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ABSTRACT  

Cardiotoxicity (CT) involving diminished cardiac contractility and heart failure is a major adverse event associated 

with otherwise efficacious protein kinase inhibitors (KIs). Here, we sought to develop clinically-weighted 

transcriptomic signatures to predict risk of CT and to better understand the biological processes associated with 

CT risk. We obtained transcriptome-wide response profiles in four human primary cardiomyocyte cell lines that 

were treated with 22 different KIs using mRNA sequencing with 3’ digital gene expression. The FDA Adverse 

Event Reporting System was used to derive relative risk scores for four types of CT for different KIs. We used 

elastic net regression to associate these transcriptomic profiles with KI-associated risk scores for CT subtypes to 

obtain clinically-weighted transcriptomic signatures, which showed good predictive properties (cross-validation 

R2 >0.87). Our clinically-weighted transcriptomic signatures for KI-associated CT may be of relevance in early 

drug development for the prediction of KI-associated CT.  

INTRODUCTION 

Protein kinase inhibitors (KIs) are a clinically important class of anticancer agents1,2. There are currently more 

than 28 KIs3 on the market, and more than 100 KIs in clinical development4. There are significant concerns 

regarding the safety profile of KIs. Cardiotoxicity (CT) is one clinically important adverse event associated with 

some KIs5–7. Typically, KI-associated CT manifests as loss of contractile function, which can subsequently lead 

to heart failure8. The human ‘kinome’ consists of more than 500 protein kinases9. Given that many KIs are not 

highly selective in the protein kinases they target10, the inhibition of any of these kinases in healthy cell types, 
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including cardiomyocytes, may potentially lead to adverse drug effects such as CT11. For specific KIs, in vitro and 

in vivo studies have identified potential mechanisms for CT12, including mitochondrial function 6,13,14, endoplasmic 

reticulum stress response14 and AMPK inhibition15. Overall, however, the mechanisms of KI-induced CT are still 

poorly understood12. Furthermore, characterization of the link between clinically observed CT phenotypes and 

transcriptomic changes in cardiomyocytes could have tremendous prognostic value. Therefore, there is a need to 

better characterize the molecular changes of KI associated CT on a genome-wide basis.  

The use of a systems pharmacology approach to understand and predict adverse events has received increasing 

interest16,17, and several successful case examples have been described18,19. Such approaches typically rely on 

appropriate global characterization of drug-induced molecular changes in affected cells and tissues of interest. 

However, for KI-associated CT, a systematic assessment of molecular changes associated with KI treatment is 

lacking. Addressing this gap, as part of the NIH-funded Library of Integrated Network Based Cellular Signatures 

(LINCS), the Drug Toxicity Signature Generation Center (DToxS; www.dtoxs.org) is currently generating large-

scale transcriptomics and proteomics profiling datasets in clinically-relevant, human-derived cell lines, which are 

perturbed with large numbers of different drugs, including cardiomyocytes and KIs. Here, we describe how 

transcriptomic profiles of 22 KIs in four human primary cardiomyocyte cell lines were analyzed in conjunction 

with clinical data from the FDA Adverse Event Reporting System, in order to derive clinically-weighted 

transcriptomic signatures that may allow ranking prospective KIs for their relative risk of CT. 

 

RESULTS 

Limited overlap of differentially expressed genes across different KIs in cardiomyocytes  

We used mRNA sequencing with 3’-digital gene expression generated from four primary human cardiomyocyte 

cell lines that were treated with up to 22 KIs at their respective maximum therapeutic concentrations for 48 h 

(Table 1, Table S3) for our analyses. Mean differential gene expression fold-change values were computed across 

cell lines and replicates for all KIs. After ranking by absolute gene expression fold-change and keeping the top 

500 genes, we computed the Jaccard index across these KI-associated top ranked gene expression profiles, which 

indicated limited similarity given the Jaccard index of <0.25 (Figure 1A). The genes that were most commonly 

present in the top 500 ranked gene list across drugs ranked by their frequency of occurrence is shown in Figure 

1B, i.e. gene TC2N was present in these top ranking genes for all KIs except for cabozantinib. Principal component 

analysis showed variable gene expression patterns for 9 KIs, while for the remaining KIs little variation in gene 

expression was seen (Figure 1C), where PC3 appeared most discriminating.  
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Clinical risk profiles derived from FAERS show differences in risk profiles between cardiotoxicity subtypes 

