I peaks and replication were calculated 189 
per each 1 megabase region. For somatic mutations, ChIP-seq data and DNase I 190 
hypersensitivity data, BEDOPS

27
 was employed to calculate the frequency and scores per 191 

each 1Mbp region. 192 
  193 
Principal coordinate analysis. 194 
Principal coordinate analysis was used to represent differences in mutation frequency 195 
distribution among the individual samples. A dissimilarity matrix was built using 1 – Pearson 196 
correlation coefficient across all samples. Each sample location was assigned in a two-197 
dimensional space using this matrix. 198 
 199 
Feature selection based on random forest regression. 200 
A random forest regression-based feature selection algorithm was performed as described

10
 201 

with modifications. Briefly, the training set for each tree was constructed, followed by using 202 
out-of-bag data to estimate the mean squared error. Thus, there was no need to perform 203 
additional tests for error evaluation. Out-of-bag data were also used to estimate the 204 
importance of each variable. In each out-of-bag case, the values corresponding to each 205 
variable were randomly permuted, then tested to each tree. Subtracting the score of the mean 206 
squared error between the untouched out-of-bag data cases and the variable-m-permuted 207 
cases, the raw importance score of variable m was measured. By calculating the average 208 
score of variable m in the entire tree, the rank of importance for each variable was determined. 209 
A total of 1,000 random forest trees were employed to predict mutation density using a total 210 
of 423 chromatin features. Every random forest model was repeated 1,000 times.  211 
After the random forest algorithm step, greedy backward elimination was performed to select 212 
the top 20 chromatin variables. Subsequent removal of the lowest rank variable was done to 213 
calculate the variance explained value measurements for each variable. To conduct feature 214 
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selection on all of the samples corresponding to the particular pre-cancerous tissues or cancer 215 
types, mutation density was calculated by adding samples in each case. However, a number 216 
of particular analyses employed the subgrouping of samples. In the case of chromatin feature 217 
selection assessing the effects of differential DNA methylation between IGHV-mutants and 218 
unmutants (Extended Data Fig. 1b), a total of 935 regions containing differentially 219 
methylated CpGs

20
 were removed prior to the analysis. To perform feature selection 220 

classified by differential dysplasia states (Extended Data Fig. 6), samples were divided into 3 221 
groups: 17 samples of no dysplasia, 3 samples of low-grade dysplasia and 2 samples of high-222 
grade dysplasia. In the case of feature selection after subgrouping for distinct and common 223 
mutations (Fig. 3a), all mutations in paired-samples of BE and EAC were divided into 3 224 
different groups: Barrett’s only, EAC only, and common mutations.  225 
 226 
Analysis of mutation frequency variance explained by chromatin features. 227 
To examine the effect of a particular cell-type specific chromatin context on explaining 228 
regional variability of mutation density across the genome, chromatin features were 229 
subgrouped based on the feature selection algorithm. To study the differences in variance 230 
explained values among distinct cell types, 8 groups were categorized (Fig. 4). Each group 231 
included 5 chromatin markers common among the 8 cell-type based groups: H3K27me3, 232 
H3K36me3, H3K4me1, H3K4me3 and H3K9me3. Random selection of 6 chromatin features 233 
were either from all of the 423 features or 417 features (excluding stomach mucosa 234 
chromatin features) (Extended Data Fig. 5). Random selection of chromatin features was 235 
repeated 1,000 times, then the average variance explained values and permutation 236 
distributions were obtained.  237 
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Figure 1 | Principal coordinate analysis (PCOA) of individual cancer samples.  

(a) MBL and CLL with different IGHV mutation status. (b) Barrett’s esophagus, esophageal 

adenocarcinoma, and ESCC.  
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Figure 2 | Cell-of origin chromatin features representing association with the regional 

mutation frequency of CLL and the corresponding precancerous cell type, MBL.  

(a) Random forest regression-based chromatin feature selection in relations to the regional 

mutation frequency of IGHV-mutant MBL and CLL samples. Each chromatin feature is 

ranked by importance value, and variance explained scores are represented by bar length. 

Error bars demonstrate minimum and maximum values derived from 1,000 repeated 

simulations. Red lines display variance explained scores determined by 423 features - 1 SEM, 

and CD19 chromatin features are green-colored. (b) Univariate correlation between CD19 

chromatin features that displayed significance in the feature selection models and the regional 

mutation density of IGHV-mutant MBL or CLL. Spearman's rank correlations (r) are shown 

on each plot. (c) The density plot for regional mutation density of IGHV-mutant MBL or 

CLL and CD19 DNase1 accessibility index (reverse scale) across the full chromosome 2. 