To obtain estimates of clinical risk of KI-associated CT, we analyzed data from the publicly accessible FDA 

Adverse Event Reporting System (FAERS) (Figure 2A). We distinguished between four relevant subtypes of CT 

that can be identified from the FAERS database: hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy 

(DCM), ventricular dysfunction and heart failure (VDHF), and cardiotoxicity undefined (CTU). Subsequently, 

reporting odds ratios (RORs) and Z-scores were derived based on the relative frequencies of CT, for each KI 

present in the transcriptomics dataset (Figure 2B). For several KIs, there are observable differences in the risk for 

different subtypes of CT. The Z-scores were used as single metric to quantify CT risk, as it includes the confidence 

interval for the ROR. Here, the estimates for the ROR and associated Z-score indicate relative ranking of KI-

associated toxicity, and not absolute risks of CT. Finally, using multivariate logistic regression analyses we 

estimated the effect of age and sex at 1.02 year-1 (2.6 CV%) and 1.47 (1.3 CV%), respectively. The low inter-KI 

variation of <2.6 CV% suggest that age and sex have negligible impact on individual KI-associated CT risk 

estimates. 

Distinct and predictive signatures for 4 types of cardiotoxicity  

Subsequently, we aimed to associate our KI-wide mean fold change gene expression profiles with the KI-specific 

clinical risk scores of four subtypes of CT (i.e. HCM, DCM, CTU, VDHF). Given the limited similarity between 

top ranking gene expression profiles across KIs (Figure 1A-C), the entirety of the gene expression profile across 

KIs were considered as potential predictors for KI-associated CT risk. As such, KI-specific expression profiles of 

9,281 genes were available as potential predictors for 22 KI-specific CT risk scores. To identify genes most 

strongly associated with CT risk we used an elastic net penalized regression approach, which is suited to identify 

predictors whilst limiting the risk of overfitting20. Separate models were fit for all four derived subtypes of CT. A 

two-stage regression analysis was performed (Figure 3). In the first stage, we constructed bootstrap datasets 

obtained after random resampling of KI risk and associated gene expression profiles, which were subsequently fit 

as elastic net models. This first step was performed to identify gene-based predictors that could consistently predict 

CT risk and contributed significantly to the prediction of this risk. The bootstrap analysis resulted in stable selection 

of potential predictors after 250 bootstrap samples (Figure S1). Predictors to be included in the final elastic net 

regression model (Supplemental material 4) were selected based on their minimal root mean squared prediction 

error (RMSE, Figure S2-3) after cross validation. Since we had only a limited number of KIs available, we 

explicitly chose to not keep apart any data for a full external validation. Instead, we evaluated model predictions 

using repeated random 3-fold cross validation for each of the four subtypes of CT, which resulted in high R2 

prediction metrics (>0.87) (Figure 4A). The selected gene expression-based predictors in the final elastic net 

model consisted of 42, 44, 44 and 85 genes for HCM, CTU, VDHF and DCM, respectively (Table S2, Figure 

4B). These sets of genes define our clinically-weighted transcriptomic signatures for cardiotoxicity; their 
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associated gene expression profiles are shown in Figure 4C. The importance of each of the selected genes for the 

prediction of CT risk was not equal (Figure 4B). CT subtype DCM required 85 genes for optimal predictive 

performance, whereas for all other subtypes <44 genes were sufficient. Potentially, this is because not enough KIs 

with a diverse CT profile were available for deriving an informative gene signature. When assessing the similarity 

between each of the 4 clinically weighted gene expression signatures, the largest overlap was present between 

DCM and HCM (4 genes), VDHF and DCM (4 genes), and VDHF and HCM (2 genes) (Figure 4D). The genes 

FASTKD2 (FAST kinase domain containing protein 2) and MED19 (Mediator Of RNA Polymerase II 

Transcription, Subunit 19) were present in the signatures for HCM, VDHF and DCM. FASTKD2 plays a role in 

energy balance regulation in mitochondria under stress21. This could indeed be of relevance for cardiotoxicity, 

because mitochondrial dysfunction has been associated with cardiotoxicity13,22, and this finding may warrant 

further detailed analysis.  

Signatures for the 4 types of cardiotoxicity are enriched for different biological processes 

In order to identify the potential functional consequences of our clinically-weighted transcriptomic signatures, we 

performed enrichment analyses based on the KEGG database, estimating over-representation of signature genes 

using Fisher’s exact test (Figure 5). Biological processes that appeared to be affected for all four types of CT 

included metabolic pathways, and common subcellular processes such as ribosome function, endocytosis, 

proteolysis, and splicing. However, similar to the differential clinical risks for the different types of cardiotoxicity, 

we observed distinct patterns in enriched subcellular processes for specific CT subtypes. Such differences include 

regulation of the actin cytoskeleton and oxidative phosphorylation for DCM, protein processing in the endoplasmic 

reticulum for HCM, VDHF), and apoptosis (DCM) amongst others (Figure 5).  

 

DISCUSSION 

The occurrence of drug treatment associated cardiotoxicity leading to decreased cardiac contractility lags behind 

the therapeutic effects of the drugs and may only be observed in a subset of the patients using the drug. These two 

factors raise the question of whether it would be possible to obtain early cell based indicators of potential for drug 

toxicity.  This study was designed to address this question. The approach we have used is to determine we can 

associate drug treatment induced gene expression patterns and the clinical risk for the adverse events of interest. 

We estimated clinical risk from the FAERS database. Our use of FAERS is arguably a relevant and unbiased 

approach for the quantification of CT risk, because this data reflects unselected, real-life patients cohorts and may 

some of the potential bias associated with cohort selection associated with tightly controlled clinical trials. It is 

possible that risk metrics derived from controlled clinical trials can underestimate adverse event risks due to 

selective inclusion criteria of patients to demonstrate therapeutic efficacy, cohort size and duration of the trial.  
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Nevertheless there are limitations to the FAERS database as well that we have discussed and addressed in previous 

work18, and similarly address in this study. In particular, we confirmed that demographics such as age and sex 

were not variable across different KIs. Moreover, as the KIs studied are cancer drugs, some similarity between 

populations is likely.  

 

This project associated KI-associated transcriptomic response profiles generated from cultured human primary 

cardiomyocytes with clinical risk scores for different subtypes of CT in order to obtain a reduced set of genes that 

may predict the relative risk for KI-associated CT. The clinically weighted transcriptomic signatures consisted of 

<44 genes for HCM, CTU, and VDHF, whilst the signature for DCM consisted of 85 genes. The signatures showed 

good prediction of CT risk based on the cross validation analysis (Figure 4A). Using the clinically weighted 

signatures and the association regression coefficients identified in the elastic net model (Supplemental material 

4), the relative risk for CT can be predicted. Here, the risk metric does not reflect the absolute risk for developing 

CT. Rather it reflects the relative risk for a subset of patients for which drug-associated adverse events were 

reported. As such, the risks predicted by our signatures and associated regression model can be used in drug 

development to rank the risk of potentially novel KIs with respect to the current ranking of existing KIs with better 

characterized clinical risks for CT. The issue of whether or not a KI can be considered as cardiotoxic has some 

underlying complexity. Some KIs may result in cardiotoxicity, but the severity and duration of CT may be different 

between patients and between different KIs. Therefore, we decided to develop a continuous risk metric in 

preference to a binary classification of drugs as CT or not. Secondly, it is unclear if all KIs induce CT through 

similar mechanisms and to what extent ultimate clinical pathologies are similar. Indeed, the FAERS database 

allows us to distinguish between different types of  CT, rather than lump all potential types of CT together (Figure 

2B).  Nonetheless, the clinical classification of KI associated CT is an area that needs better resolution, and it is 

likely as EHR records become increasingly available that the data will become more detailed with respect to 

pathophysiology.  Such improved clinical data can greatly enhance the value of analyses such as ours and aid in 

the drug development processes by contributing to early go/no-go decisions. 

 

At the cellular level, commonly enriched subcellular processes associated with the clinically-weighted 

transcriptomic signatures included various metabolic processes, pathways related to oxidative phosphorylation, 

endoplasmic reticulum (ER) effects, and apoptosis. In addition, a number of subcellular processes related to 

transcription (ribosome, spliceosome), protein degradation and endocytosis were affected. Other recent studies 

into CT of anthracyclines and KIs agree with our findings  that changes in metabolic processes23,24, ER effects14, 

oxidative phosphorylation13,25 AMPK signaling26, cell adhesion27, cell survival pathways12, and the FoxO-related 

transcription28 are likely to be involved. It is possible that gene expression profiles associated with specific 
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subcellular processes could be co-expressed and hence highly correlated. However, due to the nature of the elastic 

net regression algorithm used, highly correlated genes are unlikely to be selected simultaneously, limiting over-

representation of the identification of associated subcellular pathways. 