Spearman's rank correlations (r) are shown on each plot.  
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Figure 3 | Regional mutation frequency landscape of Barrett's esophagus and matching 

esophageal adenocarcinoma are affected by cell-type-shift-associated epigenetic changes. 

(a) Chromatin feature selection based on the commonality of mutations in paired samples of 

Barrett’s esophagus and esophageal adenocarcinoma. Barrett’s only: mutations observed only 

in the Barrett’s esophagus genome, Common: mutations observed in common for both 

Barrett’s esophagus and esophageal adenocarcinoma genomes, EAC only: mutations 

observed solely in the esophageal adenocarcinoma genome. (b) Bar graph representing 

average variance explained scores using either stomach chromatin features (navy) or all 423 

epigenomic features (gray). ND: no dysplasia, LGD: low-grade dysplasia, HGD: high-grade 

dysplasia, EAC: esophageal adenocarcinoma. Error bars demonstrate minimum and 

maximum values derived from 1,000 repeated simulations. 
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Figure 4 | Regional mutation frequency landscape of esophageal squamous cell 

carcinoma demonstrates the uniqueness of significant chromatin features associated 

with the Barrett’s esophagus and esophageal adenocarcinoma genomes. 

Average variance explained scores for pre-cancerous or matching cancer genomes were 

separately calculated using the tissue or cell type-based subgroup-classified chromatin 

features. The pink panel represents subgroups with the highest variance explained score for 

each cell type. The red line indicates the variance explained score when using all 423 

epigenomic features. Dots represent the Spearman’s rank correlations (r) of chromatin 

features between the highest variance explained-scored subgroup and the remaining 

subgroups. Error bars demonstrate minimum and maximum values derived from 1,000 

repeated simulations. 
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Extended Data Figure 1 | Random forest regression-based chromatin feature selection 

using IGHV-mutant sample groups or IGHV-unmutant sample groups. 

(a) IGHV-mutant vs. IGHV-unmutant samples with all 1 megabase genomic regions. (b) 

IGHV-mutant vs. IGHV-unmutant samples without 935 of the 1 megabase genomic regions 

corresponding to regions containing differentially methylated CpGs between IGHV-mutant 

and IGHV-unmutant CLL samples. 
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Extended Data Figure 2 | Correlation plots between regional mutation density and cell-

type matching chromatin features. 

(a) Mutation density of IGHV-mutant MBL or CLL versus CD19 chromatin features. (b) 

Mutation density of Barrett’s esophagus versus stomach mucosa or esophagus chromatin 

features. (c) Mutation density of esophageal adenocarcinoma versus stomach mucosa or 

esophagus chromatin features. (d) Mutation density of ESCC versus stomach mucosa or 

esophagus chromatin features. 
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Extended Data Figure 3 | Spearman’s rank correlation (r) between regional mutation 

density and chromatin accessibility index across the different chromosomes. 

(a) MBL and CLL with different IGHV mutation status. (b) Barrett’s esophagus, esophageal 

adenocarcinoma and ESCC. (c) Subgroups of Barrett’s esophagus classified by dysplasia 

states. 
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Extended Data Figure 4 | Chromatin feature selection in relation to the regional 

mutation frequency of Barrett’s esophagus and esophageal adenocarcinoma.  
Chromatin features of the stomach mucosa are green-colored. 
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Extended Data Figure 5 | Comparison of variance explained scores using either stomach 

chromatin features or groups of randomly selected chromatin features. 

Stomach chromatin group represents a total of 6 chromatin features from stomach tissue. A 

total of 417 and 423 chromatin groups displayed 6 randomly selected chromatin features 

from either 417 or 423 features. The difference between 417 and 423 features was the 

presence or absence of stomach chromatin features. (a) Average variance explained scores 

using 3 different chromatin groups or all of the 423 features. Error bars demonstrate 

minimum and maximum values derived from 1,000 repeated simulations. (b) Distribution of 

variance explained scores for the group of 6 randomly selected chromatin features from 

either 417 or 423 chromatin features with 1,000 permutations. Pink-colored distributions 

represent average variance explained score of stomach chromatin features. 
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Extended Data Figure 6 | Feature Selection in Barrett’s esophagus and esophageal 

adenocarcinoma classified by dysplasia status. 
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Extended Data Figure 7 | Chromatin feature selection in relation to the regional 

mutation frequency of ESCC samples. Chromatin features of the esophagus are green-

colored. 
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Extended Data Figure 8 | Proposed model showing the major time point for the 

establishment of the mutation landscape with respect to chromatin features. 
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