 

Besides variation in drug exposure, pharmacodynamic inter-individual variation in severity of CT is likely. The 

current group of four cell lines are not of sufficient size to realistically capture such human variability. Therefore, 

in our analysis, we used mean fold change gene expression profiles across multiple cell lines.  The resulting 

averaged gene expression profiles thus reflect relatively consistent changes in gene expression across cell lines, 

i.e. changes in gene expression that are less likely to be highly variable across individuals, yet may result in 

consistent predictors across the population. Given that the FAERS CT risk scores also reflect a population-level 

CT risk, the use of these mean values in fold-change gene expression values is a reasonable starting point for our 

analyses.  

 

The experimental underpinning of the transcriptomic profiles generated in this study make them likely to be of 

value in selecting drug candidates for human use. Our analysis is based on primary human derived cardiomyocytes.  

Although these cell lines do have phenotypic limitations due to dedifferentiation29, the signatures obtained from 

the cells could be relevant for prediction of clinical drug effects. These cell lines may be reflective of specific 

human cardiac pharmacology30,31, even though further characterization and standardization is still needed.  Our 

analyses used drug exposures at estimated therapeutic concentrations of the individual KIs, rather than using the 

same concentrations for all KIs. We used the reported maximum concentrations as reported in literature (Table 

S3). Here, we did not correct for protein binding, but, we consider that given the typical protein binding of >95% 

of these KIs, the concentration used may reflect patients with over-exposure to the KI. As such, the concentrations 

used are relevant to assess transcriptomic changes that are likely related to early changes in subcellular processes 

associated with the adverse event of interest. 

 

We anticipate that clinically weighted transcriptomic signatures such as developed in this study may be of 

relevance to guide safety assessment in early drug development. Unlike the relatively well-established assessment 

of electrophysiological safety issues such as QT prolongation, the assessment of non-QT type of cardiotoxicity 

associated with KIs12 and other novel drugs32, lack reliable biomarkers. Transcriptomic signatures could help fill 

this gap. Transcriptomic analyses may also guide the discovery of subcellular pathway based biomarkers that can 

be measured in both preclinical model systems as well as in patients in surrogate cells. Data on biomarker levels 

could then be included in PK-PD models to personalize dose regimens that limit risk of CT33–35, before the 
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appearance of imaging based indicators such as the left ventricular ejection fraction. The current study represents 

a starting point and many more studies both experimental and computational will be needed to utilize 

transcriptomic studies in drug development and clinical practice.  

 

METHODS 

Experiments to identify differentially expressed genes in human cardiomyocytes treated with KIs. 

Adult human cardiomyoctes were purchased from PromoCell and grown in culture per manufacturer’s instructions. 

Four different cell lines representing different human subjects were studied. Cells were treated with a single dose 

at the estimated therapeutic concentration used in humans for 48 hrs (Table S3). After drug treatment, the cells 

were lysed, RNA was collected using TRIzol, and gene expression profiles were measured using the 3’ digital 

gene expression method36,37. Details of the experimental protocols have been described in another study38 and step-

by-step standard operating procedures for the various experiments are available on www.dtoxs.org. 

Sequence alignment and processing of gene expression data 

The raw sequences were demultiplexed. Combined standard RNA-seq sequencing files were aligned to the 

reference human genome provided by the Broad Institute36, using the Burrows-Wheeler Alignment (BWA)39 

software. Details of these computational procedures are described elsewhere38, and step-by-step protocols are 

available on ww.dtoxs.org. The resulting alignment files were parsed to identify the fragments with acceptable 

alignment quality, to remove duplicate fragments, and to assign accepted fragments to corresponding genes. The 

resulting read-count (i.e., transcript count) table was then subjected to correlation analysis at each treatment 

condition, to identify and remove outlier samples, determined by predefined thresholds. The gene read-count tables 

were then subjected to differential gene expression analysis using the R package EdgeR40. The resulting 

normalized and log-transformed fold-change gene expression values for each sample were deposited for public 

access to the DtoxS repository (www.dtoxs.org).  

Processing and exploratory analysis or gene expression data 

The mean log transformed gene expression fold-change value was calculated across all cell lines for each 

individual KI. The resulting matrix of gene fold changes values by KIs was used for the regression analysis. To 

obtain insight in the general patterns present in this KI-perturbed transcriptomics dataset, we generated rankings 

of the top 500 genes for each drug, by their absolute fold change value. For each of these KI-associated rankings 

we determined the frequency of these changes being also present in the ranking of other drugs, e.g. the similarity 

in top ranking gene expression. This was visualized using the Jaccard index, and by plotting the most highly drug-

connected genes against the associated drugs. Finally we performed on the mean fold-change values for each drug 
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a principal component analysis for the first 3 principal components to further assess similarity between drugs in 

their gene expression values.  

Calculation of clinical risk scores 

The FDA Adverse Event Reporting Systems (FAERS) raw data files were downloaded from the FDA website (all 

report files up to 2015 Q3). Adverse events in the raw data files were mapped to the MEDDRA dictionary41. 

Subsequently we defined four types of CT, that were related to either hypertrophic cardiomyopathy, dilated 

cardiomyopathy, ventricular dysfunction and heart failure, and undefined cardiotoxicity. Electrophysiological 

forms of CT were excluded. The selection of the selected CT subtypes is provided in Table S1. Since drug names 

in FAERS are of low quality, i.e. they contain many spelling mistakes, mixed brand names, or combinations of 

drugs associated with a single adverse event, we performed extensive curation on the drug names converting the 

drug name records to generic drug names. This was done using dictionaries from the FDA and DrugBank. We also 

applied a conservative fuzzy match algorithm to detect drug names with spelling errors. Through iterative manual 

checking and automated string matching using R we derived a curated database of drug names associated with 

adverse events. Subsequently, the frequency of CT events in the 4 predefined subgroups, other non-CT adverse 

events were computed for individual KIs included in our experiments, and for all other drugs. Based on this we 

calculated a reported odds ratio (ROR) as follows, ROR = (a/b)/(c/d), where a, b, c, and d are the number of 

individuals with a drug-associated adverse event, where a is the number of individuals who received drug X, and 

had the adverse event of interest, b is the number of individuals who received drug X and did not have the adverse 

event of interest; c is the number of individuals who did not receive drug X but some other drug, and had the 

adverse event of interest; and d is the number of individuals who did not receive drug X and did not have the 

adverse event of interest. Subsequently, the standard error of the log transformed odds ratio (SElogROR) was 

computed as follows: SE=sqrt(1/a+1/b+1/c+1/d). The Z-score was then computed as Z=log(ROR)/SElogROR. To 

assess the impact of age and sex as confounders variable for different KIs, we performed multivariate logistic 

regression analyses for each of the individual KIs in combination with factors estimated for age and sex. For this 

we used the standard generalized linear model available in R.  

Elastic net regression analysis  

The FAERS-derived risk (Z-scores) for each of the four types of CT was regressed against the KI associated 

vectors of mean fold change values across the four cell lines. We chose to use Z-scores as metric reflecting CT-

risk, as this metric takes into consideration the uncertainty of the reporting odds ratio. Prior to regression we filtered 

the gene lists by their presence in either the Gene Ontology Biological Processes, KEGG, Reactome, or 

WikiPathways databases, in order to exclude genes for which no biological function has been established. 

Subsequently we generated 250 bootstrap datasets with replacements. We did separate bootstrapping for each KI. 

Each of these bootstrap datasets was fit using an elastic net regression model (R package glmnet). The selected 
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genes that were selected as predictors (i.e. non-zero regression coefficient) and the scaled values of the gene-

associated coefficients were saved for each bootstrap dataset. Across all bootstrap datasets the relative frequency 

of selection of gene-based predictors, and the mean scaled coefficient value of these coefficients was computed. 

We then calculated the product of the mean frequency and scaled coefficient value, rank predictors by their 

importance with respect to robustness (selection frequency) and their importance. Different upper percentiles of 

these rankings were regressed against each CT subtype and evaluated using 3-fold cross validation. The selection 

percentile resulting in optimal prediction errors (RMSE) was then used to select a subset of gene based predictors, 

and to select the model that generated the final gene expression signatures for each CT subtype. The selected 

predictor genes were then visualized ranked by their relative importance, and by their mean fold change values as 

clustered heatmaps. 

Enrichment analyses 

Enrichment analysis was performed based on a one-tailed Fisher’s exact test using R, in order to identify 

enrichment of specific genes in predefined gene lists, as present in the KEGG database. We performed enrichment 

of the selected gene-based predictors for the four types of CT, as present in the final signatures. Diseases were 

excluded from the KEGG list of processes (e.g. diabetes, depression, cancer), in order to only evaluate general 

biological processes or pathways.  
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TABLES 

Table 1. Overview of KIs included in this analysis. 

Drug Approval 
year1 

Therapeutic targets Therapeutic 
concentration (uM) 

Cell lines 

Afatinib 2013 ErbB2, EGFR 0.05 4 
Axitinib 2012 VEGFR1/VEGFR2/VEGFR3/PDGFR

 
0.2 4 

Bosutinib 2012 Bcr-Abl, SRC 0.1 2 
Cabozantinib 2012 c-Met, VEGFR2 2 3 
Ceritinib 2014 ALK 1 3 
Crizotinib 2011 ALK, HGFR 0.25 4 
Dabrafenib 2013 BRAF 2.5 4 
Dasatinib 2006 ABL, ARG, KIT, PDGFRα/β, SRC 0.1 3 
Erlotinib 2004 ErbB1 3 3 
Gefitinib 2003 ErbB1 1 4 
Imatinib 2001 Bcr-Abl 5 4 
Nilotinib 2007 Bcr-Abl 3 4 
Pazopanib 2009 VEGFR2, PDGFRα/β, KIT 10 3 
Ponatinib 2012 Bcr-Abl, BEGFR, PDGFR, FGFR, 

EPH, SRC, c-KIT, RET, TIE2, FLT3 
0.1 3 

Regorafenib 2012 RET, VEGFR, PDGFR 1 2 
Ruxolitinib 2011 JAK 1 3 
Sorafenib 2005 B-RAF, VEGFRs, PDGFRα/β, FLT3, 

 
0.5 2 

Sunitinib 2006 VEGFR, PDGFR, CSF1R, FLT3, KIT 1 3 
Trametinib 2013 MEK1, MEK2 0.1 3 
Tofacitinib 2012 JAK 1 3 
Vandetanib 2011 RET, VEGFR, EGFR 0.33 2 
Vemurafenib 2011 BRAF 2 3 

1US Approval date, first indication; See Table S3 for literature references to therapeutic concentrations.  
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FIGURES 
 

Figure 1A. Transcriptomic profiling across KIs. For each drug, genes were ranked by mean fold-change 
gene expression value across replicates (>3) and cell lines, and the top 500 genes were kept. (A) Heatmap 
showing the Jaccard index which indicates the magnitude of similarity in top-ranking differentially 
expressed genes for all KI pairs. 
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Figure 1B Transcriptomic profiling across KIs. For each drug, genes were ranked by mean fold-change 
gene expression value across replicates (>3) and cell lines, and the top 500 genes were kept. (B) Heatmap 
showing frequency of genes present for different KIs, with the genes and drugs ranked by frequency of 
occurrence 
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Figure 1C. Transcriptomic profiling across KIs. For each drug, genes were ranked by mean fold-change 
gene expression value across replicates (>3) and cell lines, and the top 500 genes were kept. (C) First three 
principal components based on full mean fold-change gene expression profiles across KIs. 

 

 
 

  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 19, 2016. ; https://doi.org/10.1101/075754doi: bioRxiv preprint 

https://doi.org/10.1101/075754


16 
 

Figure 2. (A) Overview of data mining procedure to obtain FAERS based CT risk scores. (B). FDA Adverse 
Event Reporting System (FAERS) derived reporting odds ratios (top) and associated Z scores (bottom) for 
four different subtypes of cardiotoxicity: hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy 
(DCM), ventricular dysfunction and heart failure (VDHF), and cardiotoxicity undefined (CTU), for 
different kinase inhibitors (KIs). A reporting odds ratio >1, or, a Z-score > 0 indicates above average risk 
for CT. 
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Figure 3. Schematic overview of the methods used for data generation and analysis. 
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Figure 4A. Regression analysis and signatures derived from clinical risk scores and transcriptomics 
profiling. (A) 3-fold cross validation based mean and standard deviation of predicted and observed clinical 
Z-score metrics, and their associated mean R2 and RMSE metrics for four subtypes of cardiotoxicity. 
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Figure 4B. Regression analysis and signatures derived from clinical risk scores and transcriptomics 
profiling. (A) 3-fold cross validation based mean and standard deviation of predicted and observed clinical 
Z-score metrics, and their associated mean R2 and RMSE metrics, for four subtypes of cardiotoxicity. (B) 
Variable importance ranking of final genes signatures, with number of total genes in signature.  
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Figure 4C. Clustered heatmaps of selected predictors and associated mean fold change gene expression 
values for different KIs. In plots B and C, for DCM, the lowest ranking genes were not included. These 
were: ZKSCAN7, ANAPC4, COPS4, SLC25A3, DAB2, PQLC2, ING5, MRPL18, NUP37, CLPX, MRPL51, 
RBFA, ZDHHC20, ERBB2IP, MBOAT2, MALSU1, PLK2, GMDS, NADSYN1, WLS, ATG12, ENY2, 
ZNF180, NR2C2, MED19, FAM175B, DLD, ZNF702P, SUCLG1, TIA1, ZNF28, PML, CBLB, ZMYM4, 
ZSWIM7, KMT2E, NDUFA4, DST, ATG7, PCDHB7. 
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Figure 4D. Venn diagrams of gene selected in the final gene signature. Overlapping genes have been 
indicated. 

 
 

  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 19, 2016. ; https://doi.org/10.1101/075754doi: bioRxiv preprint 

https://doi.org/10.1101/075754


22 
 

Figure 5. Enrichment analysis based on the KEGG database of clinically weighted gene expression 
signatures for cardiotoxicity subtypes ranked by their combined significance.  
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SUPPLEMENTAL MATERIALS. TABLES.  

Table S1. Definition of MEDDRA subgroups for different cardiotoxicity subtypes used. 

Meddra term Classification 
acute right ventricular failure VDHF 
right ventricular failure VDHF 
cardiac asthma VDHF 
ventricular failure VDHF 
cardiac failure congestive VDHF 
cardiac failure VDHF 
cardiac failure acute VDHF 
cardiac failure chronic VDHF 
cardiac ventricular disorder VDHF 
oedema due to cardiac disease VDHF 
cardiovascular insufficiency VDHF 
ventricular dyskinesia VDHF 
ventricular hypokinesia VDHF 
systolic dysfunction VDHF 
myocardial oedema VDHF 
diastolic dysfunction VDHF 
myocardial fibrosis VDHF 
ventricular dysfunction VDHF 
left ventricular dysfunction VDHF 
right ventricular dysfunction VDHF 
ischaemic cardiomyopathy VDHF 
cytotoxic cardiomyopathy VDHF 
cardiomyopathy VDHF 
congestive cardiomyopathy VDHF 
cardiomyopathy acute VDHF 
restrictive cardiomyopathy VDHF 
metabolic cardiomyopathy VDHF 
non-obstructive cardiomyopathy VDHF 
left ventricular heave HCM 
left atrial hypertrophy HCM 
right atrial hypertrophy HCM 
cardiac septal hypertrophy HCM 
ventricular hypertrophy HCM 
left ventricular hypertrophy HCM 
cardiac hypertrophy HCM 
right ventricular hypertrophy HCM 
atrial hypertrophy HCM 
hypertrophic cardiomyopathy HCM 
left atrial dilatation DCM 
dilatation ventricular DCM 
right atrial dilatation DCM 
cardiotoxicity CTU 
heart injury CTU 
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Table S2. Final gene signatures for four subtypes of CT.  
DCM HCM CTU VDHF 
PDSS2 
AZI2 
INTS4 
IDS 
FASTKD2 
PABPC1 
RAF1 
EIF4H 
AGGF1 
ATP5C1 
ABI2 
KMT2D 
ATM 
SRI 
NAA20 
NDUFA8 
FKBP5 
PXN 
UBE2E1 
TBC1D2B 
RNF213 
STX6 
DCP2 
POLK 
MED27 
RNPEP 
ZSCAN32 
NIT2 
FH 
DUSP14 
NDUFAF1 
ZNF675 
NDUFA9 
RIC8A 
RAB24 
GFM2 
CSE1L 
ADSL 
TBC1D19 
NBR1 
RBM26 
CEP152 
GEMIN2 
HERPUD2 
TRIP4 
ZKSCAN7 
ANAPC4 
COPS4 
SLC25A3 
DAB2 
PQLC2 
ING5 
MRPL18 
NUP37 
CLPX 
MRPL51 
RBFA 
ZDHHC20 
ERBB2IP 
MBOAT2 
MALSU1 
PLK2 
GMDS 
NADSYN1 
WLS 
ATG12 
ENY2 
ZNF180 
NR2C2 
MED19 
FAM175B 
DLD 
ZNF702P 
SUCLG1 
TIA1 
ZNF28 
PML 
CBLB 
ZMYM4 
ZSWIM7 
KMT2E 
NDUFA4 
DST 
ATG7 
PCDHB7 

IDS 
FASTKD2 
MED19 
HAT1 
NUP37 
TPT1 
POLD4 
WLS 
TRAPPC3 
ASXL1 
CHTOP 
DHX33 
PNPT1 
LSM7 
IMMT 
NDUFA9 
CHM 
USP45 
CHD8 
KNSTRN 
LONP2 
XRN1 
POLK 
CDC73 
ADSL 
ZBTB24 
TRIM52 
EP400 
USP8 
CDIPT 
DCLRE1B 
KIAA0141 
DROSHA 
ANP32A 
CLASP1 
GGH 
ISY1 
RPA2 
ATOX1 
CLPX 
MRPL18 
RRAGA 

RANGRF 
ETFA 
LUC7L 
SPAST 
ATXN10 
ASXL1 
WWP2 
PDP2 
DHX16 
GTF2F2 
CYP4V2 
FBXL5 
TMEM11 
SPIRE2 
ZC3H12D 
EYA3 
RNF10 
SNRNP200 
SNAP29 
LYZ 
ZNF483 
SLC25A39 
BRCA1 
GHR 
ZNF124 
SURF6 
CLDN16 
CEACAM5 
NANOG 
SLC6A4 
CDK16 
PHF19 
ARSA 
PTCD1 
RBFA 
MAP3K6 
PCDH11Y 
ZNF432 
ZNF543 
CPT2 
SETD1B 
PDE10A 
ZNF286A 
IL16 

NUP107 
TUBGCP5 
MED19 
RNPEP 
VPS53 
AAMP 
PRKD3 
SNX14 
ATXN2 
FASTKD2 
ARAF 
B3GNT2 
HECTD2 
KIAA0196 
RPA2 
SPICE1 
CPSF2 
FBXO6 
PACSIN2 
USP3 
CSTF1 
TRUB1 
ZSCAN25 
ZRANB3 
MLKL 
SCO1 
GMDS 
GDE1 
ZNF518B 
DGKE 
PLXDC1 
EP400 
MBOAT2 
UTP20 
RINL 
NPLOC4 
ZNF418 
TAF1C 
USP22 
RBL1 
TRIP4 
HERPUD2 
RIC8A 
CHFR 
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Table S3. Typical concentrations used for experiments (exposure for 48h). Concentrations were selected based on the 
mean maximum drug concentrations reported in clinical studies. For dose escalation studies the highest concentration was 
used.  

Drug  In Vitro (uM) Reference 

Sorafenib 0.5 [1] 

Sunitinib 1 [2][3] 

Crizotinib 0.25 [4] 

Erlotinib 3 [5][6] 

Imatinib 5 [7] 

Dasatinib 0.1 [8][9] 

Tofacitinib 1 [10] 

Gefitinib 1 [11] 

Bosutinib 0.1 [12] 

Vandetanib 0.333 [13] 

Lapatinib 2 [14] 

Nilotinib 3 [15][16] 

Axitinib 0.2 [17][18] 

Pazopanib 10 [19] 

Ruxolitinib 1 [20][21] 

Afatinib 0.05 [22][23] 

Regorafenib 1 [24] 

Ponatinib 0.1 [25] 

Dabrafenib 2.5 [26][27] 

Vemurafenib 2 [28] 

Cabozantinib 2 [29] 

Trametinib 0.1 [30] 

Ceritinib 1 [31] 
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SUPPLEMENTAL MATERIAL 3. FIGURES. 

 
Figure S1. Selected gene similarity versus number of bootstrap samples for 4 sub-types of cardiotoxicity. 
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Figure S2. Selection of predictors from the bootstrap analysis for different CT subtypes. The blue circles 
indicate individual genes that were selected with their associated frequency of inclusion value and mean relative 
importance value, computed from the bootstrap analysis (n=250). The solid lines indicate different percentiles 
for the product of the frequency and the mean relative importance. The solid line with increased with indicates 
the optimal percentile used to fit the final gene signature regression models.  The names of selected genes above 
the selected percentile are depicted. 
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Figure S3. Selection of optimal threshold percentile for inclusion of genes in the final gene signature regression 
analysis for different subtypes of cardiotoxicity, based on the cross-validation RMSE obtained. The percentile 
was selected for the minimum RMSE.  
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SUPPLEMENTAL 4. Elastic net model implemented in R. 
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